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Discovering how program components affect one another plays a fundamental role in aiding 
engineers comprehend and maintain a software system. Despite the fact that the degree to which 
one program component depends upon another can vary in strength, traditional dependence 
analysis typically ignores such nuance. To account for this nuance in dependence-based analysis, 
we propose Causal Program Dependence Analysis (CPDA), a framework based on causal inference 
that captures the degree (or strength) of the dependence between program elements. For a given 
program, CPDA intervenes in the program execution to observe changes in value at selected 
points in the source code. It observes the association between program elements by constructing 
and executing modified versions of a program (requiring only light-weight parsing rather than 
sophisticated static analysis). CPDA applies causal inference to the observed changes to identify 
and estimate the strength of the dependence relations between program elements. We explore 
the advantages of CPDA’s quantified dependence by presenting results for several applications. 
Our further qualitative evaluation demonstrates 1) that observing different levels of dependence 
facilitates grouping various functional aspects found in a program and 2) how focusing on the 
relative strength of the dependences for a particular program element provides a detailed context 
for that element. Furthermore, a case study that applies CPDA to debugging illustrates how it can 
improve engineer productivity.

1. Introduction

Program dependence analysis is fundamental to understanding the semantics of a program [32]. When working with the code, it 
provides a useful lens to reduce the number of program elements that must be considered for a wide range of tasks, such as program 
comprehension [79], software testing [8], debugging [34,39], refactoring [19], maintenance [24], and security [35].

In a program, each component depends on some number of other program components. With its roots in compiler optimization, 
traditional static dependence analysis attempts to safely approximate the set of dependence relationships with respect to all possible 
executions of the program resulting in a set of binary relations: there either is, or is not, a dependence between any two program 
components. Even in this simplified binary setting, static dependence analysis often becomes quite involved, for example when coping 
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with the nuances of program language semantics. A good example is pointer analysis, which is not only computationally expensive1

but also prone to producing a large number of false-positives [58,44]. These false-positives often degrade the usefulness of the analysis 
in downstream tools.

Furthermore, traditional dependence analysis does not need to determine the relative strength of a dependence. However, some 
dependences are stronger than others. Consider two uses of a variable where one rarely has an impact on the computation of a third 
but the second always does. For example, the use of a in the statement b = (a == 42) rarely changes the value assigned to b. 
In contrast, the use in b = a + 42 always changes the value of b. Despite this difference, in both cases, there exists a dependence 
from a’s definition to its use in the assignment to b.

A few dynamic approaches have aimed to model dependence strength. For example, the PPDG [6] and BNPDG [77] estimate 
the frequency of a data flow by measuring the conditional probability of a particular set of reaching predecessors of a program 
element given the state at each predecessor during execution on a set of test cases. This notion of dependence strength was shown 
to successfully aid in fault localization. However, a drawback of these two approaches is that they build on top of static dependence 
analysis; thus, they inherit its limitations causing their performance to be limited by the quality of the underlying static analysis. 
A more recent approach with similar goals, MOAD [41], avoids the expense of static analysis by using dynamic observation-based 
analysis. While the resulting technique can capture the effect of one program element on another it is unable to reason about how 
one program element affects another through a chain of cause-and-effect relationships.

This paper introduces Causal Program Dependence Analysis (CPDA), a framework that uncovers causal dependence between program 
elements. This includes the ability to capture the strength of the dependences between program elements. Given a set of program 
executions, CPDA discovers a causal structure that indicates the direct cause-and-effect relationships between program elements. This 
structure is based on the observed behavior of a set of elements from the program. By applying techniques from causal inference [53,

55] over this causal structure, CPDA produces two measures of program dependence strength using two metrics from the causal 
inference literature. Natural direct effect (NDE) captures the effect of one program element on another excluding effects that pass 
through other elements [52]. Average causal effect (ACE) takes into account both NDE’s direct effect and indirect effects [31]. Thus, 
ACE captures the total effect that a change to a program element has on the behavior of other program elements. Note that the 
dependence measured by CPDA is relative to a set of reference executions (i.e., the executions using a particular test suite) that are 
used to observe the program behavior. Whilst this means that the quality of the analysis is dependent on the particular executions 
used, such an approach is widespread and has been successfully used in dynamic analysis [43,18,10]. The benefits of having execution-

specific dependences are explored in Sections 9.2.2 and 9.2.3.

We also propose a novel way to visualize program dependence using the Causal Program Dependence Model (CPDM). This weighted 
dependence graph shows the causal structure of a program, annotated with NDEs. The paper describes how the CPDM can be used to 
reason about program dependence more precisely and more intricately than its predecessors. We conjecture that our two measures 
of quantitative dependence and the CPDM form a viable new foundation for a range of program analysis techniques.

As mentioned above, CPDA has the advantage that it avoids the need for computationally expensive static analysis. In addition, 
it does not require the troublesome overhead of coordinating static analyses, for example, adjusting the right level of abstraction for 
the program or the analysis, something that is typically complex and requires a lot of manual effort and domain knowledge, and 
is unavoidable to make static analysis accurate. It requires only light-weight parsing for the instrumentation. Specifically, points of 
interest in the code are modified so that we can introduce simple mutations to the state and then observe their effect on subsequent 
computations. An additional benefit of this approach is that it can directly model dependences that go outside the formal semantics. 
For example, CPDA can capture dependences caused by values that get transferred through a database or through the file system. 
Furthermore, it can be applied to heterogeneous systems built using multiple programming languages or system making use of third-

party binary libraries provided that the part of the program of interest can be instrumented. The benefit of this kind of observational 
approach has been demonstrated in the work on Observation-based Slicing [9,42].

Our final contribution comes in the form of two new causal structure discovery algorithms. Existing algorithms consider graphs 
with fewer than a hundred nodes [67,65,59,61,60], which is not sufficient for large programs. Our two new algorithms for causal 
structure discovery are designed to capture different aspects of the qualification of causal relations. The first, the Conditional Probability

(CP) method considers probabilistic aspects, while the second, the Hitting Set (HS) method captures a discrete/deterministic aspect. 
We empirically evaluate the causal structures discovered by the two algorithms and consider the extent to which each describes 
the dependence relations in a program by comparing the two with a ground-truth program dependence graph. We also explore the 
range of advantages of CPDA’s quantified program dependence by presenting results of its application to three software engineering 
applications. For example, clustering the nodes and observing the dependences in the CPDM facilitates the uncovering of functional 
aspects of the code. As a second example, focusing on the relative strength of the dependences to and from a particular program 
element helps bring out semantic relations between the element and the code around it. Finally, we explore CPDA’s application in 
downstream tasks through a debugging case study.

The main contributions of this work include the following:

• We propose Causal Program Dependence Analysis (CPDA), a dependence analysis framework based on causal inference that 
supports the quantification of dependence strength between program components.

1 For example, Andersen’s well-known flow-insensitive, context-insensitive algorithm has an 𝑂(𝑛3) running time. In the more general case, the complexity becomes 
2

exponential.
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1 a = 42;

2 pred = input(); // true or false

3 b = a + 1;

4 if (pred) {

5 c = 2 * a + b % 2;

6 d = c - 1;

7 }

8 e = 3;

Fig. 1. Code of the motivating example.

• We propose two structure discovery algorithms with considerably better scalability. These two discover the causal structure of 
the dependence relations in a program. We empirically evaluate the two both quantitatively and qualitatively.

• We visualize and reason about the result of a causal analysis using our Causal Program Dependence Model (CPDM), a graph-

structured program dependence model that provides a rich representation of quantified dependence.

• We consider several related applications and examine the advantages and limits of quantified program dependence via empirical 
experiments.

The rest of this paper is organized as follows. We first present a motivating example describing various characteristics of the 
program dependence found in the program semantics in Section 2. Then Section 3 explains causal inference, which is the theoretical 
background of CPDA. After presenting the procedure of CPDA in Section 4, we explain its details starting with the probabilistic 
representation of program semantics (Sec. 5), the structure discovery algorithms (Sec. 6), and the measures of quantified dependence 
(Sec. 7). In Section 8 we describe our experimental configuration. Then in Section 9, we first assess the accuracy and efficiency of the 
structure discovery algorithms. Then, we investigate the characteristics and potential of CPDA’s quantified dependence using several 
applications. Threats to validity are discussed in Section 10. Finally, we review related work in Section 11, discuss future work in 
Section 12 and conclude in Section 13.

2. Illustrative example

To help motivate our approach, we present an illustrative example that demonstrates the limitations of existing program depen-

dence analysis techniques. Fig. 1 is an example program showing various characteristics of program dependence. The value in variable

b in line 3 is the value in variable a plus one. Therefore, a value change of variable a always affects the value in variable b; in terms 
of how often one affects another, variable a strongly affects variable b. Similarly, variables c and d in lines 5 and 6 are only assigned 
if the predicate pred is true; thus, c and d strongly depend on pred. On the other hand, the value in variable c is affected by the 
change of the value in variable b only when pred is true and the b’s parity changes (due to the remainder operator ‘%’). Assuming 
the domain of b is an integer, only in half of the instances does variable b affect variable c; thus, c weakly depends on b compared 
to a. Another property of dependence is immediacy. For instance, variable b affects both values of variable c and d; while b directly

affects c’s value, it indirectly affects d’s value through the value of c. Variable a in line 1 affects variable c in line 5 both directly and 
indirectly (through the value of b).

Static analysis is capable of differentiating the direct and indirect dependence using the formal semantics of the programming 
language. However, it does not distinguish the magnitude of the dependence. In the static dependence model, the dependency from 
variable a to variable b and variable b to variable c is the same: “yes, there is dependence.” The nature of the static analysis, 
trying to find all possible dependences, brings too many dependences in a large program because of both theoretical [58] and 
practical reasons [10]. Without any way to discriminate those dependences, this large number of dependences does not help the user 
understand the program and hinders subsequent analysis. Fig. 2a shows the dependence model from static analysis.

The Probabilistic Program Dependence Graph (PPDG) [6] and the Bayesian Network-based Program Dependence Graph (BN-

PDG) [78] are recent dynamic dependence analyses that model dependence strength based on the frequency of def-use chains. For 
each program element, the PPDG models the conditional probability of a particular set of reaching predecessors given the state at 
each predecessor during execution. The PPDG estimates conditional probability as a relative frequency observed in a set of node-state 
traces from a set of test cases. Later, the BNPDG reformed the structure of PPDG to a DAG in order to regard it as a Bayesian Network 
and compute the conditional probability between non-adjacent nodes [77].

While PPDG and BNPDG consider the conditional probability of a state of a program element given the states of its predecessors, 
an effect from a single predecessor to the program element can be derived by marginalizing the conditional probability over the 
other predecessors. Fig. 2b shows the conceptual dependence model of the PPDG and the BNPDG using marginalization. While both 
models assign 0.5 to the dependence from a and b to c as a and b only affect c when pred is True they cannot discriminate the 
degree of dependence between a and b from c. This is because the PPDG and the BNPDG are incapable of noticing the value change 
of variables.

Our previous work introduced MOAD [41], an observation-based dependence model capable of identifying the value change 
of variables in response to deletion mutations. Given a program, it removes various combinations of program elements from the 
source code and observes the consequence of each deletion. Given those observations, MOAD employs several statistical methods to 
approximate the degree of dependence between program elements. The main hypothesis of statistical methods is that the degree of 
3

A affecting B is proportional to the conditional probability of the change in B’s behavior, given A is mutated. As shown in Fig. 2c, 



Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. 2. Dependence model using existing dependence analysis methods.

MOAD distinguishes the difference in the degree of dependence between a and b from c. However, MOAD is incapable of identifying 
the dependence structure (i.e., whether the effect is direct or indirect). It only measures the strength of dependence, ignoring whether 
one affects another directly or indirectly. Distinguishing direct and indirect effects is important for making the analysis path-sensitive, 
enhancing the understanding of edge-wise and path-wise information flow. By identifying whether an effect is direct or indirect, one 
can more accurately trace causal influence through different edges and paths. This distinction is particularly valuable in analyses 
like debugging or security assessments. For instance, if a vulnerability, such as an information leakage, arises on a specific execution 
path, knowing the extent of the causal effect along that path—as opposed to others—becomes crucial. Thus, differentiating direct 
from indirect effects greatly improves our ability to pinpoint and address issues in complex systems.

In this work, we present a dependence analysis technique that discovers both the structure and the degree of the dependence. This 
is similar to how causal analysis extends the statistical analysis to study the actual causal structure as well as estimate the strength 
of the dependences. In Section 4, we introduce Causal Program Dependence Analysis, a novel dependence analysis utilizing causal 
inference to address the above-mentioned limitations.

3. Background

This section introduces causal inference, the fundamental methodology that CPDA uses to identify and quantify program depen-

dence.

3.1. Causal inference

Causal inference is a mathematical theory for analyzing which events cause one or more effects [53,55]. Increasingly, it provides 
practical tools for data analysis that can be used instead of, or together with, existing statistical and other data analysis methods [56]. 
While statistical methods focus on identifying and modeling associations, the causal analysis adds ways of studying which events 
actually precede and thus lead to (cause) other events. It further determines how large these effects are. The distinctions involved are 
clarified by the so-called ‘ladder of causality’ where classical, associative, statistical analysis (‘what happens together?’) is the ground 
level, the analysis of interventions (‘what happens if we do this?’) one step up, and counterfactual analysis (‘what if something else, 
that didn’t happen, will (or had) happen(ed)?’) the top level [54].

Theoretically, the benefits of causal inference are clear, e.g., it is aligned with the ultimate goals of science in attempting to explain 
the reasons for observed phenomena. However, a causal analysis can also provide more direct and practical benefits and ultimately 
lead to more robust models and better decisions than those derived from non-causal statistical analyses. As an example, in medicine, 
a re-analysis of data on hip fractures among the elderly found that the causal analysis was able to identify which events mediate the 
effect of the others and to what extent, in addition to providing predictions on par with traditional methods [12]. In another study, 
Richens et al. [62] showed that medical diagnosis based on causal inference performed almost twice as well (25𝑡ℎ percentile vs. 48𝑡ℎ

of the performance of human doctors) than classical, associative/statistical methods.

3.2. Causal model and causal structure

A probabilistic model (also called a probability space) is a mathematical model encoding the association information between 
4

events. It consists of three components: 1) a sample space, which is the set of all possible outcomes, 2) an event space, which is a 
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set of events, where an event is a subset of a sample space, and 3) a joint probability distribution over the random variables of the 
events.2 Causal inference can elevate the probabilistic model to demonstrate the causal relationship between the events.

A key element of modern-day causal inference is its use of directed acyclic graphs (DAGs) to model the dependence structure 
between the random variables of different events in a probabilistic model. The resulting model of the causal inference, called the 
causal model, consists of the causal structure, which is the DAG of the dependence structure, and the mathematical relations between 
the random variables [53]. Nodes in the DAG denote random variables, and edges denote how the values of the random variables 
cause changes in the values of other random variables. To be specific, the direct predecessors (parents) of the node (child) in the 
DAG are a minimal set of nodes directly affecting the node; therefore, the parents screen the child from the effect of any other nodes 
which may indirectly affect the child.

The mathematical relations in the causal model indicate how to estimate the value of a child random variable based on the values 
of their parent(s). There are different types of causal models that differ in how the relations are specified. In a so-called structural 
equation model [53], this is achieved via equations that relate each child node to the nodes from which it has incoming DAG edges. The 
equations are typically linear but more general forms can be used. Another model variant, the probabilistic causal model, factorizes the 
probability distribution over the random variables into a set of independent conditional probability distributions, each denoting the 
atomic cause-and-effect relations between variables [53]. The structural equation model works well if the relation between factors 
is expected to have a certain pattern (e.g., linear), while the probabilistic causal model can model a more generic (non-parametric) 
relation. Therefore, in this paper, we use the probabilistic causal model to model the program dependence. The (probabilistic) causal 
model satisfies the local Markov condition:

Definition 3.1 (Local Markov condition). Let 𝐺 = (𝑉 , 𝐸) be a direct acyclic graph (DAG) and let 𝑃𝑉 be a probability distribution over 
the nodes 𝑉 of 𝐺. 𝐺 and 𝑃𝑉 satisfy the local Markov condition if every node in 𝑉 is conditionally independent of its non-descendants, 
given its parents.

For instance, let us consider a situation where whether it is dawn and there is dew on the grass (𝐴), and whether it is raining (𝐵) 
are the two factors that affect whether the grass is slippery (𝐶), which decides whether a person who is walking on the grass will slip 
and fall (𝐷); let the probability distribution 𝑃𝐴..𝐷 describes the situation. Then, regarding 𝑃𝐴..𝐷 , DAG 𝐺 ≜ {𝐴 → 𝐶 , 𝐵 → 𝐶 , 𝐶 →𝐷}
meets the local Markov condition, but DAG 𝐺′ ≜ {𝐴 → 𝐶 , 𝐶 →𝐷} does not because 𝐶 is not conditionally independent of 𝐴 given 
𝐵, which means that 𝐺′ does not express that the grass can be slippery because of the rain. Nonetheless, none of 𝐴 and/or 𝐵 make 
𝐶 conditionally independent of 𝐷, the descendent of 𝐶 , because 𝐷 is the result of 𝐶 .

For each random variable (node) in the probability distribution, a minimal set of predecessors that satisfies the local Markov 
condition with the given random variable is called Markovian parents. A conventional approach to construct the causal structure is 
thus to find the Markovian parents of each node and draw edges from every Markovian parent to the node. While the causal structure, 
i.e., the DAG, is sometimes known or can be formulated based on some external theory, one can also use so-called structural learning 
(also known as causal discovery) to identify the causal structure by searching for the DAG that satisfies the local Markov condition 
from the data [69].

3.3. Causal effect

A hallmark of causal inference is that its DAGs can be used to guide which (random) variables to intervene on (i.e., change) to 
calculate the effects of one variable on another, given the observations. The causal effect, the measured effect by causal inference, 
distinguishes itself from the conditional probability, which is a measure representing the association rather than the causation. The 
conditional probability 𝑃 (⋅|𝑥) represents the probability when one observes that 𝑋 has value 𝑥 (we use the lower case symbol 𝑥 to 
denote a particular observed value of the corresponding uppercase variable 𝑋). What this illustrates is an association between 𝑋 = 𝑥

and other events. On the other hand, the causal effect, denoted as 𝑃 (⋅|𝑑𝑜(𝑥)), is a probability when we force 𝑋 to have the value 𝑥. 
The difference between “forcing 𝑋 to 𝑥” and “observing that 𝑋 is 𝑥” concerns whether there is any actual effect of 𝑋, or, somehow, 
there is a correlation with 𝑋 either by 𝑋 itself or by other variables.

Before getting onto the formal definition of the causal effect, we first informally introduce the notion by way of an example. 
Consider the situation shown in Fig. 3, where sleeping with shoes on (denoted the event as 𝑋) often occurs together with having a 
headache (denoted as 𝑌 ) the next morning when there was heavy drinking last night (denoted as 𝑈 ), i.e., having a headache when 
someone slept with shoes on has a higher chance than the chance of normally having a headache (𝑃 (Y ∣ X) ≳ 𝑃 (Y)). However, since 
sleeping with shoes is not the cause of the headache, putting shoes on a sleeping person, i.e., 𝑑𝑜(X), will not increase the chance of a 
headache (𝑃 (Y ∣ 𝑑𝑜(X)) ≈ 𝑃 (Y)).

By having a causal structure, we can estimate the causal effect by controlling the confounding bias. A confounding bias is a 
distortion representing the event that is associated with, but not causally related to, the observation induced by the common cause 
(𝑈 in the previous example), which appears through the so-called backdoor path (in the case of Fig. 3, X ← U → Y) in the causal 
DAG [53]. By ignoring the incoming effect of 𝑋, we can remove the effect through the backdoor path to 𝑋, subsequently eliminating 
the confounding bias from the association between 𝑋 and another node 𝑌 .

2 To be specific, it is a probability measure on events, which assigns a probability to each event [71]. Refer to ([53], Chapter 1.1.2) for more details on probability 
5

spaces and its context in causal inference.
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Fig. 3. An example of 200 observations showing the difference between conditional probability and causal effect: (a) is the causal structure, (b) is the table of 
occurrence of the situations, and (c) shows the computation of the conditional probability and the causal effect.

Based on Pearl [53], the causal effect 𝑃 (⋅|𝑑𝑜(𝑥)) is formally defined as follows:

Definition 3.2 (Causal effect). Let 𝐺 = (𝑉 , 𝐸) be a causal structure. Given two disjoint sets of nodes, 𝑋, 𝑌 ⊂ 𝑉 , the causal effect of 
𝑋 on 𝑌 , denoted as 𝑃 (𝑦 ∣ 𝑑𝑜(𝑥)), is a function from 𝑋 to the space of probability distributions on 𝑌 . For each observed value 𝑥 of 
𝑋, 𝑃 (𝑦 ∣ 𝑑𝑜(𝑥)) gives the probability that 𝑌 = 𝑦 is induced by deleting from the causal structure the edges to the nodes in 𝑋 and 
substituting 𝑋 = 𝑥. The causal effect 𝑃 (𝑦 ∣ 𝑑𝑜(𝑥)) is calculated as follows:

𝑃 (𝑦 ∣ 𝑑𝑜(𝑥)) =
∑

mp𝑋∈dom(𝑀𝑃𝑋 )
𝑃 (𝑦 ∣ 𝑥,mp𝑋 )𝑃 (mp𝑋 ) ,

where mp𝑋 represents the particular observed set of states of MPX , the set of Markovian parents of 𝑋.

In Fig. 3, while the conditional probability of having a headache (𝑌 ) when sleeping with shoes on (𝑋), 𝑃 (Y ∣ X), is high, show-

ing heavy association, based on the computation of Definition 3.2, the causal effect of sleeping with shoes to having a headache, 
𝑃 (Y ∣ 𝑑𝑜(X)), is the same as the probability of having a headache. In our example, there is thus no causal effect from sleeping with 
shoes on to have a headache, as one would expect.

4. Overview of causal program dependence analysis

Causal Program Dependence Analysis (CPDA) aims to model and quantifies the strength of program dependence relations. We 
define the behavior of a program element as the state or the value it takes during program execution (a detailed definition is discussed 
in Section 5.1), and we interpret the dependency between program elements as the effect of a change in the behavior of one program 
element on the behavior of another program element. A different meaning of the term ‘effect’ can be considered in the context of 
quantifying the strength of program dependence relations, for instance, the magnitude of the change in the behavior of program 
elements. In this initial work of CPDA, we focus on the likelihood/probability of a change in the behavior. A discussion of the 
extension of CPDA to different notions of effect is discussed in Section 12.

CPDA models the dependences between program elements using causal inference. Thus, the dependences reported by CPDA are 
not binary: rather, they represent how likely a change to the value of a program element 𝑆𝑖 is to cause a change to the value of another 
element 𝑆𝑗 .

Definition 4.1 (Causal dependency (abstract)). Given a Program  , let 𝑆𝑖 and 𝑆𝑗 be program elements in  . The causal dependency

from 𝑆𝑖 to 𝑆𝑗 is the probability that a change in the value of 𝑆𝑖 will cause a change in the value of 𝑆𝑗 .

In order to model the program dependency using causal inference, we initially define a probabilistic model over the runtime 
behavior of the program elements. A sample from the probabilistic model, denoted as the Δ-execution model, represents a set of 
program elements whose behaviors change together during execution. To get a sample from the Δ-execution model, we first capture 
the behavior of the original program when executed on a test suite. These executions are used as an oracle. We then observe3 which 
program elements behave differently in the mutated program execution. Observations of which program elements behave differently 
together are used as input data for the causal inference. The output of the causal inference is a set of causal dependences between 
program elements.

3 The term “observation” used in our work differs from how “observation” is generally used (in contrast to “intervention”) in causal inference. In a causal inference 
study, one naturally gets observational data from the event space of interest, while one needs to take actions that lead to changes to the event space to get interventional 
data. In our work, we use the term “observation”, with its more general meaning, for (a part of) the observable behavior of program elements during execution 
regardless of whether it arises from the original or the mutated programs. The causal inference in our work thus uses both purely observational data (the behaviors 
6

of the unmutated program execution) as well as interventional data (the behaviors of the mutated program executions).
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Fig. 4. Framework of CPDA.

Fig. 4 shows the overall framework of CPDA. Given a program, CPDA identifies target program elements to analyze, and sub-

sequently instruments the code (Sec. 5.2). The instrumentation allows us to generate an oracle, a set of recorded behaviors, i.e., 
states of program elements from the original, unmutated program. Mutation then allows us to apply interventions to the state of a 
program element at runtime and monitor the resulting changes [73]. Using these observations, CPDA first builds a causal structure

of the program (Sec. 6). Then, using this causal structure and the observation data, CPDA performs causal inference to calculate 
two dependence measures between program elements (Sec. 7). First, average causal effect measures the total effect from one program 
element to another, including both direct and indirect effect, while the second, natural direct effect, measures only the direct effect. 
Finally, by annotating the natural direct effect on the edges of the causal structure, CPDA produces a Causal Program Dependence 
Model (CPDM), a graphical representation of the quantified program dependence.

5. Transforming program semantics to a probability distribution

5.1. Δ-execution model and probability of a behavior change

Given a probabilistic model that describes how the events are associated, causal inference infers the causal relationship between 
the events. Hence, to infer causal dependency, we need to define an appropriate probabilistic model over which the causal inference 
can be performed. The elements of the probabilistic model are program elements, which capture a program variable at a specific 
location in the source code. We design a probabilistic model that describes which program elements are dynamically associated, so 
that their behaviors change together during execution, i.e., during a single run of the program from the test suite. Consequently, 
the causality derived from the probabilistic model represents which program element’s behavioral change is likely to cause another 
program element’s behavioral change, i.e., the causal dependency in Definition 4.1. Specifically, we define a probabilistic model 
where each sample in the space corresponds to a set of program elements whose behavior changes in the intervened execution, i.e., 
the execution with a mutated program. We call this probabilistic model a Δ-execution model.

We next formalize the behavior of a program as the behavior of its program elements. The behavior of a program element is 
the trajectory (the sequence of values) the corresponding program variable takes on at a specific location in the source code during 
execution. Given a Δ-execution model of a program, a behavior change in a program element is defined as follows:

Definition 5.1 (Behavior change of a program element). The behavior of program element 𝑆𝑖= ⟨𝑣, 𝑙⟩, where 𝑣 is a variable and 𝑙 is a 
location in the source code, in Program  has changed for a given mutation and input if the trajectory for 𝑆𝑖 in the mutated program 
 ′ is different from the trajectory of 𝑆𝑖 using  .

Given a Δ-execution model of a program, CPDA infers a causal model. Each node in CPDA’s causal model is a random variable 
representing whether the behavior of a program element has changed under  ′ or not. Henceforth, we overload the notation 𝑆𝑖 to 
represent both the program element itself and the random variable, denoting whether the behavior of 𝑆𝑖 has changed under  ′ or 
7

not; 𝑆𝑖 = 1 if changed, 0 otherwise. Consequently, the causal structure of CPDA’s causal model identifies the dependency between 
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program elements, and the (average) causal effect, a metric of causation between two nodes in CPDA’s causal model, measures the 
quantity of the causal dependency.

We sample observations from the Δ-execution model through the following procedure. First, we run the program with a given test 
suite and capture the original behavior as the trajectory of each program element. The captured behavior serves as an oracle of the 
original behavior of the program. After we produce the oracle, we repeat the execution while selectively mutating the value of each 
program element one at a time. Based on these executions, we identify behavior changes in program elements due to the mutation 
by comparing the trajectory of each program element after the mutation with the corresponding trajectory in the oracle. For each 
mutated execution, we get a single observation that is a boolean vector whose length is equal to the number of program elements 
in the program: each value in the observation indicates whether the behavior of the corresponding program element has changed or 
not. Given a set of observations, we can calculate the probability of a behavior change in a program element as follows:

Definition 5.2 (Probability of a behavior change). For a program element 𝑆𝑖 from  and a set of observations 𝑂, 𝑃𝑂(𝑆𝑖 = 1) represents 
the probability of a behavior change in 𝑆𝑖 when not mutated,

𝑃𝑂(𝑆𝑖 = 1) = |{obs ∈𝑂∗ ∣ obs[𝑖] = 1}|
|𝑂∗| = 1 − 𝑃𝑂(𝑆𝑖 = 0) ,

where 𝑂∗ = {𝑜 ∣ 𝑜 ∈𝑂 ∧ 𝑜 is not generated by mutating 𝑆𝑖}.

Moreover, we calculate the conditional probability of a behavior change:

Definition 5.3 (Conditional probability of a behavior change). For program elements 𝑆𝑖 and 𝑆𝑗 from  and a set of observations 𝑂, 
𝑃𝑂(𝑆𝑖 = 1 ∣ 𝑆𝑗 = 1) represents the probability of a behavior change in 𝑆𝑖 when not mutated, given a behavior change in 𝑆𝑗 ,

𝑃𝑂(𝑆𝑖 = 1 ∣ 𝑆𝑗 = 1) =
𝑃𝑂(𝑆𝑖 = 1 ∧ 𝑆𝑗 = 1)

𝑃𝑂(𝑆𝑗 = 1)

= |{obs ∈𝑂∗ ∣ obs[𝑖] = 1 ∧ obs[𝑗] = 1}|
|{obs ∈𝑂∗ ∣ obs[𝑗] = 1}| ,

where 𝑂∗ = {𝑜 ∣ 𝑜 ∈𝑂 ∧ 𝑜 is not generated by mutating 𝑆𝑖}.

The conditional probability in Definition 5.3 becomes the foundation of the causal dependences that we calculate later. The use 
of 𝑂∗ excludes the mutation at 𝑆𝑖 itself to avoid negating the effect from the behavior change of 𝑆𝑗 with a mutation of 𝑆𝑖 itself.

5.2. Implementation

We instrument the target program based on the set of program elements whose causal dependence we seek to analyze; the analysis 
result is thus subject to the program elements chosen. Our instrumentation allows us to intervene in the runtime behavior of the program 
by mutating a program variable’s value during execution. It also allows us to observe the trajectory of the program elements, either 
from the original execution if no intervention is applied or from the mutated execution if an intervention is applied; the difference 
in the trajectory of a program element between the original and mutated executions indicates that the mutation has changed the 
behavior of the program element. In the remainder of the paper, we consider the following as program elements: a left-hand side 
program variable of an assignment statement, a function parameter, a predicate expression, and a return expression.

To efficiently produce a large and diverse set of observations for Program  , we construct a super mutant [73], i.e., a meta-mutated 
program that takes as input a mutation position (the unique index of a program element) and a mutation value that will be used 
whenever the program element is executed. This approach reduces the number of compilations required to support multiple mutations. 
The instrumentation begins by indexing all the program elements in the target program using a parser and injecting a helper function. 
Fig. 5 shows an example of the helper function, how it is injected after each program element, and how the instrumented program 
is executed with the target mutation index and the mutation value. The helper function, when given a target program element index 
(MUT_IDX), will overwrite (i.e., mutate) the value of the program element to the given mutation value (MUT_VAL) and log the result 
of mutation during execution. For all the other program elements, the helper function simply logs the current value observed during 
execution (this records each program element’s trajectory).

5.2.1. Oracle

After instrumentation, we can obtain the oracle trajectory for each program element using the given test suite. An oracle trajectory 
for a program element is simply a collection of all of its trajectories, one per test input from the test suite when no mutation is applied 
during execution.

5.2.2. Mutation

CPDA currently targets variables of the following primitive types: bool, char, int, long, float, double, and string. We 
propose a mutation strategy for each type as follows. First, if domain knowledge clearly specifies the range of possible values (e.g., an 
8

enumerated type), we simply sample from the given range with uniform probability. Otherwise, we aim to choose the diverse mutation 
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[Running the instrumented program]

$ ./inst_prog <MUT_IDX> <MUT_VAL> <input>

[Helper function OBS]

def OBS(node_idx, var_name, val) {

if (node_idx == MUT_IDX) {

print("OBS", node_idx, var_name, MUT_VAL)

return MUT_VAL

}

else {

print("OBS", node_idx, var_name, val)

return val

}

}

[Add the helper function for each program element]

foo = 3; foo = OBS(42, "foo", foo)

Fig. 5. An example of the trajectory logging instrumentation and the helper function.

values but, simultaneously, values that the corresponding program element may have, which are close to the observed values in the 
oracle. For Booleans, the mutation simply negates the original value. For scalar types, we first build a Gaussian distribution whose 
mean and standard deviation are the sample mean and sample standard deviation4 of the observed values in the oracle trajectory 
for the program element; we consider the distribution a reasonable approximation of the distribution of the values that the program 
element may have. We then sample a random value from this Gaussian distribution; if the sampled value (e.g., a floating point 
number) is outside the range of the original type (e.g., an integer), we round it to the nearest value in the range. Finally, for strings, 
we first sample the string length from a Gaussian distribution that is based on the length of all observed strings for the program 
element and subsequently sample a random string of that length. To avoid sampling the same value repeatedly or sampling the value 
that is the same as the original value (i.e., no mutation), we keep track of the sampled values and reject any sampled value that has 
already been used or is the same as the original value.

For most program elements, we gather up to a fixed limit, 𝑁mpn, of samples per program element. However, for boolean program 
elements and program elements with small predetermined value ranges, we sample each value only once, limiting the number of 
samples collected for these program elements. We leave more refined data mutation and generation strategies to future work and 
note that techniques for test generation can likely be used to handle more complex, structured data types [20]. Since each program 
element may have a different number of mutated values, we normalize the probabilities in Definition 5.2 and 5.3 by multiplying 
by the reciprocal of the number of sampled mutated values. For example, each observation for an integer-type program element 
mutation with ten mutation values has a weight of 0.1.

6. Structure discovery

A few methods already exist to discover causal structure given data, including Bayesian network learning [67,65] and other recent 
causal discovery algorithms [59,61,60]. However, current algorithms are either unable to handle observations from interventions in 
the environment or do not scale to the size of the program dependency space, which often consists of more than hundreds of program 
elements. In this section, we introduce novel methods to discover the causal structure of a program. We first describe the notion of 
the causal structure in terms of program dependence analysis and the requirements for the discovery of the causal structure. We then 
introduce two concrete methods to discover the causal structure of a program designed to meet these requirements with respect to 
different aspects of the qualification of causal relations: the probabilistic aspect and the discrete/deterministic aspect.

6.1. Causal structure of a program

The conditional probability defined in Definition 5.3 expresses the association between behavior changes to program elements: 
these are behavior changes that are simply observed together. To elevate the association to a causation, we need the concept of one’s 
behavior change preceding another. It is also necessary to distinguish between direct predecessors, nodes whose behavior change 
affects the target node without involving any intermediary nodes, and indirect predecessors, nodes whose behavior change reaches 
the target node through one or more direct predecessors.

A causal structure allows us to introduce this concept of precedence. Program dependence is inherently a form of causal precedence: 
if Node 𝑆𝑗 depends on Node 𝑆𝑖, a behavior change at 𝑆𝑖 will precede the behavior change at 𝑆𝑗 . In theory, a perfectly accurate PDG 
can serve as the causal structure. However, in practice, the required static dependence analysis used to produce a PDG yields many 
false-positives. Instead, we use ideas from the causal inference field and dynamically approximate the causal structure from the set 
of observations.
9

4 If there is only one unique observed value, we use 1 for the sample standard deviation.
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Fig. 6. Example of Intervention Ancestors (IA) and Markovian Parents (MP). (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

A = 42
B = A + 2
C = B % 2
D = A + C

𝑆𝑗 IA𝑗 MP𝑗

A ∅ ∅
B {A} {A}
C {A,B} {B}
D {A,B,C} {A,C} or {B,C}

Fig. 7. Example of a potential inconsistency between Markovian Parents and actual dependency in a program.

Let us first formally define the predecessors of a node, which we call the intervention ancestors (IA). Given Node 𝑆𝑗 in the program, 
the intervention ancestors of 𝑆𝑗 , IA𝑗 , are a set of nodes whose mutation changes the behavior of 𝑆𝑗 for at least one input.

Definition 6.1 (Intervention ancestor (IA)). For a Program  and a set of nodes 𝑆 from  , the set of nodes IA𝑗 ⊆ 𝑆 ⧵ {𝑆𝑗} is the set 
of intervention ancestors of node 𝑆𝑗 if mutating any node in IA𝑗 changes the behavior of 𝑆𝑗 for at least one input. In other words, 
𝑆𝑘 ∈ IA𝑗 if and only if there exists a mutation of 𝑆𝑘 and an input that causes 𝑆𝑗 = 1.

A behavior change in one of a node’s intervention ancestors will, by definition, precede the behavior change in the node. However, 
the precedence relationship may be direct (i.e., not pass through any other predecessor) or indirect (i.e., pass through a predecessor). 
Based on the theory of causal inference, we define the Markovian parents (MPs) of a node as the minimal set of direct predecessors 
among the intervention ancestors. Notice that there can be multiple subsets of intervention ancestors that meet the definition of 
Markovian parents. Fig. 6 illustrates intervention ancestors and Markovian parents using a simple program. In the graph, the directed 
edge 𝑋 → 𝑌 (both solid-red and dashed-black edges) represents that 𝑋 is an intervention ancestor of 𝑌 ; thus, a value change at 
𝑋 leads to a value change at 𝑌 . Among the intervention ancestors, solid-red edges represent the Markovian parents. For example, 
changing A in Fig. 6 may cause a change to the value at C, but only subsequently after the value at B changes; if the value at B does 
not change, then the value at C does not change even though the value at A changes. Similarly, B is not a Markovian parent of D. The 
Markovian parent-child relation provides the causal structure of the program. For instance, the graph with only solid edges in Fig. 6

is the causal structure of the sample program.

The definition of Markovian parents leads to the following requirements for the parent-child relations in the causal structure of a 
program:

• Requirement 1 → the parent candidates include all nodes whose mutation can change the child’s behavior,

• Requirement 2 → if a child’s behavior has changed but the child was not mutated, one of its parents must also have changed 
behavior, and

• Requirement 3 → each parent individually has an effect on the child.

The first requirement captures a core principle of dependence: if none of the mutations to program variable A lead to a change in the 
behavior of variable B, then B does not depend on A. The second requirement also captures a core principle of dependence: if none of 
the parents’ behaviors are changed, the child’s behavior cannot be changed unless it is mutated. The last requirement captures direct 
dependence. If variable A directly affects variable B, it should individually affect B. In other words, there should be a path of effect 
from A to B without interpolating other program elements.

The discovered Markovian parents of a node 𝑆𝑗 may not be the same as the actual parents of 𝑆𝑗 , i.e., the set of program elements 
whose value directly affects the value/execution of the program element 𝑆𝑗 in terms of the program’s semantics, either because of 
the insufficient observation samples or because more than one Markovian parents set exist. For example, consider a variant of source 
code in Fig. 6 where ‘B = A + 2’ and ‘C = B % 2’ as Fig. 7 shows. Then, whenever the value of D changes due to the value change 
of A, the value of B also changes. In this case, either {A, C} or {B, C} can be the Markovian parents of D; if the latter is chosen for the 
Markovian parents of D, then the structure discovery algorithm produces both the false-positive (add a program element that is not 
an actual parent of the child to the Markovian parents) and the false negative (miss the actual parent of the child in the Markovian 
parents). Also, if every mutation on B has the same parity (even or odd) as the original value of B, then B ∉ 𝐼𝐴C, and, thus, the false 
negative result is produced.

Both the false-positive and the false negative for Markovian parents can spoil causal program dependence analysis. A false negative 
10

hinders inferring the correct degree of causation from the association. While causal inference derives the causation from the association 
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by taking away non-causal association appearing through a backdoor path (as described in Section 3.3), missing Markovian parents 
may lead causal inference to ignore the existing backdoor path and infer a less accurate result. For instance, in the example of Fig. 3, 
if we do not know that drinking a lot last night is a cause of the headache, there is no way that the causal inference determines that 
there is no causal relation between the headache and sleeping with shoes on. A false-positive can harm the causal inference both 
in terms of accuracy and efficiency. As we observed in the example of Fig. 7, if an additional node is mistakenly included in the 
Markovian parents of a node, it can cause another actual parent of the node to be missed in the Markovian parents. Therefore, the 
causal inference would infer that there is no causal effect from the actual parent node to the child node. Even if none of the actual 
parents of the child node is missed in the Markovian parents, the number of causal relations to be inferred for the child node doubles 
whenever there is a single false parent, as the cardinality of the Markovian parents set is increased, seriously harming the efficiency 
of the causal inference.

To avoid Markovian parents having false-positives or false negatives, we tried to provide sufficient observations in the experiment 
(Section 10) and apply heuristics to choose the Markovian parents that are more likely to be the actual parent of the child as described 
in the following section.

In the remainder of this section, we introduce two causal discovery methods based on the definition of Markovian parents and the 
three requirements. The first considers the probabilistic aspect of the Markovian parents; in particular, it utilized conditional inde-

pendence to find the Markovian parents. In addition, we also introduce a variation of the first method that relaxes the requirement of 
conditional independence to the requirement of similar probabilities. The second method considers the requirement of the Markovian 
parents in a deterministic and discrete manner interpreting the causal discovery problem as a hitting set problem.

6.2. Probability-based structure discovery

6.2.1. CP-method

The first method utilizes the definition of Markovian parents in the probabilistic causal model. This definition in probabilistic 
notation is as follows:

Definition 6.2 (Markovian parent (MP)5). For a set of nodes 𝑆 , the Markovian parents of Node 𝑆𝑗 ∈ 𝑆 , MP𝑗 ⊆ IA𝑗 , is a minimal set of 
predecessors of 𝑆𝑗 that renders 𝑆𝑗 independent of all its other intervention ancestors. In other words, MP𝑗 is any subset of IA𝑗 such 
that 𝑃 (𝑠𝑗 ∣ mp𝑗 ) = 𝑃 (𝑠𝑗 ∣ ia𝑗 ) while no other proper subset 𝑇 ⊊ MP𝑗 satisfies 𝑃 (𝑠𝑗 ∣ 𝑡) = 𝑃 (𝑠𝑗 ∣ ia𝑗 ).

Therefore, the Markovian parents of a node 𝑆𝑗 is a minimal subset of its intervention ancestors that preserves the conditional 
probability of 𝑆𝑗 . By computing conditional probabilities with various combinations of intervention ancestors, we can discover the 
Markovian parents of a node. We call this method the conditional probability-based method, i.e., the CP-method.

However, it requires exponential work to compute the conditional probability as defined by Definition 6.2 for every possible com-

bination of intervention ancestors. Thus, in practice, we approximate the Markovian parents by iteratively removing non-Markovian 
parents from the intervention ancestors. Algorithm 1 shows the process of removing non-Markovian parents from IA𝑗 . We choose one 
Node 𝑆𝑑 from IA𝑗 and check whether 𝑆𝑗 is independent of 𝑆𝑑 , given all other candidate nodes.

If 𝑆𝑑 is the only candidate node left (Line 8-10), we check whether 𝑆𝑗 is independent of 𝑆𝑑 . If the conditional probability of 𝑆𝑗 = 1
differs depending on whether 𝑆𝑑 is changed (1) or unchanged (0), 𝑆𝑑 is a Markovian parent of 𝑆𝑗 (may_be_parent = 𝑇 𝑟𝑢𝑒). If there 
are other candidate nodes 𝑆other (Line 11-16), we check the conditional independence of 𝑆𝑗 from 𝑆𝑑 for all observations of 𝑆other
(Val𝑆other

). If 𝑆𝑗 is conditionally independent of 𝑆𝑑 for all 𝑠other , 𝑆𝑑 is not a Markovian parent. Otherwise, 𝑆𝑑 could be a Markovian 
parent of 𝑆𝑗 (Line 15). This is because 𝑆𝑗 can be conditionally independent of 𝑆𝑑 if 𝑆other changes. Therefore, we re-check all possible 
Markovian parents every time we find a new non-Markovian parent (Line 19-21). To minimize the re-checking cost, we order the 
candidate nodes and first choose the node most unlikely to be the Markovian parent (Line 5). Our distance metric Dist represents 
how likely a candidate is to be a Markovian parent of 𝑆𝑗 . For a given Node 𝑆𝑗 , the intuition is that a node that appears close before 
𝑆𝑗 in the program execution is more likely to be the Markovian parent of 𝑆𝑗 . Thus, nodes that appear after 𝑆𝑗 are firstly chosen in 
Line 5 since they are farthest from 𝑆𝑗 , followed by nodes that appear earlier in the execution.

6.2.2. Drawbacks of the CP-method

During early experimentation, we uncovered several drawbacks to the CP-method, which can lead it to produce a causal structure 
that is inconsistent with the actual program dependence.

• Inconsistency between program dependence and Markov condition: the definition of Markovian parents may not be con-

sistent with the notion of program dependency in a Δ-execution model. Fig. 8 shows an example of this inconsistency. The code 
on the left shows two data dependencies in the program: a → b and b → c. The table on the right side shows the Δ-execution 
model of the program; the dark color indicates that the value of the variable is changed (𝑆𝑖 = 1 (𝑖 ∈ {𝑎, 𝑏, 𝑐})), and the white 
color indicates the value of the variable is not changed (𝑆𝑖 = 0) after the mutation. The text in the cell represents how the value 
of the variable changes because of the mutation. For example, when mutating a (the cell of row 𝑆𝑎 under ‘Mutate val a’), a
11

5 Recall that lower case symbols (e.g., 𝑥, mp𝑗 , and ia𝑗 ) denote particular observed values of the corresponding variables (i.e., 𝑋, MP𝑗 , and IA𝑗 ).
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Algorithm 1: Get Markovian parents from intervention ancestors using the CP-method.

Input: IA𝑗 : Intervention ancestors of 𝑆𝑗 ,

Dist: Distance map from 𝑆𝑗 to other nodes,

𝑂: Observations generated from inputs that cover 𝑆𝑗 in the original program

Output: MP𝑗 : Markovian parents of 𝑆𝑗

1 MP𝑗 ← {}
2 Cand ← IA𝑗

3 while Cand ≠ {} ∧ Cand ≠ MP𝑗 do

4 Remain ← Cand ⧵ MP𝑗

5 𝑆𝑑 ← argmax𝑆𝑖∈Remain Dist(𝑆𝑖) ⊳ Get a single element from Remain to examine
6 𝑆other ← Cand ⧵ {𝑆𝑑}
7 may_be_parent ← 𝐹𝑎𝑙𝑠𝑒

8 if 𝑆other = {} then

9 if 𝑃𝑂(𝑆𝑗 = 1 ∣ 𝑆𝑑 = 0) ≠ 𝑃𝑂(𝑆𝑗 = 1 ∣ 𝑆𝑑 = 1) then

10 may_be_parent ← 𝑇 𝑟𝑢𝑒

11 else

12 Val𝑆other
←

{
𝑣 ∣ 𝑣 ∈𝑂|𝑆other

}
⊳ Get a unique observation set of 𝑆other in 𝑂

13 foreach 𝑠other ∈ Val𝑆other
do

14 if 𝑃𝑂(𝑆𝑗 = 1 ∣ 𝑆𝑑 = 0, 𝑠other) ≠ 𝑃𝑂(𝑆𝑗 = 1 ∣ 𝑆𝑑 = 1, 𝑠other) then

15 may_be_parent ← 𝑇 𝑟𝑢𝑒

16 break

17 if may_be_parent then

18 MP𝑗 .Add(𝑆𝑑 )
19 else

20 Cand.Remove(𝑆𝑑 )
21 MP𝑗 ← {}

22 return MP𝑗

Fig. 8. Inconsistency between program dependence and the CP-method.

changes to an arbitrary integer different from its original value V(a), and b changes from 0, 1, or 2 to 0, 1, or 2 (the cell of row 
𝑆𝑏 under ‘Mutate val a’).

In cases when the value of a is mutated, the value of b changes in six-ninths of the cases, and the value of c changes in 
four-ninths of the cases; thus, the conditional probability 𝑃 (𝑆𝑐 = 1 ∣ 𝑆𝑏 = 1, 𝑆𝑎 = 1) is 2∕3. In contrast, when the value of b is 
mutated, it becomes an arbitrary integer different from its original value making the value of c changes in half of the cases 
(𝑃 (𝑆𝑐 = 1 ∣ 𝑆𝑏 = 1, 𝑆𝑎 = 0) = 1∕2). Therefore, regarding the definition of Markovian parents, 𝑆𝑏 cannot screen 𝑆𝑐 from 𝑆𝑎, 
leaving a → c in the causal structure. The two conditional probabilities are different because the value distributions of b in the 
Δ-execution model are different when a is mutated (mutated b ∈ 0,1,2) and b is mutated (mutated b ∈ℤ ⧵ {original 𝑏}).

• Loss of probability precision due to sampling bias: Regardless of whether the value distributions of the program element are 
identical, the equality checking of conditional probabilities itself may not lead to finding the correct causal structure. We use the 
samples from the Δ-execution model during the experiment when computing the conditional probability. Due to the sampling 
12

bias, there can be inaccuracies during equality checking.
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Algorithm 2: Get parents in the causal structure from intervention ancestors using the HS-method.

Input: 𝐼𝐴𝑗 : Intervention ancestors of 𝑆𝑗 ,

Dist: Distance map from 𝑆𝑗 to other nodes,

𝑂: Samples from Δ-execution model

Output: MP𝑗 : Parents of 𝑆𝑗 in the causal structure

1 if 𝐼𝐴𝑗 = {} then

2 return {}

3 else

4 Collection ← {}
5 foreach 𝑜 ∈𝑂 do

6 if 𝑜[𝑆𝑑 ] = 1 then

7 SubS ← {𝑆𝑖 ∣ 𝑆𝑖 ∈ 𝐼𝐴𝑗 ∧ 𝑜[𝑆𝑖] = 1 ∧𝑆𝑖 ≠ 𝑆𝑗}
8 if SubS ≠ {} then

9 Collection.𝑎𝑑𝑑(SubS)

10 WeightMap ←
{
𝑆𝑖 ∶ 1 + Dist(𝑆𝑖) × 10−6 ∣ 𝑆𝑖 ∈ Dist

}
11 return HittingSet(Collection,WeightMap)

6.2.3. Relaxed CP-method

The CP-method determines that a node 𝑆𝑑 has no effect on another node 𝑆𝑗 if probabilities of 𝑆𝑗 under the conditions of 𝑆𝑑 = 0
and 𝑆𝑑 = 1 are the same given the other parent nodes of 𝑆𝑗 . However, it is often difficult to expect that two conditional probabilities 
become the same, due to sampling bias and inconsistency between program dependence and Markovian parents, introducing a large 
number of false-positive edges to the structure.

One remedy to this problem is to relax the equality checking of conditional probabilities. Our relaxed CP-method, RCP-method, 
is an extension of the CP-method that takes a constant threshold value and checks whether the difference between the conditional 
probabilities is less than the threshold. If the difference is less than the threshold, then the RCP-method finds that there is no effect 
from the parent candidate node to the child node. This relaxation makes it easier to remove a parent candidate and reduces the number 
of false-positive edges. Yet, it can instead introduce false negative edges to the structure. We investigate the effect of relaxation on 
the structure discovery while varying the threshold value as part of our empirical investigation.

6.3. Structure discovery using hitting sets

6.3.1. HS-method

The second method exploits the requirements of the parent-child relation to discover the causal structure. Instead of relying on 
the probabilistic notion, the HS-method formalizes the structure discovery problem as a collection of hitting set problems, a classical 
question in combinatorics. Given a ground set of elements 𝑈 and a collection 𝐶 of subsets of 𝑈 , the hitting set problem is to find 
the smallest subset 𝐻 of 𝑈 such that 𝐻 hits (includes an element of) every set found in 𝐶 . In the formal notation, a hitting set 𝐻 of 
𝐶 ⊆ 2𝑆 is a minimal subset of 𝑆 satisfying

∀𝐸 ∈ 𝐶,𝐻 ∩𝐸 ≠∅.

In the HS-method, finding a set of Markovian parents of a node 𝑆𝑗 is equivalent to a single hitting set problem. The description 
of the hitting set problem corresponds to each of the requirements from Section 6.1:

• Requirement 1 → A ground set of elements 𝑈 = IA𝑗 , intervention ancestors of 𝑆𝑗 .

• Requirement 2 → For each observation 𝑜 ∈𝑂 whose 𝑆𝑗 ’s behavior has changed without mutating 𝑆𝑗 , there is a corresponding 
subset in the collection 𝐶 , where the subset elements are the intervention ancestors that changed together with 𝑆𝑗 in 𝑜; and vice 
versa.

• Requirement 3 → The Markovian parents of 𝑆𝑗 , 𝑀𝑃𝑗 , is a hitting set of 𝐶 .

Algorithm 2 shows the algorithm for the HS-method. Similar to the CP-method, the HS-method first identifies the intervention 
ancestors 𝐼𝐴𝑗 of a node 𝑆𝑗 . Then, given observations 𝑂 from a Δ-execution model, it identifies a subset SubS of 𝐼𝐴𝑗 whose value 
also changed along with 𝑆𝑗 (Line 7). Unless 𝑆𝑗 is the only node that changed, one of the parent nodes of 𝑆𝑗 should also be changed 
and thus be included in SubS. Solving a hitting set problem on the collection of SubS returns a minimal set of parents of 𝑆𝑗 satisfying 
the above requirements (Line 11). There may be several subsets of 𝐼𝐴𝑗 satisfying the hitting set conditions. To cope with this, the 
HS-method uses the same distance metric as the CP-method to choose the most plausible Markovian parents. We add a constraint to 
the hitting set problem to prefer the Markovian parents whose sum of the weights, which is proportional to the distance metric from 
𝑆𝑗 , is the smallest.

6.3.2. Advantages of the HS-method
13

The HS-method has the following advantages over the (un-relaxed) CP-method:
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• More suitable to a Δ-execution model: the rules of the HS-method are deterministic; instead of comparing the conditional 
probability, the hitting set-based algorithm checks the inclusive relationship between the parent candidates. It is more suitable 
for a Δ-execution model because it is independent of the detailed difference between value distributions from different mutations. 
We expect this to lead the HS-method to produce a causal structure closer to the program dependence structure. For example, in 
the case of Fig. 8, whenever the values of a and c change, the value of b changes as well; thus, the HS-method removes 𝑆𝑎 from 
the parent set of 𝑆𝑐 .

• Less sensitive to sampling bias: the CP-method is excessively sensitive to sampling bias as it requires two conditional probabil-

ities to be identical, which could easily become false when we estimate the probability from the samples. On the other hand, the 
HS-method does not calculate the probability. It only considers whether there is another parent candidate that always changes 
when one parent candidate and the child change. Thus, it is much less sensitive to the sampling bias than the original CP-method.

7. Causal program dependence model

In this section, we apply two metrics to measure the strength of the dependency in CPDA. The first, average causal effect [31], 
measures the total effect of each node’s change that causes a change in another node. The second, natural direct effect [52], measures 
the effect of one node on another excluding all indirect effects through other nodes. Finally, we build the causal program dependence 
model (CPDM), a graphical representation of the program dependence based on the output of CPDA.

7.1. Average causal effect (ACE)

Given a causal structure, causal inference can measure the degree of causation with the causal effect 𝑃 (𝑦|𝑑𝑜(𝑥)), a probability 
of 𝑌 having 𝑦 caused by setting 𝑋 to 𝑥. Yet, to quantify the dependence, we need to measure any difference in the behavior of the 
affected program element due to the change of the affecting program element. For instance, if the behavior of program element 𝑆𝑗

is always changed no matter how we change the behavior of 𝑆𝑖, i.e., 𝑃 (𝑆𝑗 = 1 ∣ 𝑑𝑜(𝑆𝑖 = 1)) = 𝑃 (𝑆𝑗 = 1 ∣ 𝑑𝑜(𝑆𝑖 = 0)) = 1, then 𝑆𝑖 has 
no effect on 𝑆𝑗 .

Average causal effect [31] measures the total effect of the change of one random variable 𝑋 on another random variable 𝑌 by 
subtracting the causal effect on 𝑌 when 𝑋 is set to different values.

ACE(𝑋 → 𝑌 ) = 𝑃 (𝑦 ∣ 𝑑𝑜(𝑥1)) − 𝑃 (𝑦 ∣ 𝑑𝑜(𝑥0)).

In CPDA, we apply the average causal effect to measure the total effect of the causal dependency, i.e., the total effect of the behavior 
change of 𝑆𝑖 on the behavior change of 𝑆𝑗 . The average causal effect in CPDA (ACE) is defined as follows:

Definition 7.1 (Average causal effect in CPDA (ACE)). Given a set of observations 𝑂 and two nodes 𝑆𝑖 and 𝑆𝑗 , the average causal 
effect in CPDA (ACE) from 𝑆𝑖 to 𝑆𝑗 , ACE𝑂(𝑆𝑖, 𝑆𝑗 ), is defined as follows:

ACE𝑂(𝑆𝑖,𝑆𝑗 ) = 𝑃𝑂(𝑆𝑗 = 1 ∣ 𝑑𝑜(𝑆𝑖 = 1)) − 𝑃𝑂(𝑆𝑗 = 1 ∣ 𝑑𝑜(𝑆𝑖 = 0)) .

7.2. Natural direct effect (NDE)

Natural direct effect [52] quantifies the portion of the effect that is not mediated by any other nodes. More formally, it measures 
the sensitivity of 𝑌 to changes in 𝑋 ∈ {Markovian parents of 𝑌 } while all other Markovian parents of 𝑌 are held fixed.

Definition 7.2 (Natural direct effect). The natural direct effect, denoted as nde𝑋∶𝑥→𝑥′ (𝑌 ) is the expected existence of a change in 𝑌
induced by changing 𝑋 from 𝑥 to 𝑥′ while keeping all mediating factors constant at whatever value they would have had under 
𝑑𝑜(𝑥). nde𝑋∶𝑥→𝑥′ (𝑌 ) is calculated as follows:

∑
𝑧

[
𝐸
(
𝑌 ∣ 𝑑𝑜(𝑥′, 𝑧)

)
−𝐸 (𝑌 ∣ 𝑑𝑜(𝑥, 𝑧))

]
𝑃 (𝑧 ∣ 𝑑𝑜(𝑥)) ,

where 𝐸 is the expectation operator, and 𝑍 represents all parents of 𝑌 excluding 𝑋.

Similar to ACE, we apply the natural direct effect to quantify only the direct effect of the behavior change of 𝑆𝑖 on the behavior 
change of 𝑆𝑗 . The natural direct effect in CPDA (NDE) is defined as follows:

Definition 7.3 (Natural direct effect in CPDA (NDE)). The natural direct effect in CPDA (NDE) from 𝑆𝑖 to 𝑆𝑗 , denoted as NDE (𝑆𝑖, 𝑆𝑗 ), 
is the average of the natural direct effect in Definition 7.2 from 𝑆𝑖 to 𝑆𝑗 over all inputs :

NDE (𝑆𝑖,𝑆𝑗 ) =
1
||

∑
𝑡∈

nde𝑂𝑡,𝑆𝑖∶0→1(𝑆𝑗 ) ,

where nde𝑂𝑡,𝑆𝑖∶0→1(𝑆𝑗 ) denotes the natural direct effect in Definition 7.2 given 𝑂𝑡, the observations from input 𝑡, for computing the 
14

probability.
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7.3. Causal program dependence model

Given the definition of the NDE, CPDM is a weighted dependence graph for the program. Its structure is the causal structure where 
each edge weight denotes the NDE between the nodes. CPDM is thus a novel graph representation that explains program dependence 
in a continuous, gradual way.

8. Experimental setup

This section presents the empirical evaluation we designed to investigate how CPDA and CPDM could identify and quantify the 
program dependence and the potential of the quantified dependency to aid various downstream tasks. Subsequently, it introduces 
the subject programs we consider, some baselines, and the implementation environment.

8.1. Research questions

Our research questions can be organized into two different sets. The first set investigates the structure discovery methods. We 
evaluate the performance of the CP-method and the HS-method in terms of the accuracy of the causal structure compared to the 
ground truth PDG and the efficiency of discovering the structure.

RQ1-1. Causal Structure and PDG: How accurate are the causal structures discovered by the CP-method and the HS-method compared to 
the ground truth PDG? We examine the accuracy of the causal structure by counting the number of false positive edges (the 
structure contains an edge that is not in the ground truth PDG) and the number of false-negative edges (the structure does 
not contain an edge that is in the ground truth PDG). We also qualitatively analyze the root cause of such discrepancies.

RQ1-2. Efficiency: How efficient are the structure discovery algorithms? It is worth noticing that the dependence analysis often serves 
as a pre-processing step for downstream analysis. Therefore, the efficiency of the dependency analysis is a critical factor in 
its usefulness. We compare the efficiency of the CP-method and the HS-method using multiple subject programs. We report 
the average time spent running each method ten times.

RQ1-3. RCP-method: How does the relaxation affect the performance of the CP-method? To overcome the drawbacks of the CP-method 
we extend the CP-method by introducing a threshold to relax the criterion of dependence (RCP-method). We compare the 
performance of the RCP-method using various thresholds.

The second set of research questions investigates the characteristics and potential benefits of CPDM’s quantified program depen-

dence. For evaluation, we present three scenarios to show the utility of CPDM. The first two have a straightforward comprehension 
focus. The Quantified Dependence scenario uses CPDM to illustrate program semantics via clustering the strongly connected (i.e., 
strongly dependent) program elements, while the Execution Awareness scenario uses the CPDM to identify execution scenarios via ob-

servational subsetting. Finally, our Debugging scenario considers how CPDM can assist in debugging based on quantified dependence.

RQ2-1. Quantified Dependence: The strength of the dependency relations in a program can vary considerably depending on a 
program’s semantics. A key characteristic of CPDA is its causal inference-based estimates of dependence strength. The first 
scenario asks the question, does the CPDM capture dependence strength sufficiently to assist in understanding a program’s semantics?

For evaluation, we undertake CPDA for several subject programs and examine the CPDM from two different viewpoints. First, 
we consider the whole CPDM of a program, clustering the nodes using dependence strength and checking how this can express 
the functional aspects of the program. Second, we take a closer look at each program element and how the relative degree 
of dependence to and from its neighbors helps us understand its semantics. In addition, we investigate whether CPDM can 
accurately identify the non-existence of dependences, which are often produced as false-positive dependences by the static 
analysis.

RQ2-2. Execution Awareness: A program may have several execution scenarios with different functionalities and dependences. 
CPDA can estimate the dependence on a specific execution, or for some subset of executions, by simply choosing the corre-

sponding (subset of) observations. In this scenario, we ask how does the estimated CPDM from different execution scenarios aid 
in program comprehension?

RQ2-3. Debugging: In the final scenario, we consider how quantified dependence estimated by CPDA can be employed when debugging.

8.2. Subject programs

To explore aspects of CPDA we make use of three subject programs with easily understood semantics: Triangle (tri), a classic 
subject from software testing, word count (wc), a widely studied program in the program dependence literature [24,41], and Bill&Ted
(B&T), a program with more complicated control flow structure than tri and wc. In addition we consider tcas, a more substantial 
program designed to determine if two airplanes are headed for a collision. We manually construct each program’s PDG regarding 
the program elements (defined in Section 5.2) and use it as the ground truth. Finally, in order to capture various execution scenarios 
in the experiments, we consider a range of test suites. We employ all the tests to estimate the CPDM in the quantified dependence 
scenario (RQ2-1), while we consider several subsets in the execution awareness scenario (RQ2-2). We describe these four subjects in 
15

greater detail and then briefly describe a few programs and techniques used for specific purposes in the empirical exploration.
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• Triangle (tri): Given three natural numbers corresponding to the length of each side of a triangle, Triangle determines whether 
the sides form a triangle or not, and if so if the triangle is equilateral, isosceles, or scalene. The universal test input space considers 
the values 1-5 for each side; it consists of 53 = 125 test cases in total. We choose a maximum length of 5 since a maximum of 3 
constructs no scalene triangles, and a maximum of 4 yields only a single scalene triangle (of sides 2, 3, and 4). Along with the

total test suite, we use two additional test suites for tri:

valid : Tests where the sides satisfy the triangle inequality (65 of the 125 test cases).

ordered : Tests where the sides are ordered in non-decreasing order (35 of the 125 test cases).

While restricting the input to only valid sides significantly changes the distribution of triangle types, ordering of the sides causes 
each side to play an asymmetric role; for example, when two sides are equal, the middle side length will always be one of the 
equal sides.

• Word count (wc): The word count program counts the number of characters, lines, and words found in its input text. We manually 
generate four test suites that combined with an empty input (Test 0) provide branch adequate coverage:

onechar: Test 1 contains a single letter.

oneword: Tests 2-3 contain a single word of multiple letters.

oneline: Tests 4-5 contain a single line with multiple words.

multiline: Tests 6-7 contain multiple lines of multiple words.

• Bill&Ted (B&T): Bill&Ted is a program designed to compute the parking fee for several classes of vehicles (e.g., cars, trucks, etc.) 
staying for various lengths of time. We manually generated a path-coverage adequate test suite consisting of 114 tests.

• TCAS Version 1 (tcas-1): To evaluate the debugging task, we employ a buggy version of the program, TCAS Version 1 (tcas-1), 
from the Siemens suite [17]. As is common in such studies, we assume a single failing test in a minimal statement-coverage 
adequate test suite.

To investigate CPDA’s ability to correctly establish the non-existence of dependences, we employ two additional programs, mbe
and mug, from work by Binkley et al. [10]. These two demonstrate the limitation of static analysis, which commonly produces false-

positive dependences for these examples. Binkley et al. [9] show that observation-based analysis (observation-based slicing (ORBS)) 
can successfully identify the true negative dependences. We use these examples to investigate if, like ORBS, CPDA can correctly avoid 
these potential false-positive dependences.

While we choose vetted programs for evaluating the CPDA’s causal dependency, the size and complexity of the programs are not 
varied to investigate the accuracy and scalability of our structure discovery algorithms. To address this, we study artificial DAGs with 
a given number of nodes and random edges for the structure discovery evaluation in addition to the above subject programs. Given 
a graph, a sensitivity (the probability of a child change given one of its parent changes), and a mutation count (the number of times 
a node is mutated), we generate samples of which nodes change together if one changes one of the nodes in the graph. We consider 
three artificial graphs (each of 𝑛, 𝑒 (𝑟) denotes the number of nodes, edges 𝑒, and the edge ratio 𝑟 such that 𝑒 = (𝑛) × (𝑛 − 1) × 𝑟):

• 𝐺1: 5, 4 (0.2)

• 𝐺2: 50, 98 (0.04)

• 𝐺3: 500, 998 (0.002)

8.3. Baselines

We explore the characteristics of CPDA and CPDM against the use of static dependency found in a PDG [23]. Using a debugging 
task, we also investigate how the quantified dependence from CPDA differs from that of the PPDG [6] and BNPDG [78] mentioned in 
the motivating example of Section 2. To do so, we apply their work on dynamic dependence analysis to the fault localization problem. 
The main hypothesis of PPDG’s fault localization is that the reaching definition with the smallest conditional probability in PPDG 
learned from passing executions that occur in the failing test execution is deemed the most suspicious and, thus, the most likely to 
have a fault. The BNPDG, on the other hand, assumes that a node is more likely to be faulty if the conditional probability of the node 
given the state of an erroneous output is higher. We compare their ability to detect the fault compared with that of CPDM as part of

RQ2-3.

8.4. Implementation, configuration, and environment

The theory of causal inference assumes that the structure of the model is a DAG and thus acyclic. To apply CPDA on a program with 
loops, we unroll the loops of the program. After applying CPDA to the unrolled program, we merge nodes that represent instances of 
the same program element. Merging allows a self-loop, which represents a program element dependent on its previous value. After 
the merge, the ACE (or NDE) between Node A and Node B is the maximum of the ACE (or NDE) between any instance of Node A and 
any instance of Node B. The base idea of using the maximum is that if an instance of Node A always affects an instance of Node B in 
16

the unrolled program, then we can say that Node A always affects Node B in the original program.
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Fig. 9. Causal structure of tri (left: the CP-method; right: the HS-method).

Table 1

Accuracy (TP: true-positive / FP: false-positive / FN: false-negative) 
of causal structure with respect to the PDG.

TP/FP/FN tri B&T wc tcas

CP-method 19/0/0 108/93/4 28/7/1 92/55/10

HS-method 19/0/0 106/2/6 27/0/2 79/7/23

To select nodes for analysis and to insert logging functions in the original program we use srcML [15], an open-source tool that 
parses the source code into an XML format. After performing a preliminary experiment with CPDA to choose a sufficient number of 
mutation samples (𝑁mpn) that gives steady empirical results, we use 100 mutations (𝑁mpn = 100) for two smaller programs, tri and

wc, and 20 mutations (𝑁mpn = 20) for B&T and tcas for the rest of the experiments. We choose various thresholds including 0, powers 
of 0.1, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1 (0.1), and 0.2, 0.3, 0.5 to evaluate the RCP-method. Then, we further choose thresholds 
0.0002, 0.0004, 0. 0006, 0.0008, 0.002, 0.004, 0.006, and 0.008 for a more precise experiment as we observe the accuracy of the 
structure varies largely around thresholds of 0.001.

All experiments are performed using Ubuntu 18.04 on an Intel(R) Core(TM) i7-6700K CPU @ 4.00 GHz with 32 GB of RAM. 
Computing the conditional independence in the CP-method can be run in parallel. Our experiment uses Nvidia Titan X for parallelized 
computation. All the experimental data are available in https://to .be .released.

9. Results

This section presents the empirical evaluation of our causal program dependence analysis.

9.1. RQ1. Structure discovery

9.1.1. RQ 1-1: causal structure and the PDG

Figs. 9, A.22, A.23, and A.24 show the causal structure discovered by the HS-method and the CP-method for the four benchmark 
programs tri, B&T, wc, and tcas.6 While both causal structures for tri are the same and consistent with the ground-truth PDG, for the 
other three subject programs the causal structures for the CP-method have significantly more edges than that for the HS-method.

Table 1 shows the accuracy of the two causal structures compared to the ground truth PDG. Overall the HS-method produces 
significantly fewer false-positive edges (non-dependency edge in the causal structure) compared to the CP-method. Furthermore the 
HS-method produces no false-positive edges for tri and wc and only two and seven, respectively, for B&T and tcas. On the other hand, 
while the CP-method produces no false-positive edges for tri, it produces seven for wc and more than fifty for B&T and tcas. Thus the 
HS-method produces significantly fewer false-positive edges than the CP-method, however, on the flip side it produces a few more 
false-negative edges (no dependency edge in the causal structure) than the CP-method.

The left side of Fig. 10 shows a typical example of a false-negative edge in the causal structure. In the figure, the variable y is 
control dependent on the variable p. However, whenever p is mutated, the value of x also changes. Therefore, the HS-method discards 
the edge from p to y. This suggests that separating edges whose source is a control node from other edges might bring value as it 
should separate control and data dependence edges. We will discuss this in the future work section.
17

6 Fig. A.22, A.23, and A.24 are in Appendix A due to their size.

https://to.be.released
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1 if (p) {

2 x = f();

3 y = g(x);

4 }

1 a = ...;

2 p = f(a);

3 q = g(p);

4 if (q)

5 r = h(a);

Fig. 10. Example of a false-negative edge (left) and a false-positive edge (right) in the causal structure.

Table 2

Time spent (seconds) during Algorithm 1 and Algorithm 2 for the four benchmark programs and 
three artificial graphs.

Time (s) tri B&T wc tcas 𝐺1 𝐺2 𝐺3
CP-method (w/o GPU) 0.7 13,281.3 44.9 40.7 0.0033 1.3 1600

CP-method (w/ GPU) 1.8 1,028.5 48.8 34.7 0.021 0.68 19

HS-method 0.6 23.5 8.6 1.5 0.00089 0.020 0.39

Table 3

Time spent during Algorithm 1 and Algorithm 2 for different number of edges.

𝑟 = 0.01 0.02 0.04 0.08 0.16

CP-method (w/o GPU) 0.007 0.12 1.3 2.0 2.2

CP-method (w/ GPU) 0.021 0.17 0.68 0.96 1.0

HS-method 0.0093 0.013 0.020 0.029 0.028

A large number of the false-positive edges in the CP-method’s causal structure are due to the inconsistency between program 
dependence and the Markov condition we discussed in Section 6.2.2. The right side of Fig. 10 shows a typical example of a false 
positive edge we found in the HS-method’s causal structure of tcas, which is also identical to what is described in Section 6.1. The 
true Markovian parents of r at Line 5 are q and a from Lines 1 and 2, while p in Line 3 is also one of the parent candidates. In 
the observation, a change of a’s behavior always changes p’s behavior. At the same time, there is an observation where a and p’s 
behavior changed, but q is unchanged from True, therefore leading r’s behavior to change. Then, due to the distance-based heuristics, 
the structure discovery algorithm prefers p as a Markovian parent above a, creating the false-positive edge.

Summary of RQ1-1: The HS-method produces significantly fewer edges compared to the CP-method. Compared to the ground truth 
PDG of the benchmark program, the HS-method produces significantly fewer false-positive edges than the CP-method. However, it 
produced slightly more false-negative edges.

9.1.2. RQ 1-2: efficiency

Next, we compare the efficiency of the CP-method and the HS-method in terms of the time spent for the four benchmark programs,

tri, B&T, wc, and tcas, and the artificially generated graphs. The second to the fifth columns of Table 2 compare the time spent 
calculating the causal structure of the four benchmark programs using the CP-method and the HS-method. We only compare the 
wall-clock time of Algorithm 1 and Algorithm 2 without the time getting the intervention parents as both methods share it. The result 
shows that the HS-method is faster than the CP-method, both with or without using GPU. The difference is the largest for the biggest 
program, B&T (227 lines), where the HS-method is 44 times faster than the CP-method with GPU. The difference is moderate for tcas
(182 lines) and wc (54 lines) while there is almost no difference for tri (20 lines). The sixth to the last columns of Table 2 compare 
the time spent calculating the causal structure of the three artificial graphs. For this experiment, we assume that the graph is fully 
sensitive (the child always changes when one of its parents changes) and generate samples by mutating each node once. The result 
again shows that the HS-method is faster than the CP-method. Similar to the previous result, the difference becomes larger as the 
graph size increases. We also can see that the GPU is useless for reducing the time cost when the program/graph size is small.

To take a closer look at the effect of the number of edges on the efficiency of the structure discovery algorithms, we run the same 
experiment using 𝐺2 with a different edge density. Table 3 shows the time spent on graphs with different edge densities. The result 
again shows that the HS-method is faster than the CP-method. It also finds that the time cost of the HS-method stabilizes by 𝑟 = 
0.16, while the cost of the CP-method continues to increase.

Finally, we compare the effect of the number of samples. For this experiment, we consider the sensitivity of 0.75 for 𝐺2 for the 
following reason: the edge ratio of 0.04 in 𝐺2 assigns two incoming edges for each node on average; the sensitivity of 0.75 limits 
the chance of the parents’ effect not propagating to the child by around 5% (≈ 0.252) when two or more parents change. Then, we 
mutate each node 1, 5, 10, and 20 times to generate a different number of samples. Along with the time spent, we also present the 
number of true-positive, false-positive, and false-negative edges compared to the original graph. For comparison, we also include the 
case of the fully sensitive graph with a single mutation per node.

Table 4 shows the time spent (T) and accuracy (Acc: TP/FP/FN) for Algorithm 1 and Algorithm 2 for a different number of samples. 
The data find that the HS-method outperforms the CP-method in terms of efficiency. Notice that the HS-method is also more scalable 
to the sample increase than the CP-method; the HS-method’s ratio of time spent as the number of samples increases is smaller than 
that of the CP-method. The difference in the accuracy between the CP-method with and without GPU is due to a CPU versus GPU 
18

floating-point difference.
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Table 4

Time spent (T) and accuracy (Acc: TP/FP/FN) for Algorithm 1 and Algorithm 2 for different number of samples. “Sen” represents the sensitivity 
and “Mut” represents the number of mutations per node.

Sen=1, Mut=1 Sen=0.75, Mut=1 Sen=0.75, Mut=5 Sen=0.75, Mut=10 Sen=0.75, Mut=20

T(s) Acc T(s) Acc T(s) Acc T(s) Acc T(s) Acc

CP (w/o GPU) 1.3 62/0/37 0.93 65/116/34 8.5 94/357/5 20 95/477/4 42 97/585/2

CP (w/ GPU) 0.68 62/0/37 0.64 66/119/33 1.6 92/363/7 6.4 95/482/4 15 97/585/2

HS 0.020 62/0/37 0.016 56/24/43 0.029 89/4/10 0.046 91/4/8 0.073 95/3/4

Table 5

The number of true-positive, false-positive, and false-negative edges for the RCP-method for different thresholds. “B&T” and “𝐺2 .” represents the B&T benchmark 
program and artificial graph, respectively. The bold text shows the case when the sum of the numbers of false-positive edges and false-negative edges is the smallest.

Threshold 0 1e-6 1e-5 0.0001 0.0002 0.0004 0.0006 0.0008 0.001 0.002 0.004 0.006 0.008 0.01 0.1 0.2 0.3 0.5

B&T

TP 108 108 107 105 105 105 105 105 105 103 96 94 90 81 26 0 0 0

FP 93 63 43 22 14 13 10 10 8 6 3 2 2 2 0 0 0 0

FN 4 4 5 7 7 7 7 7 7 9 16 18 22 31 86 112 112 112

𝐺2

TP 97 97 94 91 91 91 88 84 83 76 64 63 55 48 2 0 0 0

FP 585 539 300 95 58 33 18 16 13 12 15 10 11 14 3 0 0 0

FN 2 2 5 8 8 8 11 15 16 23 35 36 44 51 97 99 99 99

According to Table 4, both the HS-method and the CP-method add more edges to their causal structure as the size of the sample 
increases (TP + FP). The number of true-positive edges is marginally larger in the CP-method than that in the HS-method. However, 
the number of false-positive edges is significantly larger in the CP-method than that in the HS-method. The number of false-negative 
edges is marginally larger in the HS-method than that in the CP-method. An interesting point to notice is the change in the number 
of true-positive, false-positive, and false-negative edges. While the number of false-positive edges and the number of false-negative 
edges decreases in the HS-method as the number of samples increases, the number of true-positive edges increases dramatically in 
the CP-method. The difference in the number of false-negative edges between the two methods decreases as the number of samples 
increases.

Summary of RQ1-2: The HS-method is much more efficient than the CP-method. As the number of samples increases, the number 
of false-positive edges and the false-negative edges decreases for the HS-method, while the number of false-positive edges increases 
for the CP-method.

9.1.3. RQ 1-3 RCP-method

To evaluate the RCP-method, we choose the B&T benchmark program since the CP-method introduces the largest number of 
false-positive edges to the causal structure. We also again use artificial graph 𝐺2 with a 0.75 sensitivity and 20 mutations per node, 
which is where the CP-method performed poorly regarding the number of false-positive edges.

Table 5 shows the number of true-positive, false-positive, and false-negative edges found in the causal structure of the RCP-method 
using different thresholds. In general, the number of true-positive edges and the number of false-positive edges decreases while the 
number of false-negative edges increases as the threshold increases for both subjects, which naturally implies that a larger threshold 
leads more parent candidates to be discarded. The number of true-positive edges increases when the threshold is from 0.002 to 0.004 
and from 0.006 to 0.008. We expect this to happen since the order of parent candidate removal affects the final Markovian parent set; 
removing one parent candidate by increasing the threshold may cause the inability to remove a larger number of parent candidates.

The result shows that the sum of the number of false-positive edges and false-negative edges is smallest when the threshold is 
0.001, 0.002 for B&T, and 0.0006, 0.001 for 𝐺2. The number of true-positive edges only loses three (nine) when the threshold is 
0.001 (0.006) for B&T (𝐺2) compared to when there is no threshold. Figs. 11 and A.25 present the result in Table 5 as well as the 
result of the HS-method from Table 1 and Table 4.7 It shows that the RCP-method never produces a smaller sum of the number of 
false-positive and false-negative edges than the HS-method. Nevertheless, the result of the RCP-method illustrates its potential to 
control the trade-off between the false-positive and the false-negative in the structure discovery.

Summary of RQ1-3: The result of the RCP-method illustrates its potential to control the trade-off between the false-positive and 
the false-negative in the structure discovery. Yet none of the RCP-method of thresholds we investigated produces a smaller sum of 
the number of false-positive and false-negative edges than the one from the HS-method. Based on the result of RQ1, we use the 
HS-method in addressing RQ2.

9.2. RQ2. Quantified dependency

9.2.1. RQ 2-1: program semantics

Clustering

Fig. 12 shows the pseudo-code of wc where node indexes are annotated with angular brackets. Figs. 13a and 13b show the resulting 
PDG and CPDM. The first thing to notice is how similar the two graphs are. This illustrates that causal inference is able to distinguish 
19

7 Fig. A.25 is in Section A due to the size of the figure.
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Fig. 11. The number of false-positive (FP), and false-negative (FN) edges found in the causal structure of the RCP-method using different thresholds and the HS-method.

1 def main() {

2 <1>characters, <2>lines, <3>words, <4>inword = 0, 0, 0, 0

3 while (<5>_pred1 = (scanf("%c", <6>&c) == 1)) {

4 <7>characters = characters + 1

5 if (<8>_pred2 = (c == ’\n’))

6 <9>lines = lines + 1

7 if (<10>_pred3 = isLetter(c)) {

8 if (<11>_pred4 = (inword == 0))

9 <12>words = words + 1

10 <13>inword = 1

11 }

12 else

13 <14>inword = 0

14 }

15 }

16 def isLetter(<15>c) {

17 if (<16>_pred5 = ((c >= ’A’ && c <= ’Z’) || (c >= ’a’ && c <= ’z’)))

18 <17>_ret = True

19 else

20 <18>_ret = False

21 return _ret

22 }

Fig. 12. Pseudo-code of the wc subject program with node numbers shown between angular brackets, ⟨n⟩ and predicates explicitly pulled out into assignment 
statements.

many of the same dependences as found in a PDG. It does this without the need for the formal semantics of the programming language. 
Furthermore, as illustrated below, the CPDM omits certain unwanted edges present in the PDG. In the CPDM the thickness of the edges 
reflects the degree of NDE. Clustering program elements based on how strongly they depend on each other reveals patterns that relate 
to features in the source code. This can be observed in Fig. 13b, in which nodes are grouped together based on the average degree 
of dependence within subgroups. The clusters, shown using dashed lines, highlight nodes with strong connections that correspond to 
features of the program. For example, nodes ⟨1⟩, ⟨5-7⟩, and ⟨15-18⟩ count the input character and check if it is alphabetic. Similarly, 
nodes ⟨2⟩, ⟨8⟩, and ⟨9⟩ are involved with the line count, while ⟨10⟩, ⟨13⟩, and ⟨14⟩ capture the in-word logic. Finally nodes ⟨3⟩, ⟨4⟩, 
⟨11⟩ and ⟨12⟩ count the number of words.

In comparison, the nodes weakly connected (grey edges in Fig. 13b) often reflect features that are only occasionally executed 
by the test suite. For example, the word counting feature is only executed when there is at least one non-alphabet character in the 
input. Related (weaker) dependences (denoted {⟨from⟩} → {⟨to⟩}) include {⟨18⟩} → {⟨10⟩}, {⟨13⟩} → {⟨11⟩}, and {⟨14⟩} → {⟨11⟩}. 
Even a feature that is executed in every execution may have a small NDE. For example, the character read at node ⟨6⟩ affects the 
predicate at node ⟨8⟩, which in turn checks whether the character is a newline or not. Because only newline characters matter the 
causal relationship is not strong.

Such examples show that the quantified dependences with NDE in the CPDM can capture the aspects of program semantics more 
concisely than the traditional indistinguishable dependences in the PDG. In contrast, despite being a small 40-line program, wc’s PDG 
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(Fig. 13a) in which all edges have equal weight makes it challenging to identify computationally related portions of the code.
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Fig. 13. (a) wc’s PDG, (b) CPDM and (c) B&T’s CPDM where thicker edges reflect larger NDE. The dashed lines represent the cluster of nodes based on the strength 
of the NDE.

1 def main(args) {

2 <1>car_type = args[0]

3 <2>_pred1 = car_type == "SENIOR_CITIZEN"

4 if (_pred1) <3>fee = 0.0

5 else {

6 <4>_pred2 = !(car_type == "CAR" || car_type == "TRUCK")

7 if (_pred2) <5>fee = -2.0 // INVALID

8 else {

9 <6>day, <7>duration = args[1], args[2]

10 <8>_pred3 = car_type == "CAR"

11 if (_pred3) <9>cost = compute_car_fee(duration)

12 else <10>cost = compute_truck_fee(duration)

13 <11>_pred4 = cost == -1.0 // EXCEED MAX DURATION

14 if (_pred4) <12>fee = -1.0

15 else {

16 <13>_pred5 = day == "THURSDAY"

17 if (_pred5) <14>cost = cost * THURSDAY_DISCOUNT

18 else {

19 <15> _pred6 = day == "SATURDAY"

20 if (_pred6) <16>cost = cost * SATURDAY_SURCHARGE

21 }

22 <17>fee = cost

23 ...}}}} // END of main

Fig. 14. Pseudo-code of B&T.

As a second case study, Figs. 14 and 13c show the pseudo-code and the partial CPDM for the main function of the B&T example. 
The CPDM includes the invocation of two functions (the two rectangles) that compute the fee for cars and trucks: it reveals two 
clusters of strong dependence that differentiate the functional aspect of the code before and after the call to one of the fee calculation 
functions. The former cluster captures the preparation ahead of the fee calculation: identifying the type of the vehicle and deciding 
the charging rule. The latter cluster shows the post-processing applying a discount or a surcharge. From the case study, we posit that 
the capability to focus on different bands of NDE can help an engineer better understand the code.

Note that Fig. 13c also shows some false dependence edges in the CPDM. In the ground truth PDG, ⟨4⟩ affects ⟨11⟩, and ⟨11⟩
affects ⟨17⟩. However, since ⟨9-10⟩ and ⟨13⟩ always change their behaviors when ⟨4⟩ and ⟨11⟩ change, respectively, CPDM ignores 
21

the dependences {⟨4⟩} → {⟨11⟩} and {⟨11⟩} → {⟨17⟩} and adds {⟨13⟩} → {⟨17⟩} instead.
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1 int mbe(int <1>j, int <2>k) {

2 while (<3>p(j)) {

3 if (<4>q(k)) {

4 <5>k = f1(k);

5 } else {

6 <6>k = f2(k);

7 <7>j = f3(j);

8 }

9 }

10 return <8>j;

11 }

(a) mbe

1 int mug(int <1>i, int <2>c, int <3>x) {

2 while (<4>p(i)) {

3 if (<5>q(c)) {

4 <6>x = f();

5 <7>c = g();

6 }

7 <8>i = h(i);

8 }

9 return <9>x;

10 }

11

(b) mug

Fig. 15. Pseudo-code of (a) mbe and (b) mug.

Fig. 16. Causal structure of (a) mbe and (b) mug and the (c) causal dependency. In the graphs, the orange-diamond nodes represent the predicates in the program, 
and the grey-rectangle nodes represent the function invocations and their return values.

Per element inspection

We next focus on individual elements of the CPDM and their dependences. The difference in NDE expresses the detailed semantics 
around the element that conventional dependence analysis misses.

First, we investigate if CPDA can overcome a key limitation of the assumed transitivity inherent in static dependence analysis. 
Fig. 15 shows the pseudo-code for mbe and mug, two small programs that explore the limits of static analysis. Each program includes 
program elements that are not dependent on one another, yet transitive static analysis is unable to realize this. In mbe, the key 
observation is that the value of j at ⟨7⟩ in any terminating execution of the program is independent of the value of k, as the loop 
termination condition depends only on j. However, from a dependence point of view the value of k assigned to nodes ⟨2⟩, ⟨5⟩, 
and ⟨6⟩ affects (via a data-dependence) the predicate q(k) of ⟨4⟩, on which ⟨7⟩ is control dependent. Thus, any transitive static 
dependence analysis will conclude that the value of k affects the value of j.

Similarly, in mug example the final value of x at ⟨9⟩ is independent of ⟨7⟩: if the initial value of c makes q(c) (⟨5⟩) False, the 
variable x maintains its initial value Otherwise, if the predicate is True (one or more times) the return value of g() becomes the final 
value of x. However static dependence analysis finds that ⟨7⟩ affects ⟨9⟩ through path ⟨7⟩ 𝑑

←←←←←←←→ ⟨5⟩ 𝑐
←←←←←←→ ⟨6⟩ 𝑑

←←←←←←←→ ⟨9⟩.8
Fig. 16a and 16b show the causal structures generated for mbe and mug, respectively. CPDA successfully discovers structures 

identical to the ground truth PDG for mbe and mug. What is different from the static dependence analysis is shown in Fig. 16c, the 
ACE from other nodes to the return node for mbe and mug. The left side of the table shows no causal dependencies from nodes 
corresponding to variable k to ⟨8⟩. Nodes ⟨1⟩ or ⟨7⟩ are likewise devoid of dependence on variable k. The quantified dependence 
clearly captures that a change in the behavior of k has not affected the behavior of j, assuming that the program terminates. The 
right side of the table shows CPDA determines that ⟨7⟩ has no effect on ⟨9⟩, as changing ⟨7⟩ does not make a difference to the return 
value. These results demonstrate that CPDA can untangle the runtime dependence of the program. Unlike CPDA, PPDG and BNPDG 
cannot untangle the runtime dependence since they quantify the frequency of control/data-flow transition, which is insufficient to 
22

8
𝑑
←←←←←←→ and 𝑐←←←←←→ denote the data- and control-dependency, respectively.
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Fig. 17. Partial graph from CPDM of tri.

notice the behavior change. MOAD can untangle the runtime dependence as CPDA does, but it cannot produce the dependence graph 
like Figs. 16a and 16b.

Next, we inspect how the difference in the magnitude of dependence exposes the detailed semantics of the program. To do so, we 
demonstrate how the magnitude of NDEs between the nodes explains the detailed dependence of the program for wc and tri. From 
the CPDA of wc, we observe the following (values in the parentheses are the degree of NDE):

• {⟨17⟩} → {⟨10⟩} (1.00) > {⟨18⟩} → {⟨10⟩} (0.80): In function isLetter, ⟨17⟩ and ⟨18⟩ are the nodes that express whether 
the character is an alphabetic character or not. Since half of the tests lack non-alphabet characters, the effect on ⟨10⟩ of ⟨17⟩ is 
stronger than that of ⟨18⟩.

• {⟨4⟩} → {⟨11⟩} (1.00) > {⟨13⟩} → {⟨11⟩} (0.97) > {⟨14⟩} → {⟨11⟩} (0.77): ⟨4⟩, ⟨13⟩, and ⟨14⟩ all correspond to the variable

inword. Because ⟨4⟩ affects ⟨11⟩ whenever there is at least one alphabetic character, {⟨4⟩} → {⟨11⟩} has the highest NDE, 
while ⟨13⟩ and ⟨14⟩ only affect ⟨11⟩ if the input includes more than one alphabetic character, which is true of fewer test cases. 
Furthermore, because there are test cases that include only alphabetic characters, ⟨13⟩ affects ⟨11⟩ more than ⟨14⟩ does.

Fig. 17 shows the partial graph from the CPDM of tri where Nodes ⟨S1⟩, ⟨S2⟩, ⟨S3⟩ represent inputs of the three sides lengths, and 
⟨Tri?⟩, ⟨Equ?⟩, ⟨Iso?⟩ represent predicates checking whether the input is not-a-triangle, equilateral, or isosceles, respectively. In the 
CPDM, we observe the following:

• {⟨S1⟩} → {⟨Tri?⟩} = {⟨S2⟩} → {⟨Tri?⟩} = {⟨S3⟩} → {⟨Tri?⟩}: The equivalence of these three weights in the CPDM is indicative 
of the symmetry in the use of the three side lengths for judging whether they form a triangle. While not shown in Fig. 17, the 
CPDA also assigns undifferentiatable weights to dependences on ⟨Iso?⟩ and ⟨Equ?⟩. These examples show how the CPDM reveals 
the semantic symmetry beyond simple depends-on relations.

• {⟨S*⟩} → {⟨Tri?⟩} > {⟨S*⟩} → {⟨Iso?⟩} > {⟨S*⟩} → {⟨Equ?⟩}: In contrast, there is a clear difference in the dependence strength 
from a side length (e.g., ⟨S1⟩ in Fig. 17) to the predicate nodes. This succinctly captures the relative challenge in finding inputs 
that affect each condition. For example, it is easier to meet the requirements of an isosceles triangle than an equilateral triangle.

Note that frequency based approaches such as the PPDG and BNPDG cannot estimate such challenge: since all sides lengths 
always reach each predicate if executed, the PPDG and BNPDG consider the dependence between the side lengths and each 
predicate with the frequency of predicate execution. For example, if the nested if-structure in tri checks conditions in the order 
of ⟨Tri?⟩, ⟨Equ?⟩, and ⟨Iso?⟩, the PPDG/BNPDG will estimate {⟨S*⟩} → {⟨Tri?⟩} > {⟨S*⟩} → {⟨Equ?⟩} > {⟨S*⟩} → {⟨Iso?⟩}.

Summary of RQ2-1: By clustering strongly connected nodes based on the quantified dependence, CPDM can aid in grouping the 
program’s functionality. Strong NDE values indicate dependency relations having an effect in most executions, such as the program’s 
dominant control-flow structure. While focusing on a specific element, the relative NDE values demonstrate information on the local 
behavior of the element.

9.2.2. RQ2-2: execution-awareness

This section investigates how the CPDM changes when using different test suites.

Difference in the required functionality

Fig. 18 shows differences in the resulting CPDMs for wc when using the four test suites introduced in Section 8.2. These test suites 
incrementally require additional functionality. The structure of the CPDM changes accordingly. In Fig. 18, regarding the caption 
formatted as ‘𝐴 −𝐵,’ solid red edges are found only in the CPDM with the test suite 𝐴, and gray edges are found in both the CPDM 
with the test suites 𝐴 and the CPDM with the test suite 𝐵. We actually represent edges only in the CPDM from the test suite 𝐵 as 
dashed blue edges, but there are no such edges. We now consider the three comparisons shown in the figure in greater detail.

• One (multi-characters) word vs. one char (Fig. 18a): Variable characters of ⟨7⟩ either increments the prior values of 0 from 
⟨1⟩ or itself. The second of these only occurs when there is more than one character in the input. Thus, the self-dependence of ⟨7⟩
appears when using the oneword test suite but not when using the onechar test suite. Similarly, the predicate of ⟨11⟩ is either 
affected by the initial value of variable inword at ⟨4⟩ or the assigned value at ⟨13⟩ or ⟨14⟩. The dependence on ⟨11⟩ from ⟨13⟩
finally appears when more than one alphabet character exists, yet the dependence on ⟨11⟩ from ⟨14⟩ does not, as it needs a test 
suite with at least one non-alphabetic character.

• One (multi-word) line vs. one word (Fig. 18b): The main change of the inputs in the oneline test suite compared to the inputs 
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in the oneword test suite is the inclusion of non-alphabet characters that separate the words. This brings into play the sequence 



Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. 18. Differences in the CPDMs for wc created using the four different partitions of the test suite. In each figure caption A − B, shows edges in A only in solid-red, 
and edges in both in gray.

Test suite ⟨Tri?⟩ ⟨Equ?⟩ ⟨Iso?⟩
Total 0.51 0.13 0.35

Valid 0.97 0.13 0.35

(a) {⟨S1⟩} → {⟨predicate node⟩}

Ordered ⟨S1⟩ ⟨S2⟩ ⟨S3⟩
⟨Equ?⟩ 0.29 0.18 0.24

⟨Iso?⟩ 0.21 0.46 0.33

(b) {⟨S*⟩} → {⟨Equ?⟩,⟨Iso?⟩}
Fig. 19. (a) Select NDEs involving ⟨S1⟩ (the NDEs for ⟨S2⟩ and ⟨S3⟩ are essentially the same) from tri using all tests (Total) and those satisfying the triangle inequality 
(Valid). (b) Select NDEs obtained using the Ordered test suite.

of nodes ⟨16⟩ → ⟨18⟩ → ⟨10⟩ → ⟨14⟩ → ⟨11⟩, which determine whether the current character is in a word or not. Also, a 
self-dependence involving ⟨12⟩ appears, as there is more than one word to count. Note that, unlike Fig. 13b, the degree of 
NDE of {⟨18⟩} → {⟨10⟩} and {⟨17⟩} → {⟨10⟩} are the same. This is because every test in oneline contains both alphabet and 
non-alphabet characters.

• Multiple lines vs. one line (Fig. 18c): The presence of newline characters in the multiline test suite brings into play wc’s line 
counting functionality captured by ⟨2⟩, ⟨6⟩, ⟨8⟩, and ⟨9⟩, which is not present in the oneline or onechar inputs.

To summarize, the CPDM allows an engineer to uncover different flow patterns within the code by varying the test suite. Using 
different test suites that differ only in some key feature, an engineer can understand the connections in the program between the 
elements supporting that feature using the CPDM.

Differences in the input distribution

Fig. 19 shows select NDEs for tri using three different test suites: Total, which contains all 125 tests, Valid, which contains the 
inputs that satisfy the triangle inequality, and Ordered, which contains the inputs where S1 ≤ S2 ≤ S3. The following two examples 
consider the impact of the differences in their distribution.

• In Table 19a the NDE of {⟨S1⟩} → {⟨Tri?⟩} is considerably larger in Valid (0.97) than in Total (0.51), while it is almost identical 
for {⟨S1⟩} → {⟨Equ?⟩} and {⟨S1⟩} → {⟨Iso?⟩}. The difference clearly demonstrates the ease of violating the triangle inequality.

• Turning to Table 19b, when compared to side lengths ⟨S1⟩ and ⟨S3⟩, the middle-length side, ⟨S2⟩, shows a smaller NDE with the 
equilateral condition and a larger NDE with the isosceles condition. If sides are ordered, the triangle is equilateral if and only 
if S1 = S3, and, if not, changing S2 cannot form an equilateral. Thus, ⟨S2⟩ only affects ⟨Equ?⟩ when the triangle is already an 
equilateral, so it has an NDE. In contrast, if the triangle is isosceles, ⟨S2⟩ is always one of two sides of equal length, consequently, 
has the highest NDE among the three sides. Notice that reaching-dependence based methods, such as the PPDG and BNPDG, 
cannot distinguish between the effect of each side length.

Summary of RQ2-2: The CPDM is able to differentiate the dependence pattern from different executions. Such information can 
highlight a part of a program related to a particular execution. Also, the CPDM can identify different dependence structures and their 
corresponding test cases. Leveraging this, applying CPDA to appropriate test subsets can make the CPDM distinctive. CPDA can guide 
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test clustering and may even expose shortcomings in the current test suite.
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1 bool Non_Crossing_Biased_Climb() {

2 upward_preferred = Inhibit_Biased_Climb() > Down_Separation;

3 if (upward_preferred)

4 result = !(Own_Below_Threat()) || ((Own_Below_Threat())

5 && (!(Down_Separation > ALIM()))); // bug: > should be >=

6 else ...

7 return result;

8 } ...

Fig. 20. Faulty code in TCAS buggy version 1 (tcas-1).

Fig. 21. Illustration of the ACEs found for tcas-1. The darker the color, the stronger the ACE.

9.2.3. RQ2-3: debugging

The final scenario considers the challenge of debugging. This scenario illustrates how CPDA, which gives finer granularity depen-

dence information and differentiates it by execution, can aid an engineer while debugging faulty code.

Fig. 20 shows tcas buggy Version 1, tcas-1. The fault is on Line 5, in which the boolean operator ‘>’ should be ‘>=.’ Assume that 
we aim to find the location of this defect given a set of passing tests and a single failing test. In the failing test the effect of the defect 
must propagate to an output; consequently, an orthodox approach, which aims to reduce the search space for the faulty program 
element, is to compute a dynamic slice using a failing test [2]. However, as mentioned in Section 1, the use of a dynamic slice may 
yield a significant number of fault candidates. The dynamic slice of tcas-1 (colored nodes in Fig. 21) is a typical example. Dicing [3]

reduces the large candidate set by filtering out program elements in the dynamic slice of a passing execution. Yet, the defect may 
exist in both slices, as it does in tcas-1. Consequently, dicing will miss such defects.

Where a binary decision is often too coarse, CPDA can quantify the (total) effect of a program element on an output (element). 
In Fig. 21 the output has an ACE on the colored nodes where the darker the color, the stronger the dependence. Red is used for the 
ACE based on the failing test, while blue is used for the passing tests. Assuming that the defect strongly affects the failing output, we 
can reduce the number of candidates using the degree of the ACE. In the case of tcas-1, only 15 nodes (double-colored in Fig. 21) 
of the dynamic slices’ 37 nodes have more than 0.5 ACE (41% reduction). While the search space has decreased considerably, we 
can narrow down the defect by employing a similar tactic to dicing, i.e., assuming that the defect has less effect on passing tests. 
The (darkness of the) blue color on the right side of the double-colored nodes in Fig. 21 presents the degree of ACE of the 15 defect 
candidates to the passing output. Among them, ⟨⋆⟩ has the smallest effect on the passing output and is the faulty node (result) in
tcas-1.

The debugging scenario for tcas-1 illustrates how effective causal inference’s quantified dependence can be at reducing debugging 
effort. In contrast, because the passing and failing tests follow almost identical control-flow, frequency based techniques such as the 
PPDG and BNPDG are ineffective at the same task: in PPDG, the probability of the reaching definition of the defect is high in the 
passing executions, while all the program elements have the same probability given the state of erroneous output in BNPDG.

Summary of RQ2-3: CPDA provides a finer granularity of dependence information than existing dependence analyses, which is an 
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asset to the debugging process.
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10. Threats to validity

Using a limited set of program inputs and approximating dependence is an internal threat to any dynamic analysis and, thus, 
also to CPDA. However, CPDA is less vulnerable to the limited number of inputs than dynamic slicing techniques as its intervention 
relies not only on inputs but also on various mutations. In turn, CPDA’s mutant sampling poses another threat to internal validity. The 
analysis may be biased if the mutation values are not representative of the actual program behavior. To mitigate this, we aim to choose 
the mutation values that are likely to be observed in real-world programs; if the value domain is known, we choose the mutation 
values from the domain. Otherwise, we use the distribution of the observed values in the test suite. To mitigate the selection bias, we 
use a sufficiently large number of samples based on the result of a preliminary experiment regarding the effect of 𝑁mpn (Section 8.4). 
To choose a sufficient 𝑁mpn to get steady empirical results, our preliminary experiment repeated the analysis while varying 𝑁mpn (the 
number of samples) from 2 to 20 at intervals of two as well as 30, 40, 50. The results converged to similar values when 𝑁mpn ≥ 10. 
Based on this, we use a sufficiently large sample of 100 mutations (𝑁mpn = 100) for two smaller programs, tri and wc, and 20 mutations 
(𝑁mpn = 20) for B&T and tcas.

The use of six example programs with a single buggy version from the Siemens suite poses a threat to external validity. While 
our future plans include the intensive empirical study of CPDA and CPDM, our goal in this paper is to introduce the basic idea of 
causal dependence analysis and empirically validate that it is worthy of future study. Overall the results are quite promising. For 
example, we repeatedly found that the CPDM matched the basic structure of the ground truth PDG despite performing no data or 
control dependence analysis. Thus we see the initial qualitative analysis presented in this paper as illustrative of our technique’s 
future potential.

11. Related work

This paper introduces Causal Program Dependence Analysis (CPDA) and empirically consider its use in building a Causal Program 
Dependence Model (CPDM). We thus consider work related to program dependence analysis. Because we study non-binary dependence 
weightings, we also consider work relating to probabilistic symbolic execution.

11.1. Program dependence analysis

Static analysis attempts to uncover facts about a program that apply to any possible execution. It is therefore necessarily conserva-

tive and consequently often produces many false-positives. Static dependence analysis is often used to produce a Program Dependence 
Graph (PDG), which was first used in compiler optimization and parallelization [23], and has subsequently found many uses including 
program slicing [32,33]. Dynamic dependence analysis incorporates one or more program inputs. A simple example is early dynamic 
slicing algorithms that computed a static slice of the PDG and then removed edges that were not executed [2].

There have been a few proposals to quantify dependences, two of which we consider in our study: the PPDG [6] and the BN-

PDG [77]. Both rely on frequency-of-execution to quantify dependence while avoiding any confounding bias by only considering the 
definitions that reach each variable during execution, ensuring that the quantified dependence reflects causation. However, they pay 
the cost of exact dataflow analysis. In contrast, CPDA is not tied to a statically computed PDG, freeing us from having to solve hard 
data-flow problems (such as pointer analysis) while enabling us to perform interprocedural analysis (neither the PPDG nor the BNPDG 
support interprocedural analysis). CPDA can also analyze purely value-centric dependence, while PPDG and BNPDG only detect those 
manifested by control-flow changes. A typical example involves the use of the modulo operator. For example given the expression

z = x + y % 2, neither the PPDG nor the BNPDG distinguish the effect of the reaching definitions of x and y. In contrast, CPDA 
quantifies that x has a larger effect on z than y since the effect of changing y is partially masked by the modulo operation.

MOAD is another recent technique that estimates the degree of dependence without any static analysis by employing an 
observation-based method [40,41]. While, unlike PPDG and BNPDG, MOAD is able to quantify the effect in terms of the value 
difference as CPDA can, it cannot discriminate whether the effect is happening directly or indirectly, being incapable of producing a 
dependence graph.

Causal Program Slicing [27] (CPS) is another technique that aims to reason the program dependence and quantify the degree 
of dependence. While it also uses causal inference, the main purpose of CPS is on program slicing rather than a general program 
dependence analysis, as in CPDA. Consequently, it requires the static dependence graph, while CPDA does not. In addition, CPS 
gathers observations only from the input change, which is not as fine-grained as CPDA, as it can intervene at any program point and 
observe the effect of the change.

11.2. Probabilistic symbolic execution

Probabilistic Symbolic Execution (PSE) is another area that analyzes program semantics from a probabilistic perspective [25]. 
PSE aims to ascertain how many inputs satisfy a particular path condition in a program. Given a symbolic path constraint and an 
input space, PSE uses a model counting technique [16] to compute the ratio of inputs satisfying the condition. While PSE was initially 
restricted to solving linear constraints, more recent work adopted path decomposition and statistical approaches to handle arbitrarily 
complex mathematical constraints [11,64]. The feasibility and scalability of PSE are nonetheless restricted by the computational cost of 
both symbolic execution and model counting. PSE is often unsuccessful in supporting non-linear constraints, sophisticated string oper-

ators, floating-point arithmetic, and inter-procedural analysis. An analytical approach is also typically incapable of analyzing heteroge-
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neous features beyond the language’s formal semantics, including incorporating third-party libraries or server-client communication. 
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In addition, representing the counterfactual statement using a symbolic constraint requires a joint constraint of symbolic paths, whose 
computational cost can be significantly more expensive than the normal symbolic path. Recent work by Lee and Böhme [43] exposes 
the limitation of symbolic execution and model counting-based probabilistic program analysis in terms of scalability and precision. 
In that same work, the authors propose a sampling-based statistical approach to overcome the limitation of analytical approaches.

11.3. Fault localization

One application for CPDA is fault localization (FL). We have demonstrated how the ACE can facilitate finding the location of the 
fault. In general, CPDA differs from FL techniques in that the primary purpose of CPDA is to identify and understand the dependencies 
(including their structure) in any software system, while FL focuses specifically on pinpointing the location of the fault in the source 
code. More specifically, while FL and CPDA both rely on test inputs, unlike FL, CPDA does not require a test oracle,9 which provides the 
correctness of the program’s output for each input. Our work also incorporates substantial case studies to showcase the effectiveness 
of causal dependencies of CPDA in other downstream activities.

One of the most widely studied FL techniques is Spectrum Based Fault Localization (SBFL), a dynamic approach that ranks program 
elements based on their suspiciousness, which is computed from test coverage and outcomes [70]. SBFL has been widely studied both 
as an independent technique [1,74,51] and in hybridization with other FL input features and techniques [68,4,46,38]. However, it 
tends to produce many ties when program elements share the same test coverage and outcome. Being based on coverage, SBFL also 
suffers from Coincidental Correctness (CC), i.e., passing executions that cover faulty elements [50].

Finally, several existing works utilize causal inference for fault localization. Baah et al. [5,7] use a linear model to capture the 
causal effect from coverage of program elements to test outcomes. Gore and Reynolds [28] and Shu et al. [66] apply a similar linear 
regression approach to predicate values and method level coverage, respectively.

12. Discussion and future work

This section considers how more advanced causal models can improve CPDA. We also propose potential applications of CP-

DA/CPDM to other software engineering tasks.

Advanced modeling

Our CPDA model considers the quantification of the program dependence in terms of how often one program element affects 
another. We choose the rate of occurrence in our initial model for two reasons. First, the observation for the causal analysis is 
sufficient to capture the existence of the behavior change. Second, it allows easy handling of complex data structures, such as trees. 
Yet, as we mentioned in Section 4, there could be many different notions regarding the degree of dependence. For instance, one might 
wish to quantify the strength of dependence regarding the magnitude of the change in the value of a variable. The question one wants 
to ask CPDA, then, would be something similar to “when there is an effect caused by element A on element B, how large/dramatic 
does it tend to be.” Such a question could be more interesting than the question “does A affect B.” For example, if one is interested 
in the program implementing “Newton’s law of gravity”,

𝐹 ∼ 𝑀1 ⋅𝑀2
𝑟2

,

the rate of occurrence of the dependence is not very interesting, as it always happens, but the magnitude of the change in the value 
of the variable 𝐹 due to the other variables is more tempting to investigate. In such a case, the ratio of the change in the value of the 
source variable to the change in the value of the target variable could be used as a measure of dependence. A causal model built for a 
lower-level representation of the program, such as bytecode, may allow us to quantify the magnitudes of changes for programs with 
complex data structures. Alternatively, future work will explore if general notions of similarity and diversity [22,21] can be used to 
quantify levels of change and, thus, further refine CPDA modeling as well as the subsequent comprehension tasks.

There are two future technical improvements to CPDA. First, one of the existing challenges for causal inference that CPDA inherits 
is cycle handling. While causal inference was initially developed on acyclic structures, numerous scientific fields have attempted 
to extend causal inference to cyclic dependences. For example, a recent brain connectivity study considers variables in a temporal 
dimension to cater to cyclic relations [13]. While the contextual constraints in programs prohibit such a temporal approach, the 
progress on the cyclic causal models [61] suggests that CPDA will handle cycles better in the future.

The second aspect is to distinguish between control-dependence and data-dependence edges and to treat them separately. Dis-

tinguishing between control and data dependence can serve as additional information to understand the program’s semantics. For 
example, in optimization and parallelization, treating data dependence separately assists in designing synchronization mechanisms 
that prevent race conditions and ensure data consistency [37,36]. Additionally, code obfuscation can help hide the control flow of 
the program, making it harder to reverse-engineer. Thus, each type of dependence finds independent uses in downstream software 
engineering tasks. In addition to the above, distinguishing may also help to reduce the imprecision of the discovered causal structure 
compared to the dependence graph in terms of the program semantics. As we mentioned in the result of RQ 1-1, one of the reasons 
for the imprecision is the masking effect of two independent dependencies, which can be compensated for by distinguishing between 
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control and data dependence edges. One way to determine whether a dependence edge is a control or a data dependence is to check 
the source node of the edge; if the source node is a control node (e.g., a predicate), then the edge is a control dependence edge; 
otherwise, it is a data dependence edge.

Finally, we postulate that advanced modeling techniques can help to reduce the cost of intervention. If we use algorithms that 
can work from observational data only, the cost of CPDA can be significantly reduced. For example, we may be able to leverage 
observational data from existing test automation and regression testing activities that are typically available in modern Continu-

ous Integration. We note that newer causal inference techniques can work with a combination of observational and interventional 
data [29]: such methods have the potential to guide CPDA to adaptively intervene on program elements that are likely to lead to 
a relatively larger improvement in the dependence model, in a way similar to active learning [14]. In addition, the traces from 
the executions of different test cases themselves can be more efficiently obtained using advanced computation techniques such as 
incremental computation [48].

Potential applications

Our program comprehension scenarios exploit the execution awareness of CPDA to extract information related to program seman-

tics using known test inputs: by reversing this process, we posit that it is possible to extract information about test inputs using CPDA. 
Measuring and reporting quantified dependence relationships that come into existence during executions of different test cases may 
provide much richer information than binary coverage. Distances between CPDMs derived from different test suites can also provide 
valuable information to tasks such as test prioritization [45], failure clustering [57,47], and scenario-based specification mining [49], 
in addition to the traditional distance metrics defined over coverage [63], test history [30], or lexical similarity [72].

Our application of CPDA to debugging suggests that quantified dependence can potentially make a significant contribution to 
downstream maintenance tasks. In particular, we plan to investigate the notion of the counterfactual in the context of various mutation-

based techniques for Automated Program Repair (APR) and Genetic Improvement (GI). In such applications, the question of “what 
would have happened in a particular execution if a specific program element changed?” plays a critical role.

One of the primary aspects of purely observation-based approach is handling programs written in languages with non-conventional 
semantics. Earlier work on ORBS successfully sliced Simulink/Stateflow models that are saved textually as an XML file [26] and images 
written in Picture Description Languages (PDLs) [75,76]. Likewise, estimating dependence relations and their degree employing non-

conventional semantics of those languages is worth addressing. The central question is “how can we define the behavior of a program 
element?” While it is rather straightforward to consider the value (or trajectory) of a variable as the behavior of the program element, 
it is less clear for programs with non-conventional semantics such as those written using PDLs, where the individual effect of each 
program element is difficult to ascertain when focusing solely on the output. Subsequently, defining a mutation that well mimics the 
change of the program behavior also involves significant design choices. For instance, to mutate a program written in a dataflow 
programming language, either tweaking a single data packet, polluting the entire stream of data going out from a channel, or any 
intervention level between two are all feasible candidates for the mutation.

13. Conclusion

We propose Causal Program Dependence Analysis (CPDA), a way of identifying and then measuring the strength of the dependences 
between program elements by modeling their causal relationships. Existing dependence analysis techniques typically present binary 
relationships between program elements, ignoring the varying strengths of dependence relationships. By applying causal inference to 
observational data from mutated executions, we quantify the degree of a value change in a program element 𝐴 causing a value change 
in another program element 𝐵. Furthermore, we do this without the burden of static analysis. The paper also examines the benefit of 
quantified program dependence from CPDA on multiple applications, including a new graphical program dependence model Causal 
Program Dependence Model (CPDM). Our empirical results show that CPDA with its quantified dependence can aid engineers by 
identifying program semantics that would be missed when using conventional analyses.
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Appendix A. Figures in RQ1-1

Below three figures shows the causal structure from CP-method and HS-method for three subjects B&T, wc, and tcas. The box 
represents the function boundary.
29

Fig. A.22. Causal structure of B&T (left: the CP-method; right: the HS-method).
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Fig. A.23. Causal structure of wc (left: the CP-method; right: the HS-method).
30

Fig. A.24. Causal structure of tcas (left: the CP-method; right: the HS-method).



Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. A.25. The number of true-positive (TP), false-positive (FP), and false-negative (FN) edges found in the causal structure of the RCP-method using different 
thresholds. The horizontal lines show TP, FP, and FN of the causal structure of the HS-method.
31
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