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inspector and takes the revised source code (action b). At
this step, the project manager may assign other developers
as code reviewers as well.

3) After running predefined static analysis checkers on the re-
vised source code (action c), the defect management system
registers all generated alarms as code review results (action
d). If there are any alarms, the code review system forces
the developer to resolve the issues (action d0). Otherwise,
the code review system finds that the commit is ready to
be merged into the master repository.

4) The developer inspects each alarm message via the code
review system (action e). An alarm contains a description
of the target defect pattern and a list of witnesses, which
are source code locations associated with the detected fault.
Each static analysis checker has its own definition of the
witnesses (see examples in Section III-A). A developer can
respond to each alarm (action f ) either by submitting a new
revision that fixes the defect (if the alarm is valid), or by
declaring that the alarm is a false positive.

5) The defect management system automatically collects de-
veloper responses to alarms (action g). It records the alarm
as either true or false positive based on the response (action
h). If a developer declares a warning as a false positive,
the defect management system records the feedback in
the database. If, instead, the developer updates the source
code, the system re-runs static analysis checkers to examine
whether the alarm disappears or not. If the same checker
does not generate the same warning as before, the system
records the alarm as validated as true by the developer. Once
all warnings are resolved, the defect management system
updates its code review, stating that the revision is ready to
be merged into the master repository (action i).

6) Once all code reviewers agree that the commit has no
problem, the project manager merges the commit to the
project master repository (action j).

7) The CI system re-builds whole projects on a regular ba-
sis (action k). Once a new build is finished, the defect
management system automatically takes the new version
(action l) and runs the set of static analysis checkers that
check global properties (action m). These checkers examine
whether any defect has been introduced due to the conflicts
between different modules and packages. If a new alarm

is found, the defect management system tracks the revision
that introduced the alarm, and sends a code review request
to the responsible developer with the new alarm message
via the code review system (actions n and n0).

8) The developer inspects the alarms from the newly built
version and takes an action, starting again from the 1).
Note that a defect management system gathers all data of

the static analysis checkers across all interactions, and stores
the data in a database. The data include all input files, all
generated warning messages, and the labels on each warning
assigned by developers in 4).

III. STATIC ANALYSIS CHECKERS AND FALSE ALARM
PATTERNS

This section describes each of the studied static analysis
checkers, and explains how we generate datapoints for them.

A. Static Analysis Checkers
We study six static analysis checkers in this paper. Here we

explain the workings of each of them, as well as how false
positive alarms can be generated by them.

1) Resource Handle Leak: The Resource Handle Leak
occurs when an allocated resource handle expires before
the release of the resource, resulting in a leak of the allo-
cated resource. Its checker, HANDLE_LEAK, checks for two
cases: functions returning without releasing resource handles
stored in local variables, and functions overwriting local vari-
ables storing resource handles without releasing handles first.
HANDLE_LEAK produces two witnesses, wacquire and wleak

: wacquire points to the instruction that acquires and stores a
handler to a local variable, whereas wleak points to the location
where the handler expires. It employs an interprocedural path-
sensitive analysis to discover corner cases with complicated
execution paths from wacquire to wleak.

However, HANDLE_LEAK can raise false positive alarms if
the underlying static analyses fail. Figure 2 contains two
simplified real world false positive alarms. In Figure 2(a), the
checker generates a false alarm for the path from Line 5, where
the handle is acquired, to the return statement in Line 8, where
the function returns without releasing the allocated resource.
However, this leak is infeasible because dynamic_load()

returns zero only if it fails to acquire a dynamic library. An-
other similar case is described in Figure 2(b). HANDLE_LEAK
concludes that write_profile() returns without closing a file
handle acquired in Line 12. However, this is a false positive
because the call to _close() in Line 18 closes the handler fd.

We conjecture that HANDLE_LEAK generates false alarms
because it fails to predict the exact effect of a function call due
to approximation and abstraction employed by the underlying
static analysis. Simultaneously, we found that many false
positive alarms share similar structural patterns. For example,
the error handling paths (such as one shown in Figure 2(a))
typically start right after the resource acquisition and contain a
debug or logging message. This provides supporting evidence
to our conjecture that false positive alarms can be classified
based on structural lexical patterns.

•  Every project runs predefined static analysis checker per-commit and 
per-release basis

- SVACE is tightly integrated in Continuous Integration pipeline. 
(E.g., Tizen uses 252 checkers over all its sub-projects)
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6) Once all code reviewers agree that the commit has no
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7) The CI system re-builds whole projects on a regular ba-
sis (action k). Once a new build is finished, the defect
management system automatically takes the new version
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positive alarms can be generated by them.
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: wacquire points to the instruction that acquires and stores a
handler to a local variable, whereas wleak points to the location
where the handler expires. It employs an interprocedural path-
sensitive analysis to discover corner cases with complicated
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the underlying static analyses fail. Figure 2 contains two
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checker generates a false alarm for the path from Line 5, where
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However, HANDLE_LEAK can raise false positive alarms if
the underlying static analyses fail. Figure 2 contains two
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checker generates a false alarm for the path from Line 5, where
the handle is acquired, to the return statement in Line 8, where
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However, this leak is infeasible because dynamic_load()

returns zero only if it fails to acquire a dynamic library. An-
other similar case is described in Figure 2(b). HANDLE_LEAK
concludes that write_profile() returns without closing a file
handle acquired in Line 12. However, this is a false positive
because the call to _close() in Line 18 closes the handler fd.
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because it fails to predict the exact effect of a function call due
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whether the alarm disappears or not. If the same checker
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records the alarm as validated as true by the developer. Once
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be merged into the master repository (action i).

6) Once all code reviewers agree that the commit has no
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check global properties (action m). These checkers examine
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sensitive analysis to discover corner cases with complicated
execution paths from wacquire to wleak.

However, HANDLE_LEAK can raise false positive alarms if
the underlying static analyses fail. Figure 2 contains two
simplified real world false positive alarms. In Figure 2(a), the
checker generates a false alarm for the path from Line 5, where
the handle is acquired, to the return statement in Line 8, where
the function returns without releasing the allocated resource.
However, this leak is infeasible because dynamic_load()

returns zero only if it fails to acquire a dynamic library. An-
other similar case is described in Figure 2(b). HANDLE_LEAK
concludes that write_profile() returns without closing a file
handle acquired in Line 12. However, this is a false positive
because the call to _close() in Line 18 closes the handler fd.

We conjecture that HANDLE_LEAK generates false alarms
because it fails to predict the exact effect of a function call due
to approximation and abstraction employed by the underlying
static analysis. Simultaneously, we found that many false
positive alarms share similar structural patterns. For example,
the error handling paths (such as one shown in Figure 2(a))
typically start right after the resource acquisition and contain a
debug or logging message. This provides supporting evidence
to our conjecture that false positive alarms can be classified
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inspector and takes the revised source code (action b). At
this step, the project manager may assign other developers
as code reviewers as well.

3) After running predefined static analysis checkers on the re-
vised source code (action c), the defect management system
registers all generated alarms as code review results (action
d). If there are any alarms, the code review system forces
the developer to resolve the issues (action d0). Otherwise,
the code review system finds that the commit is ready to
be merged into the master repository.

4) The developer inspects each alarm message via the code
review system (action e). An alarm contains a description
of the target defect pattern and a list of witnesses, which
are source code locations associated with the detected fault.
Each static analysis checker has its own definition of the
witnesses (see examples in Section III-A). A developer can
respond to each alarm (action f ) either by submitting a new
revision that fixes the defect (if the alarm is valid), or by
declaring that the alarm is a false positive.

5) The defect management system automatically collects de-
veloper responses to alarms (action g). It records the alarm
as either true or false positive based on the response (action
h). If a developer declares a warning as a false positive,
the defect management system records the feedback in
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code, the system re-runs static analysis checkers to examine
whether the alarm disappears or not. If the same checker
does not generate the same warning as before, the system
records the alarm as validated as true by the developer. Once
all warnings are resolved, the defect management system
updates its code review, stating that the revision is ready to
be merged into the master repository (action i).

6) Once all code reviewers agree that the commit has no
problem, the project manager merges the commit to the
project master repository (action j).

7) The CI system re-builds whole projects on a regular ba-
sis (action k). Once a new build is finished, the defect
management system automatically takes the new version
(action l) and runs the set of static analysis checkers that
check global properties (action m). These checkers examine
whether any defect has been introduced due to the conflicts
between different modules and packages. If a new alarm

is found, the defect management system tracks the revision
that introduced the alarm, and sends a code review request
to the responsible developer with the new alarm message
via the code review system (actions n and n0).
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version and takes an action, starting again from the 1).
Note that a defect management system gathers all data of

the static analysis checkers across all interactions, and stores
the data in a database. The data include all input files, all
generated warning messages, and the labels on each warning
assigned by developers in 4).

III. STATIC ANALYSIS CHECKERS AND FALSE ALARM
PATTERNS

This section describes each of the studied static analysis
checkers, and explains how we generate datapoints for them.

A. Static Analysis Checkers
We study six static analysis checkers in this paper. Here we

explain the workings of each of them, as well as how false
positive alarms can be generated by them.

1) Resource Handle Leak: The Resource Handle Leak
occurs when an allocated resource handle expires before
the release of the resource, resulting in a leak of the allo-
cated resource. Its checker, HANDLE_LEAK, checks for two
cases: functions returning without releasing resource handles
stored in local variables, and functions overwriting local vari-
ables storing resource handles without releasing handles first.
HANDLE_LEAK produces two witnesses, wacquire and wleak

: wacquire points to the instruction that acquires and stores a
handler to a local variable, whereas wleak points to the location
where the handler expires. It employs an interprocedural path-
sensitive analysis to discover corner cases with complicated
execution paths from wacquire to wleak.

However, HANDLE_LEAK can raise false positive alarms if
the underlying static analyses fail. Figure 2 contains two
simplified real world false positive alarms. In Figure 2(a), the
checker generates a false alarm for the path from Line 5, where
the handle is acquired, to the return statement in Line 8, where
the function returns without releasing the allocated resource.
However, this leak is infeasible because dynamic_load()

returns zero only if it fails to acquire a dynamic library. An-
other similar case is described in Figure 2(b). HANDLE_LEAK
concludes that write_profile() returns without closing a file
handle acquired in Line 12. However, this is a false positive
because the call to _close() in Line 18 closes the handler fd.

We conjecture that HANDLE_LEAK generates false alarms
because it fails to predict the exact effect of a function call due
to approximation and abstraction employed by the underlying
static analysis. Simultaneously, we found that many false
positive alarms share similar structural patterns. For example,
the error handling paths (such as one shown in Figure 2(a))
typically start right after the resource acquisition and contain a
debug or logging message. This provides supporting evidence
to our conjecture that false positive alarms can be classified
based on structural lexical patterns.

•  Every project runs predefined static analysis checker per-commit and 
per-release basis

- SVACE is tightly integrated in Continuous Integration pipeline. 
(E.g., Tizen uses 252 checkers over all its sub-projects)
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inspector and takes the revised source code (action b). At
this step, the project manager may assign other developers
as code reviewers as well.

3) After running predefined static analysis checkers on the re-
vised source code (action c), the defect management system
registers all generated alarms as code review results (action
d). If there are any alarms, the code review system forces
the developer to resolve the issues (action d0). Otherwise,
the code review system finds that the commit is ready to
be merged into the master repository.

4) The developer inspects each alarm message via the code
review system (action e). An alarm contains a description
of the target defect pattern and a list of witnesses, which
are source code locations associated with the detected fault.
Each static analysis checker has its own definition of the
witnesses (see examples in Section III-A). A developer can
respond to each alarm (action f ) either by submitting a new
revision that fixes the defect (if the alarm is valid), or by
declaring that the alarm is a false positive.

5) The defect management system automatically collects de-
veloper responses to alarms (action g). It records the alarm
as either true or false positive based on the response (action
h). If a developer declares a warning as a false positive,
the defect management system records the feedback in
the database. If, instead, the developer updates the source
code, the system re-runs static analysis checkers to examine
whether the alarm disappears or not. If the same checker
does not generate the same warning as before, the system
records the alarm as validated as true by the developer. Once
all warnings are resolved, the defect management system
updates its code review, stating that the revision is ready to
be merged into the master repository (action i).

6) Once all code reviewers agree that the commit has no
problem, the project manager merges the commit to the
project master repository (action j).

7) The CI system re-builds whole projects on a regular ba-
sis (action k). Once a new build is finished, the defect
management system automatically takes the new version
(action l) and runs the set of static analysis checkers that
check global properties (action m). These checkers examine
whether any defect has been introduced due to the conflicts
between different modules and packages. If a new alarm

is found, the defect management system tracks the revision
that introduced the alarm, and sends a code review request
to the responsible developer with the new alarm message
via the code review system (actions n and n0).

8) The developer inspects the alarms from the newly built
version and takes an action, starting again from the 1).
Note that a defect management system gathers all data of

the static analysis checkers across all interactions, and stores
the data in a database. The data include all input files, all
generated warning messages, and the labels on each warning
assigned by developers in 4).

III. STATIC ANALYSIS CHECKERS AND FALSE ALARM
PATTERNS

This section describes each of the studied static analysis
checkers, and explains how we generate datapoints for them.

A. Static Analysis Checkers
We study six static analysis checkers in this paper. Here we

explain the workings of each of them, as well as how false
positive alarms can be generated by them.

1) Resource Handle Leak: The Resource Handle Leak
occurs when an allocated resource handle expires before
the release of the resource, resulting in a leak of the allo-
cated resource. Its checker, HANDLE_LEAK, checks for two
cases: functions returning without releasing resource handles
stored in local variables, and functions overwriting local vari-
ables storing resource handles without releasing handles first.
HANDLE_LEAK produces two witnesses, wacquire and wleak

: wacquire points to the instruction that acquires and stores a
handler to a local variable, whereas wleak points to the location
where the handler expires. It employs an interprocedural path-
sensitive analysis to discover corner cases with complicated
execution paths from wacquire to wleak.

However, HANDLE_LEAK can raise false positive alarms if
the underlying static analyses fail. Figure 2 contains two
simplified real world false positive alarms. In Figure 2(a), the
checker generates a false alarm for the path from Line 5, where
the handle is acquired, to the return statement in Line 8, where
the function returns without releasing the allocated resource.
However, this leak is infeasible because dynamic_load()

returns zero only if it fails to acquire a dynamic library. An-
other similar case is described in Figure 2(b). HANDLE_LEAK
concludes that write_profile() returns without closing a file
handle acquired in Line 12. However, this is a false positive
because the call to _close() in Line 18 closes the handler fd.

We conjecture that HANDLE_LEAK generates false alarms
because it fails to predict the exact effect of a function call due
to approximation and abstraction employed by the underlying
static analysis. Simultaneously, we found that many false
positive alarms share similar structural patterns. For example,
the error handling paths (such as one shown in Figure 2(a))
typically start right after the resource acquisition and contain a
debug or logging message. This provides supporting evidence
to our conjecture that false positive alarms can be classified
based on structural lexical patterns.

•  Every project runs predefined static analysis checker per-commit and 
per-release basis

- SVACE is tightly integrated in Continuous Integration pipeline. 
(E.g., Tizen uses 252 checkers over all its sub-projects)
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inspector and takes the revised source code (action b). At
this step, the project manager may assign other developers
as code reviewers as well.

3) After running predefined static analysis checkers on the re-
vised source code (action c), the defect management system
registers all generated alarms as code review results (action
d). If there are any alarms, the code review system forces
the developer to resolve the issues (action d0). Otherwise,
the code review system finds that the commit is ready to
be merged into the master repository.

4) The developer inspects each alarm message via the code
review system (action e). An alarm contains a description
of the target defect pattern and a list of witnesses, which
are source code locations associated with the detected fault.
Each static analysis checker has its own definition of the
witnesses (see examples in Section III-A). A developer can
respond to each alarm (action f ) either by submitting a new
revision that fixes the defect (if the alarm is valid), or by
declaring that the alarm is a false positive.

5) The defect management system automatically collects de-
veloper responses to alarms (action g). It records the alarm
as either true or false positive based on the response (action
h). If a developer declares a warning as a false positive,
the defect management system records the feedback in
the database. If, instead, the developer updates the source
code, the system re-runs static analysis checkers to examine
whether the alarm disappears or not. If the same checker
does not generate the same warning as before, the system
records the alarm as validated as true by the developer. Once
all warnings are resolved, the defect management system
updates its code review, stating that the revision is ready to
be merged into the master repository (action i).

6) Once all code reviewers agree that the commit has no
problem, the project manager merges the commit to the
project master repository (action j).

7) The CI system re-builds whole projects on a regular ba-
sis (action k). Once a new build is finished, the defect
management system automatically takes the new version
(action l) and runs the set of static analysis checkers that
check global properties (action m). These checkers examine
whether any defect has been introduced due to the conflicts
between different modules and packages. If a new alarm

is found, the defect management system tracks the revision
that introduced the alarm, and sends a code review request
to the responsible developer with the new alarm message
via the code review system (actions n and n0).

8) The developer inspects the alarms from the newly built
version and takes an action, starting again from the 1).
Note that a defect management system gathers all data of

the static analysis checkers across all interactions, and stores
the data in a database. The data include all input files, all
generated warning messages, and the labels on each warning
assigned by developers in 4).

III. STATIC ANALYSIS CHECKERS AND FALSE ALARM
PATTERNS

This section describes each of the studied static analysis
checkers, and explains how we generate datapoints for them.

A. Static Analysis Checkers
We study six static analysis checkers in this paper. Here we

explain the workings of each of them, as well as how false
positive alarms can be generated by them.

1) Resource Handle Leak: The Resource Handle Leak
occurs when an allocated resource handle expires before
the release of the resource, resulting in a leak of the allo-
cated resource. Its checker, HANDLE_LEAK, checks for two
cases: functions returning without releasing resource handles
stored in local variables, and functions overwriting local vari-
ables storing resource handles without releasing handles first.
HANDLE_LEAK produces two witnesses, wacquire and wleak

: wacquire points to the instruction that acquires and stores a
handler to a local variable, whereas wleak points to the location
where the handler expires. It employs an interprocedural path-
sensitive analysis to discover corner cases with complicated
execution paths from wacquire to wleak.

However, HANDLE_LEAK can raise false positive alarms if
the underlying static analyses fail. Figure 2 contains two
simplified real world false positive alarms. In Figure 2(a), the
checker generates a false alarm for the path from Line 5, where
the handle is acquired, to the return statement in Line 8, where
the function returns without releasing the allocated resource.
However, this leak is infeasible because dynamic_load()

returns zero only if it fails to acquire a dynamic library. An-
other similar case is described in Figure 2(b). HANDLE_LEAK
concludes that write_profile() returns without closing a file
handle acquired in Line 12. However, this is a false positive
because the call to _close() in Line 18 closes the handler fd.

We conjecture that HANDLE_LEAK generates false alarms
because it fails to predict the exact effect of a function call due
to approximation and abstraction employed by the underlying
static analysis. Simultaneously, we found that many false
positive alarms share similar structural patterns. For example,
the error handling paths (such as one shown in Figure 2(a))
typically start right after the resource acquisition and contain a
debug or logging message. This provides supporting evidence
to our conjecture that false positive alarms can be classified
based on structural lexical patterns.

•  Every project runs predefined static analysis checker per-commit and 
per-release basis

- SVACE is tightly integrated in Continuous Integration pipeline. 
(E.g., Tizen uses 252 checkers over all its sub-projects)
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inspector and takes the revised source code (action b). At
this step, the project manager may assign other developers
as code reviewers as well.

3) After running predefined static analysis checkers on the re-
vised source code (action c), the defect management system
registers all generated alarms as code review results (action
d). If there are any alarms, the code review system forces
the developer to resolve the issues (action d0). Otherwise,
the code review system finds that the commit is ready to
be merged into the master repository.

4) The developer inspects each alarm message via the code
review system (action e). An alarm contains a description
of the target defect pattern and a list of witnesses, which
are source code locations associated with the detected fault.
Each static analysis checker has its own definition of the
witnesses (see examples in Section III-A). A developer can
respond to each alarm (action f ) either by submitting a new
revision that fixes the defect (if the alarm is valid), or by
declaring that the alarm is a false positive.

5) The defect management system automatically collects de-
veloper responses to alarms (action g). It records the alarm
as either true or false positive based on the response (action
h). If a developer declares a warning as a false positive,
the defect management system records the feedback in
the database. If, instead, the developer updates the source
code, the system re-runs static analysis checkers to examine
whether the alarm disappears or not. If the same checker
does not generate the same warning as before, the system
records the alarm as validated as true by the developer. Once
all warnings are resolved, the defect management system
updates its code review, stating that the revision is ready to
be merged into the master repository (action i).

6) Once all code reviewers agree that the commit has no
problem, the project manager merges the commit to the
project master repository (action j).

7) The CI system re-builds whole projects on a regular ba-
sis (action k). Once a new build is finished, the defect
management system automatically takes the new version
(action l) and runs the set of static analysis checkers that
check global properties (action m). These checkers examine
whether any defect has been introduced due to the conflicts
between different modules and packages. If a new alarm

is found, the defect management system tracks the revision
that introduced the alarm, and sends a code review request
to the responsible developer with the new alarm message
via the code review system (actions n and n0).

8) The developer inspects the alarms from the newly built
version and takes an action, starting again from the 1).
Note that a defect management system gathers all data of

the static analysis checkers across all interactions, and stores
the data in a database. The data include all input files, all
generated warning messages, and the labels on each warning
assigned by developers in 4).

III. STATIC ANALYSIS CHECKERS AND FALSE ALARM
PATTERNS

This section describes each of the studied static analysis
checkers, and explains how we generate datapoints for them.

A. Static Analysis Checkers
We study six static analysis checkers in this paper. Here we

explain the workings of each of them, as well as how false
positive alarms can be generated by them.

1) Resource Handle Leak: The Resource Handle Leak
occurs when an allocated resource handle expires before
the release of the resource, resulting in a leak of the allo-
cated resource. Its checker, HANDLE_LEAK, checks for two
cases: functions returning without releasing resource handles
stored in local variables, and functions overwriting local vari-
ables storing resource handles without releasing handles first.
HANDLE_LEAK produces two witnesses, wacquire and wleak

: wacquire points to the instruction that acquires and stores a
handler to a local variable, whereas wleak points to the location
where the handler expires. It employs an interprocedural path-
sensitive analysis to discover corner cases with complicated
execution paths from wacquire to wleak.

However, HANDLE_LEAK can raise false positive alarms if
the underlying static analyses fail. Figure 2 contains two
simplified real world false positive alarms. In Figure 2(a), the
checker generates a false alarm for the path from Line 5, where
the handle is acquired, to the return statement in Line 8, where
the function returns without releasing the allocated resource.
However, this leak is infeasible because dynamic_load()

returns zero only if it fails to acquire a dynamic library. An-
other similar case is described in Figure 2(b). HANDLE_LEAK
concludes that write_profile() returns without closing a file
handle acquired in Line 12. However, this is a false positive
because the call to _close() in Line 18 closes the handler fd.

We conjecture that HANDLE_LEAK generates false alarms
because it fails to predict the exact effect of a function call due
to approximation and abstraction employed by the underlying
static analysis. Simultaneously, we found that many false
positive alarms share similar structural patterns. For example,
the error handling paths (such as one shown in Figure 2(a))
typically start right after the resource acquisition and contain a
debug or logging message. This provides supporting evidence
to our conjecture that false positive alarms can be classified
based on structural lexical patterns.

•  Every project runs predefined static analysis checker per-commit and 
per-release basis

- SVACE is tightly integrated in Continuous Integration pipeline. 
(E.g., Tizen uses 252 checkers over all its sub-projects)
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Challenge: High Ratio of False Positive 

- E.g., false positives in analyzing Tizen (sampled)
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Category Checker FP ratio

API call 
sequence

MEMORY_LEAK.EX 36 %
HANDLE_LEAK 44 %
MEMORY_LEAK.STRUCT 27 %
MEMORY_LEAK.STRDUP 36 %
MEMORY_LEAK 43 %
DOUBLE_FREE 32 %

Dataflow

DEREF_AFTER_NULL.EX 25 %
DEREF_OF_NULL.EX 31 %
TAINTED_INT.LOOP.MIGHT 50 %
DEREF_AFTER_FREE.EX 48 %

Control flow FALL_THROUGH 39 %
UNREACHABLE_CODE 17 %

Average: 35%
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Checker 1. HANDLE_LEAK 

5

01    func() {
02      int fd = open(…);  // acquire
        ...
11      if (feof(fd) == true)
12         return;         // release
13   }

01    func() {
02      int fd = open(…);   // acquire
03      if (fd < 0) {
04        error();
05        return;      // not released
06  ... }

True alarm False alarm

• HANDLE_LEAK reports a warning for a pair of statements in a function <X, Y>  if

1. X acquires a resource (e.g., fopen) and stores the handler to a local var. V, 

2. Y follows X in an execution path where V does not escape to global, and
3. Y eliminates the handler by overwriting V or by deallocating V (i.e., return) 

• Warning review data (collected from Tizen in July 2017) 
- False alarms: 3367 cases (15.4%) 
- True alarms: 18485 cases (84.6%)
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Checker 2. FALL_THROUGH 

6

01  switch (z) {
02   case 1:
03    if (e == 1) 
04     break;
05    else if (e == 2)
06     break;  // else break missing
07   case 2:
       …

01  switch (z) {
02    case ‘x’:            // intended
03    case ‘y’:            // fall
04    case ‘z’:            // through
05       x_or_y_or_z = 1;
06
07    case ‘a’:
       …

True alarm False alarm

• FALL_THROUGH reports a warning for a case block if there may be a path that 
possibly exits the block without taking a break statement. 

• Warning review data (collected from Tizen in July 2017) 
- False alarms: 2709 cases (13%) 
- True alarms: 18265 cases (87%)
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Data gathering

8

• Picked 12 checkers. These checkers 

• Data cleaning 

- Remove noisy, duplicated data & Normalize data 

- 150K à 9.8K datapoints (580-2100 datapoint per checker) 

• Label transformation 

- {Confirmed, Won't fix, Fixed,  Undecided, False positive} 

à {0, 1}

- are used for Tizen, 

- check important properties,

- have many alarms, 

- are motivated to high false alarm ratio.



Target Static Analysis Checkers 

9

TABLE I: Studied Static Analysis Checkers and Their Warning
Dataset Size

Category Checker Alarms TP FP FP Ratio

Call Sequence HANDLE_LEAK 1,610 1,334 276 17%
DOUBLE_FREE 733 622 111 15%

Dataflow DEREF 2,101 1,919 182 9%
TAINT_INT.LOOP 584 430 154 26%

Control Flow FALL_THROUGH 1,680 1,559 121 7%
UNREACHABLE 3,163 3,010 153 5%

Total 9,871 8,874 997 10%

precision =
|{ Actual FP alarms } \ { Predicted FP alarms }|

|{ Predicted FP alarms }|

recall =
|{ Actual FP alarms } \ { Predicted FP alarms }|

|{ Actual FP alarms }|

E. Data Sources
We use static analysis alarm data from multiple open source

projects to which Samsung Electronics has contributed over
the last two years. Samsung maintains the same CI pipeline
for these open source projects, and collect alarms in a defect
management system. During this two year period, the defect
management system stored a total of 56,036 alarms that have
been closed (i.e. either fixed or labelled as false positives) for
these projects. After removing duplicates, we obtained 9,871
alarms, about 10% of which are labelled as false positives.
These alarms were generated for over 27 million lines of
C/C++ code. Table I presents the breakdown to individual
checkers.

V. EXPERIMENTAL SETUP

A. Configuration and Environment
We use the embedding size of 128 with word2vec. We

use the skip-gram window size of one (i.e. we only con-
sider adjacent tokens). Word2vec embedding algorithm has
been implemented using TensorFlow [28], version 1.3, and
Python version 3.6.0. The CNN classifier has the network
architecture presented in Section IV-C. We use dropout rate
of 0.8 and train the classifier for 150 epochs, using the mini-
batch size of 10. We use the adam stochastic optimiser for the
gradient descent optimisation [29]. All hyperparameters have
been empirically tuned based on trials. The CNN classifier has
been implemented using Keras [30], version 2.0 (using the
TensorFlow backend), and Python version 3.6.0.

All experiments have been performed on Ubuntu 14.04
LTS, running on Intel Core i7-6700K with 32GB RAM. The
TensorFlow backend used NVidia CUDA 8.0, running on
NVidia GTX1080 GPU with 12GB memory.

VI. RESULTS & DISCUSSIONS

A. Classification Effectiveness and Efficiency
Table II reports average evaluation metric values across

the ten-fold cross validation, along with the overall average
across all six checkers. Figure 10 shows the distribution of
evaluation metrics more clearly. The average precision across

all six checkers is 79.72%, and the average recall across all
six checkers is 51.09%. The cross validation mean precision
is over 80% for three checkers (HANDLE_LEAK, DEREF, and
TAINT_INT.LOOP); the cross validation mean precision is
over 75% for five checkers (above three plus DOUBLE_FREE
and UNREACHABLE). The highest cross validation mean pre-
cision is 86% for DEREF checker. Recall metric values are
lower than those of precision, at around 50% on average
with the lowest from UNREACHABLE at 31.41%. This suggests
that certain false positive alarms either exhibit difficult-to-
learn lexical patterns, or even lack one. However, from the
point of developer effort reduction, we consider precision to
be the more important metric for our use case, i.e. either
assisting developers to quickly filter out false positive alarms
or assisting code reviewers to understand developer commits
more efficiently.

Figure 11 shows the correlation between the size of alarm
datasets and the time it takes to train classifiers up to epoch
150. The training time increases linearly as the number of
alarms increases. We performed linear regression analysis and
obtained the following results: [time] ⇠ 0.031[# of alarms] +
9.611. The adjusted R2 is 0.88, and the p–value is less than
2.2e�16.

All training finished within 100 seconds. Considering that
we use a single consumer grade GPU for training, we cau-
tiously suggest from the observed data that regular (re)training
of classifier neural nets would be feasible even within the
context of continuous integration.

B. Discussion
Here we discuss potential issues and shortcomings observed

in the results, and plan the future work.
1) Trivial Overfitting: One potential risk in every machine

learning application is overfitting. In our case, there is the
risk of the classifier learning to simply connect existence of
specific tokens to prediction of false positive alarm labels.
We intentionally designed our CNN to be as minimal as
possible (see Section IV-C) to avoid overfitting. However, to
investigate whether such trivial overfitting to specific tokens
is actually happening, we undertook a small case study using
the HANDLE_LEAK dataset.

Figure 12 shows the distribution of token occurrences in the
code chunk for HANDLE_LEAK: the x axis represents the token
id sorted by number of token occurrences, and the y axis shows
the accumulative number of tokens in the HANDLE_LEAK
checker code chunk that belong to the subset up to the xth
token in the descending order of occurrence frequency. The
corpus contains 4,987,049 tokens, of which there are 24,633
unique types. The distribution of token occurrences is heavily
skewed with a significant long tail: the top 1,232 tokens
(marked by the vertical red line) account for the 90% of all
tokens in the corpus (marked by the horizontal red line).

With such a long tailed distribution, we conjecture that any
tokens that may produce trivial overfitting will be in the tail
region. Based on this, we trained multiple instances of our
classifier for the HANDLE_LEAK checker, but using only the

Category Checker TP FP FP ratio

API call 
sequence

MEMORY_LEAK.EX 2496 1391 36 %

HANDLE_LEAK 1552 1203 44 %

MEMORY_LEAK.STRUCT 548 203 27 %

MEMORY_LEAK.STRDUP 376 214 36 %

MEMORY_LEAK 293 220 43 %

DOUBLE_FREE 271 126 32 %

Dataflow

DEREF_AFTER_NULL.EX 408 134 25 %

DEREF_OF_NULL.EX 345 157 31 %

TAINTED_INT.LOOP.MIGHT 129 131 50 %

DEREF_AFTER_FREE.EX 133 123 48 %

Control flow
FALL_THROUGH 309 196 39 %

UNREACHABLE_CODE 941 187 17 %
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TABLE I: Studied Static Analysis Checkers and Their Warning
Dataset Size

Category Checker Alarms TP FP FP Ratio

Call Sequence HANDLE_LEAK 1,610 1,334 276 17%
DOUBLE_FREE 733 622 111 15%

Dataflow DEREF 2,101 1,919 182 9%
TAINT_INT.LOOP 584 430 154 26%

Control Flow FALL_THROUGH 1,680 1,559 121 7%
UNREACHABLE 3,163 3,010 153 5%

Total 9,871 8,874 997 10%

precision =
|{ Actual FP alarms } \ { Predicted FP alarms }|

|{ Predicted FP alarms }|

recall =
|{ Actual FP alarms } \ { Predicted FP alarms }|

|{ Actual FP alarms }|

E. Data Sources
We use static analysis alarm data from multiple open source
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management system stored a total of 56,036 alarms that have
been closed (i.e. either fixed or labelled as false positives) for
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alarms, about 10% of which are labelled as false positives.
These alarms were generated for over 27 million lines of
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checkers.
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sider adjacent tokens). Word2vec embedding algorithm has
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gradient descent optimisation [29]. All hyperparameters have
been empirically tuned based on trials. The CNN classifier has
been implemented using Keras [30], version 2.0 (using the
TensorFlow backend), and Python version 3.6.0.

All experiments have been performed on Ubuntu 14.04
LTS, running on Intel Core i7-6700K with 32GB RAM. The
TensorFlow backend used NVidia CUDA 8.0, running on
NVidia GTX1080 GPU with 12GB memory.

VI. RESULTS & DISCUSSIONS

A. Classification Effectiveness and Efficiency
Table II reports average evaluation metric values across

the ten-fold cross validation, along with the overall average
across all six checkers. Figure 10 shows the distribution of
evaluation metrics more clearly. The average precision across

all six checkers is 79.72%, and the average recall across all
six checkers is 51.09%. The cross validation mean precision
is over 80% for three checkers (HANDLE_LEAK, DEREF, and
TAINT_INT.LOOP); the cross validation mean precision is
over 75% for five checkers (above three plus DOUBLE_FREE
and UNREACHABLE). The highest cross validation mean pre-
cision is 86% for DEREF checker. Recall metric values are
lower than those of precision, at around 50% on average
with the lowest from UNREACHABLE at 31.41%. This suggests
that certain false positive alarms either exhibit difficult-to-
learn lexical patterns, or even lack one. However, from the
point of developer effort reduction, we consider precision to
be the more important metric for our use case, i.e. either
assisting developers to quickly filter out false positive alarms
or assisting code reviewers to understand developer commits
more efficiently.

Figure 11 shows the correlation between the size of alarm
datasets and the time it takes to train classifiers up to epoch
150. The training time increases linearly as the number of
alarms increases. We performed linear regression analysis and
obtained the following results: [time] ⇠ 0.031[# of alarms] +
9.611. The adjusted R2 is 0.88, and the p–value is less than
2.2e�16.

All training finished within 100 seconds. Considering that
we use a single consumer grade GPU for training, we cau-
tiously suggest from the observed data that regular (re)training
of classifier neural nets would be feasible even within the
context of continuous integration.

B. Discussion
Here we discuss potential issues and shortcomings observed

in the results, and plan the future work.
1) Trivial Overfitting: One potential risk in every machine

learning application is overfitting. In our case, there is the
risk of the classifier learning to simply connect existence of
specific tokens to prediction of false positive alarm labels.
We intentionally designed our CNN to be as minimal as
possible (see Section IV-C) to avoid overfitting. However, to
investigate whether such trivial overfitting to specific tokens
is actually happening, we undertook a small case study using
the HANDLE_LEAK dataset.

Figure 12 shows the distribution of token occurrences in the
code chunk for HANDLE_LEAK: the x axis represents the token
id sorted by number of token occurrences, and the y axis shows
the accumulative number of tokens in the HANDLE_LEAK
checker code chunk that belong to the subset up to the xth
token in the descending order of occurrence frequency. The
corpus contains 4,987,049 tokens, of which there are 24,633
unique types. The distribution of token occurrences is heavily
skewed with a significant long tail: the top 1,232 tokens
(marked by the vertical red line) account for the 90% of all
tokens in the corpus (marked by the horizontal red line).

With such a long tailed distribution, we conjecture that any
tokens that may produce trivial overfitting will be in the tail
region. Based on this, we trained multiple instances of our
classifier for the HANDLE_LEAK checker, but using only the
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01  switch (z) { 
... 
07    case ‘x’:        // intended 
08    case ‘y’:        // fall 
09    case ‘z’:        // through 
10       x_or_y_or_z = 1; 

12    case ‘a’: 
...

1. Datapoint Extraction 

11

01  func() { 
02    int fd = open(...); // acquire 
... 
06    if (x < y)  
... 
21    x = y   
... 
24    if (feof(fd) == true) 
25      return;           // release

HANDLE_LEAK FALL_THROUGH

• A datapoint is a data representation of an alarm review case.
• A datapoint is defined to contain raw code data to support the alarm review.  
• Each checker has a data point definition scheme that combines code 

snippets related to the warning trace. 

• Cases 
- HANDLE_LEAK: 10 lines from the resource acquire point to the leak-point 

- FALL_THROUGH:  20 lines surrounding the exit-point of a case block
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21-25 06-15



01  switch (z) { 
... 
07    case ‘x’:        // intended 
08    case ‘y’:        // fall 
09    case ‘z’:        // through 
10       x_or_y_or_z = 1; 

12    case ‘a’: 
...

1. Datapoint Extraction 

11

FALL_THROUGH

• A datapoint is a data representation of an alarm review case.
• A datapoint is defined to contain raw code data to support the alarm review.  
• Each checker has a data point definition scheme that combines code 

snippets related to the warning trace. 

• Cases 
- HANDLE_LEAK: 10 lines from the resource acquire point to the leak-point 

- FALL_THROUGH:  20 lines surrounding the exit-point of a case block

06-15

01  switch (z) { 
... 
07    case ‘x’: 
08    case ‘y’: 
09    case ‘z’: 
10       x_or_y_or_z = 1; 
11 
12    case ‘a’: 
...



• Input: Datapoint, Output: Token sequence
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01  switch (z) { 
... 
07    case ‘x’: 
08    case ‘y’: 
09    case ‘z’: 
10       x_or_y_or_z = 1; 
11 
12    case ‘a’: 
...

2. Lexical Tokenization

Datapoint



• Input: Datapoint, Output: Token sequence
1. Extract tokens (e.g. Identifier, operator, number) from datapoint
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01  switch (z) { 
... 
07    case ‘x’: 
08    case ‘y’: 
09    case ‘z’: 
10       x_or_y_or_z = 1; 
11 
12    case ‘a’: 
...

2. Lexical Tokenization

Datapoint

Extract

Token seq.

switch, z, 
... 
case, x, :, 
case, y, :, 
case, z, :, 
x_or_y_or_z, =, 1, ;, 

case, a, :, 
…



• Input: Datapoint, Output: Token sequence
1. Extract tokens (e.g. Identifier, operator, number) from datapoint
2. Split camelCase and snake_case tokens 
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2. Lexical Tokenization

Token seq.

switch, z, 
... 
case, x, :, 
case, y, :, 
case, z, :, 
x_or_y_or_z, =, 1, ;, 

case, a, :, 
…

Split

Token seq. (splt ver.)

switch, z, 
... 
case, x, :, 
case, y, :, 
case, z, :, 
x, or, y, or, z, =, 1, ;, 

case, a, :, 
…



• Input: Datapoint, Output: Token sequence
1. Extract tokens (e.g. Identifier, operator, number) from datapoint
2. Split camelCase and snake_case tokens 

3. Insert special tokens (e.g. NEWLINETOK in FALL_THROUGH)

12

2. Lexical Tokenization

Token seq. (splt ver.)

switch, z, 
... 
case, x, :, 
case, y, :, 
case, z, :, 
x, or, y, or, z, =, 1, ;, 

case, a, :, 
…

Token seq. (final ver.)

switch, z, 
... 
case, x, :, 
case, y, :, 
case, z, :, 
x, or, y, or, z, =, 1, ;, 
NEWLINETOK, 
case, a, :, 
…

Add tokens



2.1. Define Vocabulary
• Select a small amount of frequent words, and remove all other 

infrequent words 

- to avoid overfitting 
- to reduce computational cost
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Fig. 10: Boxplots of precision, recall, F1, and accuracy metric from ten-fold cross validation of classifier training for each
studied static analysis checkers. Median precision is over 75% for five out of six checkers, while median recall is over 50%
for four out of six studied checkers.

TABLE II: Average accuracy results of ten-fold cross validation for 6 checkers

Checker Precision Recall F1 Accuracy Avg. # of Predicted / Actual
Mean Var. Mean Var. Mean Var. Mean Var. TP Alarms FP Alarms

HANDLE_LEAK 81.80% 186.65 49.74% 90.54 61.24% 90.06 89.27% 7.15 143.9 / 133.4 17.1 / 27.6
DOUBLE_FREE 79.39% 293.09 57.50% 289.36 64.84% 229.52 90.99% 10.57 65.0 / 62.2 8.3 / 11.1
DEREF 85.70% 144.97 55.53% 53.56 66.87% 48.30 95.24% 1.08 198.1 / 191.9 12.0 / 18.2
TAINT_INT.LOOP 85.98% 101.06 73.95% 137.50 78.66% 47.64 89.50% 9.38 44.9 / 43.0 13.5 / 15.4
FALL_THROUGH 67.99% 108.47 44.42% 332.34 52.28% 293.16 94.64% 1.43 160.3 / 155.9 7.7 / 12.1
UNREACHABLE 77.48% 399.67 31.41% 216.05 43.20% 290.30 96.20% 0.84 310.0 / 301.0 6.3 / 15.3

Average 79.72% - 51.09% - 61.18% - 92.64% - - -

Fig. 11: Linear regression model for alarm dataset size and
classifier training time: the training time increases linearly as
more alarms are processed.

top k tokens as the vocabulary, with values of k ranking
from 2,000 to 24,000 at the interval of 2,000. Figure 13
shows how average precision and recall from ten-fold cross
validation of instances change as vocabulary sizes decreases.
While there are fluctuations, the precision level does not drop
much below 80%, while maintaining similar levels of recall
values, even when we train with less than 10% of the full
corpus vocabulary. Manual inspection of different vocabulary
sets reveals that key tokens for the HANDLE_LEAK checker,
such as fopen and errno, are indeed within the top 2,000
most frequent tokens. The result of this case study suggests
that our classifiers are indeed learning structural patterns that
consist of very frequently used tokens, rather than simply
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Fig. 12: Accumulative number of token occurrences in the
HANDLE_LEAK code chunk

remembering the connections between source code specific
identifiers and alarm labels.

2) Scopes of Datapoints: The quality of our results are
strictly dependent on input fed into the classifiers. There
are multiple decision points on how to define datapoints
for checker alarms. Without customising the static analysis
checkers to extract more precise information about each alarm,
datapoint definitions may remain arbitrary to some degree.
For example, DOUBLE_FREE provides call sequence informa-
tion from the witness call sites to the actual invocation of
free. However, we only included the target function in our
datapoints (1) including the entire call sequence may create
inhibitively large datapoints, and (2) inclusion of entire call
sequences may introduce noises.

While more checker specific input may yield better results,
our aim is to be as checker agnostic as possible. By being
checker agnostic, we can lower the adoption cost for our
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Fig. 8: A word2vec neural network with a single hidden
layer. For the skip-gram model [23], the input vector ~xwi =
(x1, . . . , xV ) for word wi is the one-hot encoding vector for
wi. Intuitively, we train this neural network so that, given ~xwi ,
the output ~y matches as closely as possible the sum of all one-
hot encoding vectors of words that appear together with wi in
the corpus. When training is finished, we take the hidden layer
weight vector, ~h = (h1, . . . , hM ), as the vector representation
for the word wi.

length |V |, ~xwi , which is filled with zeros except a single one
at the ith place. Now we train the neural network depicted in
Figure 8, such that when ~xwi is given as input, the output ~y
matches the sum of all one-hot embedding vectors of words
in S (i.e. ~y =

P
wj2N(wi)

~ywj ) as closely as possible. Once
the training is finished, we take the hidden layer weights,
~h = (h1, . . . , hM ), as the vector embedding of wi. This weight
vector can be thought of as a vector that uniquely converts the
one-hot encoding vector form of the original word, ~xwi , to its
neighbours,

P
wj2N(wi)

~ywj . Note that the number of hidden
layer weights is a configurable parameter called embedding
length.

C. Convolutional Neural Network
A Convolutional Neural Network (CNN) is a neural net-

work containing convolution layers [20]. A convolution layer
contains sets of equivalent neurons, often called filters, that
are connected only to a small local region in the input data:
multiple instances of filters are applied to the entire input data,
by moving them at given intervals (called strides). CNNs have
been particularly successful in computer vision [20], [24],
[25], as it can extract out the invariants that are independent
from the absolute position of the data within the input region,
such as translation invariants, rotation invariants, and size
invariants, etc. Our conjecture is that CNNs can be also good at
learning to identify the structural patterns discussed in Section
III-A. The patterns for false positive alarms that we are after
can often be summarised as partial orders between occurrences
of specific tokens that should be size invariant (i.e. specific
tokens can appear at varying distances from each other).

1) CNN Input: The datapoints extracted following the pro-
cess described in Section III-B are converted to lists of tokens
via tokenisation and normalisation. Subsequently, each token
is embedded into a vector form using word2vec method

described in Section IV-B. These vectors are then stacked
together, resulting in one matrix per datapoint. Since every
datapoint has different number of tokens, we add padding
vectors on top of the matrix to make all matrix have same
dimension.

Fig. 9: CNN model

2) Network Architecture: Figure 9 shows the model of the
classifier. In the convolution layer, each 32 filters of which
the height is 16 and the width is equal to the word2vec
embedding size, moves through the input matrix with stride
1 ⇥ 1. The one-dimension vector, retrieved from convolution
and Leaky Rectified Linear Unit (LeakyReLU) layer [26],
is passed into max-pooling (which forwards the maximum
activation value with 4⇥1 filter, 2⇥1 stride) and drop-out layer
(which drops a predetermined percentage of randomly chosen
nodes during the training in order to avoid overfitting) [27],
before being fed into a fully-connected layer with 16 nodes.
We use the sigmoid activation function in the final output node,
with binary cross-entropy loss for classification between true
and false positive labels.

D. Validation Method
We aim to investigate how accurate the CNN classifiers

can be and whether it can achieve a level of accuracy that
is practically beneficial. To answer these questions, we train
CNN based classifiers using historical static analysis alarms
and developer assigned labels that show whether the given
label was actually false positive. The empirical study uses
the standard ten-fold cross validation method to evaluate the
results of training: for each checker, the set of all alarms is
divided into 10 equally sized subsets. Subsequently, a single
instance of classifier is trained using nine of the subsets, and
validated using the remaining one subset, resulting in ten
independent evaluations. For each such fold, we compute the
traditional evaluation metrics for classifiers: precision, recall,
F1, and the accuracy metric.

Note that we consistently use terminology based on the
nature of static analysis alarms, and not on the results of
our classification: a false positive alarm means that a static
analysis checker raised an alarm against a code without any
defect. Consequently, precision and recall can be defined as
follows:
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layer. For the skip-gram model [23], the input vector ~xwi =
(x1, . . . , xV ) for word wi is the one-hot encoding vector for
wi. Intuitively, we train this neural network so that, given ~xwi ,
the output ~y matches as closely as possible the sum of all one-
hot encoding vectors of words that appear together with wi in
the corpus. When training is finished, we take the hidden layer
weight vector, ~h = (h1, . . . , hM ), as the vector representation
for the word wi.

length |V |, ~xwi , which is filled with zeros except a single one
at the ith place. Now we train the neural network depicted in
Figure 8, such that when ~xwi is given as input, the output ~y
matches the sum of all one-hot embedding vectors of words
in S (i.e. ~y =

P
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~ywj ) as closely as possible. Once
the training is finished, we take the hidden layer weights,
~h = (h1, . . . , hM ), as the vector embedding of wi. This weight
vector can be thought of as a vector that uniquely converts the
one-hot encoding vector form of the original word, ~xwi , to its
neighbours,

P
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~ywj . Note that the number of hidden
layer weights is a configurable parameter called embedding
length.

C. Convolutional Neural Network
A Convolutional Neural Network (CNN) is a neural net-

work containing convolution layers [20]. A convolution layer
contains sets of equivalent neurons, often called filters, that
are connected only to a small local region in the input data:
multiple instances of filters are applied to the entire input data,
by moving them at given intervals (called strides). CNNs have
been particularly successful in computer vision [20], [24],
[25], as it can extract out the invariants that are independent
from the absolute position of the data within the input region,
such as translation invariants, rotation invariants, and size
invariants, etc. Our conjecture is that CNNs can be also good at
learning to identify the structural patterns discussed in Section
III-A. The patterns for false positive alarms that we are after
can often be summarised as partial orders between occurrences
of specific tokens that should be size invariant (i.e. specific
tokens can appear at varying distances from each other).

1) CNN Input: The datapoints extracted following the pro-
cess described in Section III-B are converted to lists of tokens
via tokenisation and normalisation. Subsequently, each token
is embedded into a vector form using word2vec method

described in Section IV-B. These vectors are then stacked
together, resulting in one matrix per datapoint. Since every
datapoint has different number of tokens, we add padding
vectors on top of the matrix to make all matrix have same
dimension.

Fig. 9: CNN model

2) Network Architecture: Figure 9 shows the model of the
classifier. In the convolution layer, each 32 filters of which
the height is 16 and the width is equal to the word2vec
embedding size, moves through the input matrix with stride
1 ⇥ 1. The one-dimension vector, retrieved from convolution
and Leaky Rectified Linear Unit (LeakyReLU) layer [26],
is passed into max-pooling (which forwards the maximum
activation value with 4⇥1 filter, 2⇥1 stride) and drop-out layer
(which drops a predetermined percentage of randomly chosen
nodes during the training in order to avoid overfitting) [27],
before being fed into a fully-connected layer with 16 nodes.
We use the sigmoid activation function in the final output node,
with binary cross-entropy loss for classification between true
and false positive labels.

D. Validation Method
We aim to investigate how accurate the CNN classifiers

can be and whether it can achieve a level of accuracy that
is practically beneficial. To answer these questions, we train
CNN based classifiers using historical static analysis alarms
and developer assigned labels that show whether the given
label was actually false positive. The empirical study uses
the standard ten-fold cross validation method to evaluate the
results of training: for each checker, the set of all alarms is
divided into 10 equally sized subsets. Subsequently, a single
instance of classifier is trained using nine of the subsets, and
validated using the remaining one subset, resulting in ten
independent evaluations. For each such fold, we compute the
traditional evaluation metrics for classifiers: precision, recall,
F1, and the accuracy metric.

Note that we consistently use terminology based on the
nature of static analysis alarms, and not on the results of
our classification: a false positive alarm means that a static
analysis checker raised an alarm against a code without any
defect. Consequently, precision and recall can be defined as
follows:
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Fig. 8: A word2vec neural network with a single hidden
layer. For the skip-gram model [23], the input vector ~xwi =
(x1, . . . , xV ) for word wi is the one-hot encoding vector for
wi. Intuitively, we train this neural network so that, given ~xwi ,
the output ~y matches as closely as possible the sum of all one-
hot encoding vectors of words that appear together with wi in
the corpus. When training is finished, we take the hidden layer
weight vector, ~h = (h1, . . . , hM ), as the vector representation
for the word wi.

length |V |, ~xwi , which is filled with zeros except a single one
at the ith place. Now we train the neural network depicted in
Figure 8, such that when ~xwi is given as input, the output ~y
matches the sum of all one-hot embedding vectors of words
in S (i.e. ~y =

P
wj2N(wi)

~ywj ) as closely as possible. Once
the training is finished, we take the hidden layer weights,
~h = (h1, . . . , hM ), as the vector embedding of wi. This weight
vector can be thought of as a vector that uniquely converts the
one-hot encoding vector form of the original word, ~xwi , to its
neighbours,

P
wj2N(wi)

~ywj . Note that the number of hidden
layer weights is a configurable parameter called embedding
length.

C. Convolutional Neural Network
A Convolutional Neural Network (CNN) is a neural net-

work containing convolution layers [20]. A convolution layer
contains sets of equivalent neurons, often called filters, that
are connected only to a small local region in the input data:
multiple instances of filters are applied to the entire input data,
by moving them at given intervals (called strides). CNNs have
been particularly successful in computer vision [20], [24],
[25], as it can extract out the invariants that are independent
from the absolute position of the data within the input region,
such as translation invariants, rotation invariants, and size
invariants, etc. Our conjecture is that CNNs can be also good at
learning to identify the structural patterns discussed in Section
III-A. The patterns for false positive alarms that we are after
can often be summarised as partial orders between occurrences
of specific tokens that should be size invariant (i.e. specific
tokens can appear at varying distances from each other).

1) CNN Input: The datapoints extracted following the pro-
cess described in Section III-B are converted to lists of tokens
via tokenisation and normalisation. Subsequently, each token
is embedded into a vector form using word2vec method

described in Section IV-B. These vectors are then stacked
together, resulting in one matrix per datapoint. Since every
datapoint has different number of tokens, we add padding
vectors on top of the matrix to make all matrix have same
dimension.

Fig. 9: CNN model

2) Network Architecture: Figure 9 shows the model of the
classifier. In the convolution layer, each 32 filters of which
the height is 16 and the width is equal to the word2vec
embedding size, moves through the input matrix with stride
1 ⇥ 1. The one-dimension vector, retrieved from convolution
and Leaky Rectified Linear Unit (LeakyReLU) layer [26],
is passed into max-pooling (which forwards the maximum
activation value with 4⇥1 filter, 2⇥1 stride) and drop-out layer
(which drops a predetermined percentage of randomly chosen
nodes during the training in order to avoid overfitting) [27],
before being fed into a fully-connected layer with 16 nodes.
We use the sigmoid activation function in the final output node,
with binary cross-entropy loss for classification between true
and false positive labels.

D. Validation Method
We aim to investigate how accurate the CNN classifiers

can be and whether it can achieve a level of accuracy that
is practically beneficial. To answer these questions, we train
CNN based classifiers using historical static analysis alarms
and developer assigned labels that show whether the given
label was actually false positive. The empirical study uses
the standard ten-fold cross validation method to evaluate the
results of training: for each checker, the set of all alarms is
divided into 10 equally sized subsets. Subsequently, a single
instance of classifier is trained using nine of the subsets, and
validated using the remaining one subset, resulting in ten
independent evaluations. For each such fold, we compute the
traditional evaluation metrics for classifiers: precision, recall,
F1, and the accuracy metric.

Note that we consistently use terminology based on the
nature of static analysis alarms, and not on the results of
our classification: a false positive alarm means that a static
analysis checker raised an alarm against a code without any
defect. Consequently, precision and recall can be defined as
follows:
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layer. For the skip-gram model [23], the input vector ~xwi =
(x1, . . . , xV ) for word wi is the one-hot encoding vector for
wi. Intuitively, we train this neural network so that, given ~xwi ,
the output ~y matches as closely as possible the sum of all one-
hot encoding vectors of words that appear together with wi in
the corpus. When training is finished, we take the hidden layer
weight vector, ~h = (h1, . . . , hM ), as the vector representation
for the word wi.

length |V |, ~xwi , which is filled with zeros except a single one
at the ith place. Now we train the neural network depicted in
Figure 8, such that when ~xwi is given as input, the output ~y
matches the sum of all one-hot embedding vectors of words
in S (i.e. ~y =

P
wj2N(wi)

~ywj ) as closely as possible. Once
the training is finished, we take the hidden layer weights,
~h = (h1, . . . , hM ), as the vector embedding of wi. This weight
vector can be thought of as a vector that uniquely converts the
one-hot encoding vector form of the original word, ~xwi , to its
neighbours,
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~ywj . Note that the number of hidden
layer weights is a configurable parameter called embedding
length.

C. Convolutional Neural Network
A Convolutional Neural Network (CNN) is a neural net-

work containing convolution layers [20]. A convolution layer
contains sets of equivalent neurons, often called filters, that
are connected only to a small local region in the input data:
multiple instances of filters are applied to the entire input data,
by moving them at given intervals (called strides). CNNs have
been particularly successful in computer vision [20], [24],
[25], as it can extract out the invariants that are independent
from the absolute position of the data within the input region,
such as translation invariants, rotation invariants, and size
invariants, etc. Our conjecture is that CNNs can be also good at
learning to identify the structural patterns discussed in Section
III-A. The patterns for false positive alarms that we are after
can often be summarised as partial orders between occurrences
of specific tokens that should be size invariant (i.e. specific
tokens can appear at varying distances from each other).

1) CNN Input: The datapoints extracted following the pro-
cess described in Section III-B are converted to lists of tokens
via tokenisation and normalisation. Subsequently, each token
is embedded into a vector form using word2vec method

described in Section IV-B. These vectors are then stacked
together, resulting in one matrix per datapoint. Since every
datapoint has different number of tokens, we add padding
vectors on top of the matrix to make all matrix have same
dimension.

Fig. 9: CNN model

2) Network Architecture: Figure 9 shows the model of the
classifier. In the convolution layer, each 32 filters of which
the height is 16 and the width is equal to the word2vec
embedding size, moves through the input matrix with stride
1 ⇥ 1. The one-dimension vector, retrieved from convolution
and Leaky Rectified Linear Unit (LeakyReLU) layer [26],
is passed into max-pooling (which forwards the maximum
activation value with 4⇥1 filter, 2⇥1 stride) and drop-out layer
(which drops a predetermined percentage of randomly chosen
nodes during the training in order to avoid overfitting) [27],
before being fed into a fully-connected layer with 16 nodes.
We use the sigmoid activation function in the final output node,
with binary cross-entropy loss for classification between true
and false positive labels.

D. Validation Method
We aim to investigate how accurate the CNN classifiers

can be and whether it can achieve a level of accuracy that
is practically beneficial. To answer these questions, we train
CNN based classifiers using historical static analysis alarms
and developer assigned labels that show whether the given
label was actually false positive. The empirical study uses
the standard ten-fold cross validation method to evaluate the
results of training: for each checker, the set of all alarms is
divided into 10 equally sized subsets. Subsequently, a single
instance of classifier is trained using nine of the subsets, and
validated using the remaining one subset, resulting in ten
independent evaluations. For each such fold, we compute the
traditional evaluation metrics for classifiers: precision, recall,
F1, and the accuracy metric.

Note that we consistently use terminology based on the
nature of static analysis alarms, and not on the results of
our classification: a false positive alarm means that a static
analysis checker raised an alarm against a code without any
defect. Consequently, precision and recall can be defined as
follows:



Experiment Setup
• Model configurations 

- An embedding size of 128 with Word2Vec implemented using 
Tensorflow 

- We trained the CNN classifier for 150 epochs, using the mini-batch 
size of 10 with Keras. 

• Environment 

- Ubuntu 14.04 LTS, running on Intel Core i7-6700K with 32GB RAM 

- The TensorFlow backend used NVidia CUDA 8.0, running on 
NVidia GTX1080 GPU with 12GB memory 

• Evaluation  

- 10-fold cross validation
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Result

Average precision: 79.72%, average recall: 51.09%

Average F1: 61.18%, average accuracy: 92.64%
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Fig. 10: Boxplots of precision, recall, F1, and accuracy metric from ten-fold cross validation of classifier training for each
studied static analysis checkers. Median precision is over 75% for five out of six checkers, while median recall is over 50%
for four out of six studied checkers.

TABLE II: Average accuracy results of ten-fold cross validation for 6 checkers

Checker Precision Recall F1 Accuracy Avg. # of Predicted / Actual
Mean Var. Mean Var. Mean Var. Mean Var. TP Alarms FP Alarms

HANDLE_LEAK 81.80% 186.65 49.74% 90.54 61.24% 90.06 89.27% 7.15 143.9 / 133.4 17.1 / 27.6
DOUBLE_FREE 79.39% 293.09 57.50% 289.36 64.84% 229.52 90.99% 10.57 65.0 / 62.2 8.3 / 11.1
DEREF 85.70% 144.97 55.53% 53.56 66.87% 48.30 95.24% 1.08 198.1 / 191.9 12.0 / 18.2
TAINT_INT.LOOP 85.98% 101.06 73.95% 137.50 78.66% 47.64 89.50% 9.38 44.9 / 43.0 13.5 / 15.4
FALL_THROUGH 67.99% 108.47 44.42% 332.34 52.28% 293.16 94.64% 1.43 160.3 / 155.9 7.7 / 12.1
UNREACHABLE 77.48% 399.67 31.41% 216.05 43.20% 290.30 96.20% 0.84 310.0 / 301.0 6.3 / 15.3

Average 79.72% - 51.09% - 61.18% - 92.64% - - -

Fig. 11: Linear regression model for alarm dataset size and
classifier training time: the training time increases linearly as
more alarms are processed.

top k tokens as the vocabulary, with values of k ranking
from 2,000 to 24,000 at the interval of 2,000. Figure 13
shows how average precision and recall from ten-fold cross
validation of instances change as vocabulary sizes decreases.
While there are fluctuations, the precision level does not drop
much below 80%, while maintaining similar levels of recall
values, even when we train with less than 10% of the full
corpus vocabulary. Manual inspection of different vocabulary
sets reveals that key tokens for the HANDLE_LEAK checker,
such as fopen and errno, are indeed within the top 2,000
most frequent tokens. The result of this case study suggests
that our classifiers are indeed learning structural patterns that
consist of very frequently used tokens, rather than simply

Fig. 12: Accumulative number of token occurrences in the
HANDLE_LEAK code chunk

remembering the connections between source code specific
identifiers and alarm labels.

2) Scopes of Datapoints: The quality of our results are
strictly dependent on input fed into the classifiers. There
are multiple decision points on how to define datapoints
for checker alarms. Without customising the static analysis
checkers to extract more precise information about each alarm,
datapoint definitions may remain arbitrary to some degree.
For example, DOUBLE_FREE provides call sequence informa-
tion from the witness call sites to the actual invocation of
free. However, we only included the target function in our
datapoints (1) including the entire call sequence may create
inhibitively large datapoints, and (2) inclusion of entire call
sequences may introduce noises.

While more checker specific input may yield better results,
our aim is to be as checker agnostic as possible. By being
checker agnostic, we can lower the adoption cost for our
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Fig. 1: A workflow of defect management system

inspector and takes the revised source code (action b). At
this step, the project manager may assign other developers
as code reviewers as well.

3) After running predefined static analysis checkers on the re-
vised source code (action c), the defect management system
registers all generated alarms as code review results (action
d). If there are any alarms, the code review system forces
the developer to resolve the issues (action d0). Otherwise,
the code review system finds that the commit is ready to
be merged into the master repository.

4) The developer inspects each alarm message via the code
review system (action e). An alarm contains a description
of the target defect pattern and a list of witnesses, which
are source code locations associated with the detected fault.
Each static analysis checker has its own definition of the
witnesses (see examples in Section III-A). A developer can
respond to each alarm (action f ) either by submitting a new
revision that fixes the defect (if the alarm is valid), or by
declaring that the alarm is a false positive.

5) The defect management system automatically collects de-
veloper responses to alarms (action g). It records the alarm
as either true or false positive based on the response (action
h). If a developer declares a warning as a false positive,
the defect management system records the feedback in
the database. If, instead, the developer updates the source
code, the system re-runs static analysis checkers to examine
whether the alarm disappears or not. If the same checker
does not generate the same warning as before, the system
records the alarm as validated as true by the developer. Once
all warnings are resolved, the defect management system
updates its code review, stating that the revision is ready to
be merged into the master repository (action i).

6) Once all code reviewers agree that the commit has no
problem, the project manager merges the commit to the
project master repository (action j).

7) The CI system re-builds whole projects on a regular ba-
sis (action k). Once a new build is finished, the defect
management system automatically takes the new version
(action l) and runs the set of static analysis checkers that
check global properties (action m). These checkers examine
whether any defect has been introduced due to the conflicts
between different modules and packages. If a new alarm

is found, the defect management system tracks the revision
that introduced the alarm, and sends a code review request
to the responsible developer with the new alarm message
via the code review system (actions n and n0).

8) The developer inspects the alarms from the newly built
version and takes an action, starting again from the 1).
Note that a defect management system gathers all data of

the static analysis checkers across all interactions, and stores
the data in a database. The data include all input files, all
generated warning messages, and the labels on each warning
assigned by developers in 4).

III. STATIC ANALYSIS CHECKERS AND FALSE ALARM
PATTERNS

This section describes each of the studied static analysis
checkers, and explains how we generate datapoints for them.

A. Static Analysis Checkers
We study six static analysis checkers in this paper. Here we

explain the workings of each of them, as well as how false
positive alarms can be generated by them.

1) Resource Handle Leak: The Resource Handle Leak
occurs when an allocated resource handle expires before
the release of the resource, resulting in a leak of the allo-
cated resource. Its checker, HANDLE_LEAK, checks for two
cases: functions returning without releasing resource handles
stored in local variables, and functions overwriting local vari-
ables storing resource handles without releasing handles first.
HANDLE_LEAK produces two witnesses, wacquire and wleak

: wacquire points to the instruction that acquires and stores a
handler to a local variable, whereas wleak points to the location
where the handler expires. It employs an interprocedural path-
sensitive analysis to discover corner cases with complicated
execution paths from wacquire to wleak.

However, HANDLE_LEAK can raise false positive alarms if
the underlying static analyses fail. Figure 2 contains two
simplified real world false positive alarms. In Figure 2(a), the
checker generates a false alarm for the path from Line 5, where
the handle is acquired, to the return statement in Line 8, where
the function returns without releasing the allocated resource.
However, this leak is infeasible because dynamic_load()

returns zero only if it fails to acquire a dynamic library. An-
other similar case is described in Figure 2(b). HANDLE_LEAK
concludes that write_profile() returns without closing a file
handle acquired in Line 12. However, this is a false positive
because the call to _close() in Line 18 closes the handler fd.

We conjecture that HANDLE_LEAK generates false alarms
because it fails to predict the exact effect of a function call due
to approximation and abstraction employed by the underlying
static analysis. Simultaneously, we found that many false
positive alarms share similar structural patterns. For example,
the error handling paths (such as one shown in Figure 2(a))
typically start right after the resource acquisition and contain a
debug or logging message. This provides supporting evidence
to our conjecture that false positive alarms can be classified
based on structural lexical patterns.

• Where to put the classifier in CI 
pipeline?
- filtering static analyzer 

output
- assisting review
- assisting audit
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Fig. 10: Boxplots of precision, recall, F1, and accuracy metric from ten-fold cross validation of classifier training for each
studied static analysis checkers. Median precision is over 75% for five out of six checkers, while median recall is over 50%
for four out of six studied checkers.

TABLE II: Average accuracy results of ten-fold cross validation for 6 checkers

Checker Precision Recall F1 Accuracy Avg. # of Predicted / Actual
Mean Var. Mean Var. Mean Var. Mean Var. TP Alarms FP Alarms

HANDLE_LEAK 81.80% 186.65 49.74% 90.54 61.24% 90.06 89.27% 7.15 143.9 / 133.4 17.1 / 27.6
DOUBLE_FREE 79.39% 293.09 57.50% 289.36 64.84% 229.52 90.99% 10.57 65.0 / 62.2 8.3 / 11.1
DEREF 85.70% 144.97 55.53% 53.56 66.87% 48.30 95.24% 1.08 198.1 / 191.9 12.0 / 18.2
TAINT_INT.LOOP 85.98% 101.06 73.95% 137.50 78.66% 47.64 89.50% 9.38 44.9 / 43.0 13.5 / 15.4
FALL_THROUGH 67.99% 108.47 44.42% 332.34 52.28% 293.16 94.64% 1.43 160.3 / 155.9 7.7 / 12.1
UNREACHABLE 77.48% 399.67 31.41% 216.05 43.20% 290.30 96.20% 0.84 310.0 / 301.0 6.3 / 15.3

Average 79.72% - 51.09% - 61.18% - 92.64% - - -
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Fig. 11: Linear regression model for alarm dataset size and
classifier training time: the training time increases linearly as
more alarms are processed.

top k tokens as the vocabulary, with values of k ranking
from 2,000 to 24,000 at the interval of 2,000. Figure 13
shows how average precision and recall from ten-fold cross
validation of instances change as vocabulary sizes decreases.
While there are fluctuations, the precision level does not drop
much below 80%, while maintaining similar levels of recall
values, even when we train with less than 10% of the full
corpus vocabulary. Manual inspection of different vocabulary
sets reveals that key tokens for the HANDLE_LEAK checker,
such as fopen and errno, are indeed within the top 2,000
most frequent tokens. The result of this case study suggests
that our classifiers are indeed learning structural patterns that
consist of very frequently used tokens, rather than simply
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Fig. 12: Accumulative number of token occurrences in the
HANDLE_LEAK code chunk

remembering the connections between source code specific
identifiers and alarm labels.

2) Scopes of Datapoints: The quality of our results are
strictly dependent on input fed into the classifiers. There
are multiple decision points on how to define datapoints
for checker alarms. Without customising the static analysis
checkers to extract more precise information about each alarm,
datapoint definitions may remain arbitrary to some degree.
For example, DOUBLE_FREE provides call sequence informa-
tion from the witness call sites to the actual invocation of
free. However, we only included the target function in our
datapoints (1) including the entire call sequence may create
inhibitively large datapoints, and (2) inclusion of entire call
sequences may introduce noises.

While more checker specific input may yield better results,
our aim is to be as checker agnostic as possible. By being
checker agnostic, we can lower the adoption cost for our



Appendix B. Scalability

The training time increases linearly as the number of alarms increases. 
All training finished within 100 seconds.
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Fig. 10: Boxplots of precision, recall, F1, and accuracy metric from ten-fold cross validation of classifier training for each
studied static analysis checkers. Median precision is over 75% for five out of six checkers, while median recall is over 50%
for four out of six studied checkers.

TABLE II: Average accuracy results of ten-fold cross validation for 6 checkers

Checker Precision Recall F1 Accuracy Avg. # of Predicted / Actual
Mean Var. Mean Var. Mean Var. Mean Var. TP Alarms FP Alarms

HANDLE_LEAK 81.80% 186.65 49.74% 90.54 61.24% 90.06 89.27% 7.15 143.9 / 133.4 17.1 / 27.6
DOUBLE_FREE 79.39% 293.09 57.50% 289.36 64.84% 229.52 90.99% 10.57 65.0 / 62.2 8.3 / 11.1
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Fig. 11: Linear regression model for alarm dataset size and
classifier training time: the training time increases linearly as
more alarms are processed.

top k tokens as the vocabulary, with values of k ranking
from 2,000 to 24,000 at the interval of 2,000. Figure 13
shows how average precision and recall from ten-fold cross
validation of instances change as vocabulary sizes decreases.
While there are fluctuations, the precision level does not drop
much below 80%, while maintaining similar levels of recall
values, even when we train with less than 10% of the full
corpus vocabulary. Manual inspection of different vocabulary
sets reveals that key tokens for the HANDLE_LEAK checker,
such as fopen and errno, are indeed within the top 2,000
most frequent tokens. The result of this case study suggests
that our classifiers are indeed learning structural patterns that
consist of very frequently used tokens, rather than simply

Fig. 12: Accumulative number of token occurrences in the
HANDLE_LEAK code chunk

remembering the connections between source code specific
identifiers and alarm labels.

2) Scopes of Datapoints: The quality of our results are
strictly dependent on input fed into the classifiers. There
are multiple decision points on how to define datapoints
for checker alarms. Without customising the static analysis
checkers to extract more precise information about each alarm,
datapoint definitions may remain arbitrary to some degree.
For example, DOUBLE_FREE provides call sequence informa-
tion from the witness call sites to the actual invocation of
free. However, we only included the target function in our
datapoints (1) including the entire call sequence may create
inhibitively large datapoints, and (2) inclusion of entire call
sequences may introduce noises.

While more checker specific input may yield better results,
our aim is to be as checker agnostic as possible. By being
checker agnostic, we can lower the adoption cost for our



Appendix C. Vocabulary size

While there are fluctuations, the precision level does not drop much 
below 80%, while maintaining similar levels of recall values.
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Fig. 13: Change of average cross validation precision and
recall of HANDLE_LEAK classifier with varying vocabulary
sizes: reducing the vocabulary size does not significantly
damage the results of training.

classifiers (one only needs labelled historical alarm data to
train classifiers) and become more flexible in terms of which
static analysis checkers are used by the organisation.

3) Integration of Classifier to CI Pipeline: Based on our
results, we propose two different ways of integrating our
classifier to the current CI system.

1. Post-processor: The CI system can adopt our classifier as
a post-processor for the static analysis checkers, by placing it
between action c and d in Figure 1. With the post-processing
approach, we expect to reduce the number of false positive
alarms developers have to handle. However, there is the risk
of losing true positive alarms, as the precision is not 100%.

2. Alarm Review Assistance: Another application would
be simply to provide the classification results for the code
reviewers to peruse, so that they can double-check develop-
ers responses to generated alarms more easily. This can be
achieved by placing a classifier before action j in Figure 1.
This approach will assist code reviewers not to miss any true
positive alarms incorrectly rejected by developers.

VII. THREATS TO VALIDITY

Threats to internal validity concern the extent to which the
observed results from the empirical evaluation warrants our
claims, such as selection biases or implementation correctness.
Our datasets have been collected from an internal defect
management system, without any selection criteria other than
that selected static analysis checkers should contain sufficient
number of warnings in the database. We plan to widen the
scope of our study in the future, so that we can reduce any
unintended and indirect selection biases in the choice of static
analysis checkers. Human validation results of static analysis
warnings not only are highly expensive to produce but also
can be very sensitive information. Our classifiers have been
implemented using widely studied neural network frameworks
including Keras [30] and TensorFlow [28].

Threats to external validity concerns the extent to which
our empirical evaluation results generalise. Since supervised
learning results are directly dependent on the training data used
for learning, our results are specific to the warnings generated,

observed, and validated within Samsung. As with any other
data driven research, our results may include a certain level of
overfitting to the used training data. Furthermore, we accept
developer assigned labels to be the ground truth: there is
a possibility that the labels reflect preferences of Samsung
engineers, instead of the absolute ground truth about the
checker alarms. The question of generalisability can only be
answered by future work that consider more data.

Threats to construct validity concerns how accurately the
measurements we take are actually correlated to what they
claim to measure. We assess the level of any threats to
construct validity to be low, as all evaluation metrics we use
are standard evaluation metrics for classification and are based
on absolute counting of predicted labels.

VIII. RELATED WORK

There are various existing attempt to process results from
static analysis checkers so that developers can benefit from
the produced warnings without suffering from a large number
of false positives. Jung et al. applied a Bayesian statistical
analysis to buffer overrun alarms generated from 5.3 million
LOC of a commercial system and could filter out about
75% of false positive alarms [15]. However, their technique
requires extraction of syntactic symptoms, such as whether
loops exist before or after the location of alarms, etc. Yoon
et al. applied Support Vector Machines (SVMs) to filter
out false positive alarms [16], which were generated by
a commercial static analysis tool called Sparrow [31].
Yoon et al. also depended on count-based features, such as
occurrences of conditional and loop statements or null expres-
sions. EFindBugs, developed by Shen et al. [17], prioritise
static analysis checker alarms generated by the widely studied
FindBugs checker [32], [33]. EFindBugs requires humans
to manually assign quantitative likelihood of reporting true
positive for each studied checker, using a sample warnings
produced against a reference target project (Shen et al. used
JDK). These defect likelihood weights are compiled into scores
for each defect type detected by FindBugs and used to rank
alarms. Flynn et al. generated a classification model which
identifies false positive alerts on SEI CERT Coding Rule [34]
using both of the features from the result of a static analysis
and the data of CERT [35]. ALETHEIA, developed by Tripp et
al. [18], is probably the closest to our approach. as it asks user
feedback on a small sample of generated alarms to establish
the ground truths. These are fed into a range of classifiers, all
of which depend on extracted features.

Our approach differs from all of the above because we
do not require any feature engineering or extraction. The
input to our classifier is simply the lexical tokens from the
source code lines pointed by the static analysis warnings. This
eliminated any need to define new sets of features for new
static analysis checkers: as long as the identification of false
positive cases can be achieved based on lexical information (as
we have shown in Section III for some checkers), our classifier
can learn to recognise the false positive alarms without any
features.


