
Science of Computer Programming 240 (2025) 103208

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Causal program dependence analysis

Seongmin Lee a,∗, Dave Binkley b, Robert Feldt c, Nicolas Gold d, Shin Yoo e

a Max Planck Institute for Security and Privacy, 140 Universitätsstr., Bochum, 44799, Germany
b Loyola University Maryland, 4501 North Charles Street, Baltimore, MD 21210, USA
c Chalmers University of Technology, Chalmersplatsen 4, Göteborg, 412 96, Sweden
d University College London, Gower St, London, WC1E 6BT, UK
e Korea Advanced Institute of Science and Technology, 291 Daehak Ro, Yuseong Gu, Daejeon, 34141, Republic of Korea

A R T I C L E I N F O A B S T R A C T

Keywords:

CPDA

Dependency analysis

Causal inference

Observation-based analysis

Discovering how program components affect one another plays a fundamental role in aiding
engineers comprehend and maintain a software system. Despite the fact that the degree to which
one program component depends upon another can vary in strength, traditional dependence
analysis typically ignores such nuance. To account for this nuance in dependence-based analysis,
we propose Causal Program Dependence Analysis (CPDA), a framework based on causal inference
that captures the degree (or strength) of the dependence between program elements. For a given
program, CPDA intervenes in the program execution to observe changes in value at selected
points in the source code. It observes the association between program elements by constructing
and executing modified versions of a program (requiring only light-weight parsing rather than
sophisticated static analysis). CPDA applies causal inference to the observed changes to identify
and estimate the strength of the dependence relations between program elements. We explore
the advantages of CPDA’s quantified dependence by presenting results for several applications.
Our further qualitative evaluation demonstrates 1) that observing different levels of dependence
facilitates grouping various functional aspects found in a program and 2) how focusing on the
relative strength of the dependences for a particular program element provides a detailed context
for that element. Furthermore, a case study that applies CPDA to debugging illustrates how it can
improve engineer productivity.

1. Introduction

Program dependence analysis is fundamental to understanding the semantics of a program [32]. When working with the code, it
provides a useful lens to reduce the number of program elements that must be considered for a wide range of tasks, such as program
comprehension [79], software testing [8], debugging [34,39], refactoring [19], maintenance [24], and security [35].

In a program, each component depends on some number of other program components. With its roots in compiler optimization,
traditional static dependence analysis attempts to safely approximate the set of dependence relationships with respect to all possible
executions of the program resulting in a set of binary relations: there either is, or is not, a dependence between any two program
components. Even in this simplified binary setting, static dependence analysis often becomes quite involved, for example when coping

* Corresponding author.

E-mail addresses: seongmin.lee@mpi-sp.org (S. Lee), binkley@cs.loyola.edu (D. Binkley), robert.feldt@chalmers.se (R. Feldt), n.gold@ucl.ac.uk (N. Gold),
Available online 12 September 2024
0167-6423/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

shin.yoo@kaist.ac.kr (S. Yoo).

https://doi.org/10.1016/j.scico.2024.103208

Received 11 March 2024; Received in revised form 21 August 2024; Accepted 8 September 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:seongmin.lee@mpi-sp.org
mailto:binkley@cs.loyola.edu
mailto:robert.feldt@chalmers.se
mailto:n.gold@ucl.ac.uk
mailto:shin.yoo@kaist.ac.kr
https://doi.org/10.1016/j.scico.2024.103208
https://doi.org/10.1016/j.scico.2024.103208
http://creativecommons.org/licenses/by/4.0/

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

with the nuances of program language semantics. A good example is pointer analysis, which is not only computationally expensive1

but also prone to producing a large number of false-positives [58,44]. These false-positives often degrade the usefulness of the analysis
in downstream tools.

Furthermore, traditional dependence analysis does not need to determine the relative strength of a dependence. However, some
dependences are stronger than others. Consider two uses of a variable where one rarely has an impact on the computation of a third
but the second always does. For example, the use of a in the statement b = (a == 42) rarely changes the value assigned to b.
In contrast, the use in b = a + 42 always changes the value of b. Despite this difference, in both cases, there exists a dependence
from a’s definition to its use in the assignment to b.

A few dynamic approaches have aimed to model dependence strength. For example, the PPDG [6] and BNPDG [77] estimate
the frequency of a data flow by measuring the conditional probability of a particular set of reaching predecessors of a program
element given the state at each predecessor during execution on a set of test cases. This notion of dependence strength was shown
to successfully aid in fault localization. However, a drawback of these two approaches is that they build on top of static dependence
analysis; thus, they inherit its limitations causing their performance to be limited by the quality of the underlying static analysis.
A more recent approach with similar goals, MOAD [41], avoids the expense of static analysis by using dynamic observation-based
analysis. While the resulting technique can capture the effect of one program element on another it is unable to reason about how
one program element affects another through a chain of cause-and-effect relationships.

This paper introduces Causal Program Dependence Analysis (CPDA), a framework that uncovers causal dependence between program
elements. This includes the ability to capture the strength of the dependences between program elements. Given a set of program
executions, CPDA discovers a causal structure that indicates the direct cause-and-effect relationships between program elements. This
structure is based on the observed behavior of a set of elements from the program. By applying techniques from causal inference [53,

55] over this causal structure, CPDA produces two measures of program dependence strength using two metrics from the causal
inference literature. Natural direct effect (NDE) captures the effect of one program element on another excluding effects that pass
through other elements [52]. Average causal effect (ACE) takes into account both NDE’s direct effect and indirect effects [31]. Thus,
ACE captures the total effect that a change to a program element has on the behavior of other program elements. Note that the
dependence measured by CPDA is relative to a set of reference executions (i.e., the executions using a particular test suite) that are
used to observe the program behavior. Whilst this means that the quality of the analysis is dependent on the particular executions
used, such an approach is widespread and has been successfully used in dynamic analysis [43,18,10]. The benefits of having execution-

specific dependences are explored in Sections 9.2.2 and 9.2.3.

We also propose a novel way to visualize program dependence using the Causal Program Dependence Model (CPDM). This weighted
dependence graph shows the causal structure of a program, annotated with NDEs. The paper describes how the CPDM can be used to
reason about program dependence more precisely and more intricately than its predecessors. We conjecture that our two measures
of quantitative dependence and the CPDM form a viable new foundation for a range of program analysis techniques.

As mentioned above, CPDA has the advantage that it avoids the need for computationally expensive static analysis. In addition,
it does not require the troublesome overhead of coordinating static analyses, for example, adjusting the right level of abstraction for
the program or the analysis, something that is typically complex and requires a lot of manual effort and domain knowledge, and
is unavoidable to make static analysis accurate. It requires only light-weight parsing for the instrumentation. Specifically, points of
interest in the code are modified so that we can introduce simple mutations to the state and then observe their effect on subsequent
computations. An additional benefit of this approach is that it can directly model dependences that go outside the formal semantics.
For example, CPDA can capture dependences caused by values that get transferred through a database or through the file system.
Furthermore, it can be applied to heterogeneous systems built using multiple programming languages or system making use of third-

party binary libraries provided that the part of the program of interest can be instrumented. The benefit of this kind of observational
approach has been demonstrated in the work on Observation-based Slicing [9,42].

Our final contribution comes in the form of two new causal structure discovery algorithms. Existing algorithms consider graphs
with fewer than a hundred nodes [67,65,59,61,60], which is not sufficient for large programs. Our two new algorithms for causal
structure discovery are designed to capture different aspects of the qualification of causal relations. The first, the Conditional Probability

(CP) method considers probabilistic aspects, while the second, the Hitting Set (HS) method captures a discrete/deterministic aspect.
We empirically evaluate the causal structures discovered by the two algorithms and consider the extent to which each describes
the dependence relations in a program by comparing the two with a ground-truth program dependence graph. We also explore the
range of advantages of CPDA’s quantified program dependence by presenting results of its application to three software engineering
applications. For example, clustering the nodes and observing the dependences in the CPDM facilitates the uncovering of functional
aspects of the code. As a second example, focusing on the relative strength of the dependences to and from a particular program
element helps bring out semantic relations between the element and the code around it. Finally, we explore CPDA’s application in
downstream tasks through a debugging case study.

The main contributions of this work include the following:

• We propose Causal Program Dependence Analysis (CPDA), a dependence analysis framework based on causal inference that
supports the quantification of dependence strength between program components.

1 For example, Andersen’s well-known flow-insensitive, context-insensitive algorithm has an 𝑂(𝑛3) running time. In the more general case, the complexity becomes
2

exponential.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

1 a = 42;

2 pred = input(); // true or false

3 b = a + 1;

4 if (pred) {

5 c = 2 * a + b % 2;

6 d = c - 1;

7 }

8 e = 3;

Fig. 1. Code of the motivating example.

• We propose two structure discovery algorithms with considerably better scalability. These two discover the causal structure of
the dependence relations in a program. We empirically evaluate the two both quantitatively and qualitatively.

• We visualize and reason about the result of a causal analysis using our Causal Program Dependence Model (CPDM), a graph-

structured program dependence model that provides a rich representation of quantified dependence.

• We consider several related applications and examine the advantages and limits of quantified program dependence via empirical
experiments.

The rest of this paper is organized as follows. We first present a motivating example describing various characteristics of the
program dependence found in the program semantics in Section 2. Then Section 3 explains causal inference, which is the theoretical
background of CPDA. After presenting the procedure of CPDA in Section 4, we explain its details starting with the probabilistic
representation of program semantics (Sec. 5), the structure discovery algorithms (Sec. 6), and the measures of quantified dependence
(Sec. 7). In Section 8 we describe our experimental configuration. Then in Section 9, we first assess the accuracy and efficiency of the
structure discovery algorithms. Then, we investigate the characteristics and potential of CPDA’s quantified dependence using several
applications. Threats to validity are discussed in Section 10. Finally, we review related work in Section 11, discuss future work in
Section 12 and conclude in Section 13.

2. Illustrative example

To help motivate our approach, we present an illustrative example that demonstrates the limitations of existing program depen-

dence analysis techniques. Fig. 1 is an example program showing various characteristics of program dependence. The value in variable

b in line 3 is the value in variable a plus one. Therefore, a value change of variable a always affects the value in variable b; in terms
of how often one affects another, variable a strongly affects variable b. Similarly, variables c and d in lines 5 and 6 are only assigned
if the predicate pred is true; thus, c and d strongly depend on pred. On the other hand, the value in variable c is affected by the
change of the value in variable b only when pred is true and the b’s parity changes (due to the remainder operator ‘%’). Assuming
the domain of b is an integer, only in half of the instances does variable b affect variable c; thus, c weakly depends on b compared
to a. Another property of dependence is immediacy. For instance, variable b affects both values of variable c and d; while b directly

affects c’s value, it indirectly affects d’s value through the value of c. Variable a in line 1 affects variable c in line 5 both directly and
indirectly (through the value of b).

Static analysis is capable of differentiating the direct and indirect dependence using the formal semantics of the programming
language. However, it does not distinguish the magnitude of the dependence. In the static dependence model, the dependency from
variable a to variable b and variable b to variable c is the same: “yes, there is dependence.” The nature of the static analysis,
trying to find all possible dependences, brings too many dependences in a large program because of both theoretical [58] and
practical reasons [10]. Without any way to discriminate those dependences, this large number of dependences does not help the user
understand the program and hinders subsequent analysis. Fig. 2a shows the dependence model from static analysis.

The Probabilistic Program Dependence Graph (PPDG) [6] and the Bayesian Network-based Program Dependence Graph (BN-

PDG) [78] are recent dynamic dependence analyses that model dependence strength based on the frequency of def-use chains. For
each program element, the PPDG models the conditional probability of a particular set of reaching predecessors given the state at
each predecessor during execution. The PPDG estimates conditional probability as a relative frequency observed in a set of node-state
traces from a set of test cases. Later, the BNPDG reformed the structure of PPDG to a DAG in order to regard it as a Bayesian Network
and compute the conditional probability between non-adjacent nodes [77].

While PPDG and BNPDG consider the conditional probability of a state of a program element given the states of its predecessors,
an effect from a single predecessor to the program element can be derived by marginalizing the conditional probability over the
other predecessors. Fig. 2b shows the conceptual dependence model of the PPDG and the BNPDG using marginalization. While both
models assign 0.5 to the dependence from a and b to c as a and b only affect c when pred is True they cannot discriminate the
degree of dependence between a and b from c. This is because the PPDG and the BNPDG are incapable of noticing the value change
of variables.

Our previous work introduced MOAD [41], an observation-based dependence model capable of identifying the value change
of variables in response to deletion mutations. Given a program, it removes various combinations of program elements from the
source code and observes the consequence of each deletion. Given those observations, MOAD employs several statistical methods to
approximate the degree of dependence between program elements. The main hypothesis of statistical methods is that the degree of
3

A affecting B is proportional to the conditional probability of the change in B’s behavior, given A is mutated. As shown in Fig. 2c,

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. 2. Dependence model using existing dependence analysis methods.

MOAD distinguishes the difference in the degree of dependence between a and b from c. However, MOAD is incapable of identifying
the dependence structure (i.e., whether the effect is direct or indirect). It only measures the strength of dependence, ignoring whether
one affects another directly or indirectly. Distinguishing direct and indirect effects is important for making the analysis path-sensitive,
enhancing the understanding of edge-wise and path-wise information flow. By identifying whether an effect is direct or indirect, one
can more accurately trace causal influence through different edges and paths. This distinction is particularly valuable in analyses
like debugging or security assessments. For instance, if a vulnerability, such as an information leakage, arises on a specific execution
path, knowing the extent of the causal effect along that path—as opposed to others—becomes crucial. Thus, differentiating direct
from indirect effects greatly improves our ability to pinpoint and address issues in complex systems.

In this work, we present a dependence analysis technique that discovers both the structure and the degree of the dependence. This
is similar to how causal analysis extends the statistical analysis to study the actual causal structure as well as estimate the strength
of the dependences. In Section 4, we introduce Causal Program Dependence Analysis, a novel dependence analysis utilizing causal
inference to address the above-mentioned limitations.

3. Background

This section introduces causal inference, the fundamental methodology that CPDA uses to identify and quantify program depen-

dence.

3.1. Causal inference

Causal inference is a mathematical theory for analyzing which events cause one or more effects [53,55]. Increasingly, it provides
practical tools for data analysis that can be used instead of, or together with, existing statistical and other data analysis methods [56].
While statistical methods focus on identifying and modeling associations, the causal analysis adds ways of studying which events
actually precede and thus lead to (cause) other events. It further determines how large these effects are. The distinctions involved are
clarified by the so-called ‘ladder of causality’ where classical, associative, statistical analysis (‘what happens together?’) is the ground
level, the analysis of interventions (‘what happens if we do this?’) one step up, and counterfactual analysis (‘what if something else,
that didn’t happen, will (or had) happen(ed)?’) the top level [54].

Theoretically, the benefits of causal inference are clear, e.g., it is aligned with the ultimate goals of science in attempting to explain
the reasons for observed phenomena. However, a causal analysis can also provide more direct and practical benefits and ultimately
lead to more robust models and better decisions than those derived from non-causal statistical analyses. As an example, in medicine,
a re-analysis of data on hip fractures among the elderly found that the causal analysis was able to identify which events mediate the
effect of the others and to what extent, in addition to providing predictions on par with traditional methods [12]. In another study,
Richens et al. [62] showed that medical diagnosis based on causal inference performed almost twice as well (25𝑡ℎ percentile vs. 48𝑡ℎ

of the performance of human doctors) than classical, associative/statistical methods.

3.2. Causal model and causal structure

A probabilistic model (also called a probability space) is a mathematical model encoding the association information between
4

events. It consists of three components: 1) a sample space, which is the set of all possible outcomes, 2) an event space, which is a

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

set of events, where an event is a subset of a sample space, and 3) a joint probability distribution over the random variables of the
events.2 Causal inference can elevate the probabilistic model to demonstrate the causal relationship between the events.

A key element of modern-day causal inference is its use of directed acyclic graphs (DAGs) to model the dependence structure
between the random variables of different events in a probabilistic model. The resulting model of the causal inference, called the
causal model, consists of the causal structure, which is the DAG of the dependence structure, and the mathematical relations between
the random variables [53]. Nodes in the DAG denote random variables, and edges denote how the values of the random variables
cause changes in the values of other random variables. To be specific, the direct predecessors (parents) of the node (child) in the
DAG are a minimal set of nodes directly affecting the node; therefore, the parents screen the child from the effect of any other nodes
which may indirectly affect the child.

The mathematical relations in the causal model indicate how to estimate the value of a child random variable based on the values
of their parent(s). There are different types of causal models that differ in how the relations are specified. In a so-called structural
equation model [53], this is achieved via equations that relate each child node to the nodes from which it has incoming DAG edges. The
equations are typically linear but more general forms can be used. Another model variant, the probabilistic causal model, factorizes the
probability distribution over the random variables into a set of independent conditional probability distributions, each denoting the
atomic cause-and-effect relations between variables [53]. The structural equation model works well if the relation between factors
is expected to have a certain pattern (e.g., linear), while the probabilistic causal model can model a more generic (non-parametric)
relation. Therefore, in this paper, we use the probabilistic causal model to model the program dependence. The (probabilistic) causal
model satisfies the local Markov condition:

Definition 3.1 (Local Markov condition). Let 𝐺 = (𝑉 , 𝐸) be a direct acyclic graph (DAG) and let 𝑃𝑉 be a probability distribution over
the nodes 𝑉 of 𝐺. 𝐺 and 𝑃𝑉 satisfy the local Markov condition if every node in 𝑉 is conditionally independent of its non-descendants,
given its parents.

For instance, let us consider a situation where whether it is dawn and there is dew on the grass (𝐴), and whether it is raining (𝐵)
are the two factors that affect whether the grass is slippery (𝐶), which decides whether a person who is walking on the grass will slip
and fall (𝐷); let the probability distribution 𝑃𝐴..𝐷 describes the situation. Then, regarding 𝑃𝐴..𝐷 , DAG 𝐺 ≜ {𝐴 → 𝐶 , 𝐵 → 𝐶 , 𝐶 →𝐷}
meets the local Markov condition, but DAG 𝐺′ ≜ {𝐴 → 𝐶 , 𝐶 →𝐷} does not because 𝐶 is not conditionally independent of 𝐴 given
𝐵, which means that 𝐺′ does not express that the grass can be slippery because of the rain. Nonetheless, none of 𝐴 and/or 𝐵 make
𝐶 conditionally independent of 𝐷, the descendent of 𝐶 , because 𝐷 is the result of 𝐶 .

For each random variable (node) in the probability distribution, a minimal set of predecessors that satisfies the local Markov
condition with the given random variable is called Markovian parents. A conventional approach to construct the causal structure is
thus to find the Markovian parents of each node and draw edges from every Markovian parent to the node. While the causal structure,
i.e., the DAG, is sometimes known or can be formulated based on some external theory, one can also use so-called structural learning
(also known as causal discovery) to identify the causal structure by searching for the DAG that satisfies the local Markov condition
from the data [69].

3.3. Causal effect

A hallmark of causal inference is that its DAGs can be used to guide which (random) variables to intervene on (i.e., change) to
calculate the effects of one variable on another, given the observations. The causal effect, the measured effect by causal inference,
distinguishes itself from the conditional probability, which is a measure representing the association rather than the causation. The
conditional probability 𝑃 (⋅|𝑥) represents the probability when one observes that 𝑋 has value 𝑥 (we use the lower case symbol 𝑥 to
denote a particular observed value of the corresponding uppercase variable 𝑋). What this illustrates is an association between 𝑋 = 𝑥

and other events. On the other hand, the causal effect, denoted as 𝑃 (⋅|𝑑𝑜(𝑥)), is a probability when we force 𝑋 to have the value 𝑥.
The difference between “forcing 𝑋 to 𝑥” and “observing that 𝑋 is 𝑥” concerns whether there is any actual effect of 𝑋, or, somehow,
there is a correlation with 𝑋 either by 𝑋 itself or by other variables.

Before getting onto the formal definition of the causal effect, we first informally introduce the notion by way of an example.
Consider the situation shown in Fig. 3, where sleeping with shoes on (denoted the event as 𝑋) often occurs together with having a
headache (denoted as 𝑌) the next morning when there was heavy drinking last night (denoted as 𝑈), i.e., having a headache when
someone slept with shoes on has a higher chance than the chance of normally having a headache (𝑃 (Y ∣ X) ≳ 𝑃 (Y)). However, since
sleeping with shoes is not the cause of the headache, putting shoes on a sleeping person, i.e., 𝑑𝑜(X), will not increase the chance of a
headache (𝑃 (Y ∣ 𝑑𝑜(X)) ≈ 𝑃 (Y)).

By having a causal structure, we can estimate the causal effect by controlling the confounding bias. A confounding bias is a
distortion representing the event that is associated with, but not causally related to, the observation induced by the common cause
(𝑈 in the previous example), which appears through the so-called backdoor path (in the case of Fig. 3, X ← U → Y) in the causal
DAG [53]. By ignoring the incoming effect of 𝑋, we can remove the effect through the backdoor path to 𝑋, subsequently eliminating
the confounding bias from the association between 𝑋 and another node 𝑌 .

2 To be specific, it is a probability measure on events, which assigns a probability to each event [71]. Refer to ([53], Chapter 1.1.2) for more details on probability
5

spaces and its context in causal inference.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. 3. An example of 200 observations showing the difference between conditional probability and causal effect: (a) is the causal structure, (b) is the table of
occurrence of the situations, and (c) shows the computation of the conditional probability and the causal effect.

Based on Pearl [53], the causal effect 𝑃 (⋅|𝑑𝑜(𝑥)) is formally defined as follows:

Definition 3.2 (Causal effect). Let 𝐺 = (𝑉 , 𝐸) be a causal structure. Given two disjoint sets of nodes, 𝑋, 𝑌 ⊂ 𝑉 , the causal effect of
𝑋 on 𝑌 , denoted as 𝑃 (𝑦 ∣ 𝑑𝑜(𝑥)), is a function from 𝑋 to the space of probability distributions on 𝑌 . For each observed value 𝑥 of
𝑋, 𝑃 (𝑦 ∣ 𝑑𝑜(𝑥)) gives the probability that 𝑌 = 𝑦 is induced by deleting from the causal structure the edges to the nodes in 𝑋 and
substituting 𝑋 = 𝑥. The causal effect 𝑃 (𝑦 ∣ 𝑑𝑜(𝑥)) is calculated as follows:

𝑃 (𝑦 ∣ 𝑑𝑜(𝑥)) =
∑

mp𝑋∈dom(𝑀𝑃𝑋)
𝑃 (𝑦 ∣ 𝑥,mp𝑋)𝑃 (mp𝑋) ,

where mp𝑋 represents the particular observed set of states of MPX , the set of Markovian parents of 𝑋.

In Fig. 3, while the conditional probability of having a headache (𝑌) when sleeping with shoes on (𝑋), 𝑃 (Y ∣ X), is high, show-

ing heavy association, based on the computation of Definition 3.2, the causal effect of sleeping with shoes to having a headache,
𝑃 (Y ∣ 𝑑𝑜(X)), is the same as the probability of having a headache. In our example, there is thus no causal effect from sleeping with
shoes on to have a headache, as one would expect.

4. Overview of causal program dependence analysis

Causal Program Dependence Analysis (CPDA) aims to model and quantifies the strength of program dependence relations. We
define the behavior of a program element as the state or the value it takes during program execution (a detailed definition is discussed
in Section 5.1), and we interpret the dependency between program elements as the effect of a change in the behavior of one program
element on the behavior of another program element. A different meaning of the term ‘effect’ can be considered in the context of
quantifying the strength of program dependence relations, for instance, the magnitude of the change in the behavior of program
elements. In this initial work of CPDA, we focus on the likelihood/probability of a change in the behavior. A discussion of the
extension of CPDA to different notions of effect is discussed in Section 12.

CPDA models the dependences between program elements using causal inference. Thus, the dependences reported by CPDA are
not binary: rather, they represent how likely a change to the value of a program element 𝑆𝑖 is to cause a change to the value of another
element 𝑆𝑗 .

Definition 4.1 (Causal dependency (abstract)). Given a Program  , let 𝑆𝑖 and 𝑆𝑗 be program elements in  . The causal dependency

from 𝑆𝑖 to 𝑆𝑗 is the probability that a change in the value of 𝑆𝑖 will cause a change in the value of 𝑆𝑗 .

In order to model the program dependency using causal inference, we initially define a probabilistic model over the runtime
behavior of the program elements. A sample from the probabilistic model, denoted as the Δ-execution model, represents a set of
program elements whose behaviors change together during execution. To get a sample from the Δ-execution model, we first capture
the behavior of the original program when executed on a test suite. These executions are used as an oracle. We then observe3 which
program elements behave differently in the mutated program execution. Observations of which program elements behave differently
together are used as input data for the causal inference. The output of the causal inference is a set of causal dependences between
program elements.

3 The term “observation” used in our work differs from how “observation” is generally used (in contrast to “intervention”) in causal inference. In a causal inference
study, one naturally gets observational data from the event space of interest, while one needs to take actions that lead to changes to the event space to get interventional
data. In our work, we use the term “observation”, with its more general meaning, for (a part of) the observable behavior of program elements during execution
regardless of whether it arises from the original or the mutated programs. The causal inference in our work thus uses both purely observational data (the behaviors
6

of the unmutated program execution) as well as interventional data (the behaviors of the mutated program executions).

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. 4. Framework of CPDA.

Fig. 4 shows the overall framework of CPDA. Given a program, CPDA identifies target program elements to analyze, and sub-

sequently instruments the code (Sec. 5.2). The instrumentation allows us to generate an oracle, a set of recorded behaviors, i.e.,
states of program elements from the original, unmutated program. Mutation then allows us to apply interventions to the state of a
program element at runtime and monitor the resulting changes [73]. Using these observations, CPDA first builds a causal structure

of the program (Sec. 6). Then, using this causal structure and the observation data, CPDA performs causal inference to calculate
two dependence measures between program elements (Sec. 7). First, average causal effect measures the total effect from one program
element to another, including both direct and indirect effect, while the second, natural direct effect, measures only the direct effect.
Finally, by annotating the natural direct effect on the edges of the causal structure, CPDA produces a Causal Program Dependence
Model (CPDM), a graphical representation of the quantified program dependence.

5. Transforming program semantics to a probability distribution

5.1. Δ-execution model and probability of a behavior change

Given a probabilistic model that describes how the events are associated, causal inference infers the causal relationship between
the events. Hence, to infer causal dependency, we need to define an appropriate probabilistic model over which the causal inference
can be performed. The elements of the probabilistic model are program elements, which capture a program variable at a specific
location in the source code. We design a probabilistic model that describes which program elements are dynamically associated, so
that their behaviors change together during execution, i.e., during a single run of the program from the test suite. Consequently,
the causality derived from the probabilistic model represents which program element’s behavioral change is likely to cause another
program element’s behavioral change, i.e., the causal dependency in Definition 4.1. Specifically, we define a probabilistic model
where each sample in the space corresponds to a set of program elements whose behavior changes in the intervened execution, i.e.,
the execution with a mutated program. We call this probabilistic model a Δ-execution model.

We next formalize the behavior of a program as the behavior of its program elements. The behavior of a program element is
the trajectory (the sequence of values) the corresponding program variable takes on at a specific location in the source code during
execution. Given a Δ-execution model of a program, a behavior change in a program element is defined as follows:

Definition 5.1 (Behavior change of a program element). The behavior of program element 𝑆𝑖= ⟨𝑣, 𝑙⟩, where 𝑣 is a variable and 𝑙 is a
location in the source code, in Program  has changed for a given mutation and input if the trajectory for 𝑆𝑖 in the mutated program
 ′ is different from the trajectory of 𝑆𝑖 using  .

Given a Δ-execution model of a program, CPDA infers a causal model. Each node in CPDA’s causal model is a random variable
representing whether the behavior of a program element has changed under  ′ or not. Henceforth, we overload the notation 𝑆𝑖 to
represent both the program element itself and the random variable, denoting whether the behavior of 𝑆𝑖 has changed under  ′ or
7

not; 𝑆𝑖 = 1 if changed, 0 otherwise. Consequently, the causal structure of CPDA’s causal model identifies the dependency between

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

program elements, and the (average) causal effect, a metric of causation between two nodes in CPDA’s causal model, measures the
quantity of the causal dependency.

We sample observations from the Δ-execution model through the following procedure. First, we run the program with a given test
suite and capture the original behavior as the trajectory of each program element. The captured behavior serves as an oracle of the
original behavior of the program. After we produce the oracle, we repeat the execution while selectively mutating the value of each
program element one at a time. Based on these executions, we identify behavior changes in program elements due to the mutation
by comparing the trajectory of each program element after the mutation with the corresponding trajectory in the oracle. For each
mutated execution, we get a single observation that is a boolean vector whose length is equal to the number of program elements
in the program: each value in the observation indicates whether the behavior of the corresponding program element has changed or
not. Given a set of observations, we can calculate the probability of a behavior change in a program element as follows:

Definition 5.2 (Probability of a behavior change). For a program element 𝑆𝑖 from  and a set of observations 𝑂, 𝑃𝑂(𝑆𝑖 = 1) represents
the probability of a behavior change in 𝑆𝑖 when not mutated,

𝑃𝑂(𝑆𝑖 = 1) = |{obs ∈𝑂∗ ∣ obs[𝑖] = 1}|
|𝑂∗| = 1 − 𝑃𝑂(𝑆𝑖 = 0) ,

where 𝑂∗ = {𝑜 ∣ 𝑜 ∈𝑂 ∧ 𝑜 is not generated by mutating 𝑆𝑖}.

Moreover, we calculate the conditional probability of a behavior change:

Definition 5.3 (Conditional probability of a behavior change). For program elements 𝑆𝑖 and 𝑆𝑗 from  and a set of observations 𝑂,
𝑃𝑂(𝑆𝑖 = 1 ∣ 𝑆𝑗 = 1) represents the probability of a behavior change in 𝑆𝑖 when not mutated, given a behavior change in 𝑆𝑗 ,

𝑃𝑂(𝑆𝑖 = 1 ∣ 𝑆𝑗 = 1) =
𝑃𝑂(𝑆𝑖 = 1 ∧ 𝑆𝑗 = 1)

𝑃𝑂(𝑆𝑗 = 1)

= |{obs ∈𝑂∗ ∣ obs[𝑖] = 1 ∧ obs[𝑗] = 1}|
|{obs ∈𝑂∗ ∣ obs[𝑗] = 1}| ,

where 𝑂∗ = {𝑜 ∣ 𝑜 ∈𝑂 ∧ 𝑜 is not generated by mutating 𝑆𝑖}.

The conditional probability in Definition 5.3 becomes the foundation of the causal dependences that we calculate later. The use
of 𝑂∗ excludes the mutation at 𝑆𝑖 itself to avoid negating the effect from the behavior change of 𝑆𝑗 with a mutation of 𝑆𝑖 itself.

5.2. Implementation

We instrument the target program based on the set of program elements whose causal dependence we seek to analyze; the analysis
result is thus subject to the program elements chosen. Our instrumentation allows us to intervene in the runtime behavior of the program
by mutating a program variable’s value during execution. It also allows us to observe the trajectory of the program elements, either
from the original execution if no intervention is applied or from the mutated execution if an intervention is applied; the difference
in the trajectory of a program element between the original and mutated executions indicates that the mutation has changed the
behavior of the program element. In the remainder of the paper, we consider the following as program elements: a left-hand side
program variable of an assignment statement, a function parameter, a predicate expression, and a return expression.

To efficiently produce a large and diverse set of observations for Program  , we construct a super mutant [73], i.e., a meta-mutated
program that takes as input a mutation position (the unique index of a program element) and a mutation value that will be used
whenever the program element is executed. This approach reduces the number of compilations required to support multiple mutations.
The instrumentation begins by indexing all the program elements in the target program using a parser and injecting a helper function.
Fig. 5 shows an example of the helper function, how it is injected after each program element, and how the instrumented program
is executed with the target mutation index and the mutation value. The helper function, when given a target program element index
(MUT_IDX), will overwrite (i.e., mutate) the value of the program element to the given mutation value (MUT_VAL) and log the result
of mutation during execution. For all the other program elements, the helper function simply logs the current value observed during
execution (this records each program element’s trajectory).

5.2.1. Oracle

After instrumentation, we can obtain the oracle trajectory for each program element using the given test suite. An oracle trajectory
for a program element is simply a collection of all of its trajectories, one per test input from the test suite when no mutation is applied
during execution.

5.2.2. Mutation

CPDA currently targets variables of the following primitive types: bool, char, int, long, float, double, and string. We
propose a mutation strategy for each type as follows. First, if domain knowledge clearly specifies the range of possible values (e.g., an
8

enumerated type), we simply sample from the given range with uniform probability. Otherwise, we aim to choose the diverse mutation

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

[Running the instrumented program]

$./inst_prog <MUT_IDX> <MUT_VAL> <input>

[Helper function OBS]

def OBS(node_idx, var_name, val) {

if (node_idx == MUT_IDX) {

print("OBS", node_idx, var_name, MUT_VAL)

return MUT_VAL

}

else {

print("OBS", node_idx, var_name, val)

return val

}

}

[Add the helper function for each program element]

foo = 3; foo = OBS(42, "foo", foo)

Fig. 5. An example of the trajectory logging instrumentation and the helper function.

values but, simultaneously, values that the corresponding program element may have, which are close to the observed values in the
oracle. For Booleans, the mutation simply negates the original value. For scalar types, we first build a Gaussian distribution whose
mean and standard deviation are the sample mean and sample standard deviation4 of the observed values in the oracle trajectory
for the program element; we consider the distribution a reasonable approximation of the distribution of the values that the program
element may have. We then sample a random value from this Gaussian distribution; if the sampled value (e.g., a floating point
number) is outside the range of the original type (e.g., an integer), we round it to the nearest value in the range. Finally, for strings,
we first sample the string length from a Gaussian distribution that is based on the length of all observed strings for the program
element and subsequently sample a random string of that length. To avoid sampling the same value repeatedly or sampling the value
that is the same as the original value (i.e., no mutation), we keep track of the sampled values and reject any sampled value that has
already been used or is the same as the original value.

For most program elements, we gather up to a fixed limit, 𝑁mpn, of samples per program element. However, for boolean program
elements and program elements with small predetermined value ranges, we sample each value only once, limiting the number of
samples collected for these program elements. We leave more refined data mutation and generation strategies to future work and
note that techniques for test generation can likely be used to handle more complex, structured data types [20]. Since each program
element may have a different number of mutated values, we normalize the probabilities in Definition 5.2 and 5.3 by multiplying
by the reciprocal of the number of sampled mutated values. For example, each observation for an integer-type program element
mutation with ten mutation values has a weight of 0.1.

6. Structure discovery

A few methods already exist to discover causal structure given data, including Bayesian network learning [67,65] and other recent
causal discovery algorithms [59,61,60]. However, current algorithms are either unable to handle observations from interventions in
the environment or do not scale to the size of the program dependency space, which often consists of more than hundreds of program
elements. In this section, we introduce novel methods to discover the causal structure of a program. We first describe the notion of
the causal structure in terms of program dependence analysis and the requirements for the discovery of the causal structure. We then
introduce two concrete methods to discover the causal structure of a program designed to meet these requirements with respect to
different aspects of the qualification of causal relations: the probabilistic aspect and the discrete/deterministic aspect.

6.1. Causal structure of a program

The conditional probability defined in Definition 5.3 expresses the association between behavior changes to program elements:
these are behavior changes that are simply observed together. To elevate the association to a causation, we need the concept of one’s
behavior change preceding another. It is also necessary to distinguish between direct predecessors, nodes whose behavior change
affects the target node without involving any intermediary nodes, and indirect predecessors, nodes whose behavior change reaches
the target node through one or more direct predecessors.

A causal structure allows us to introduce this concept of precedence. Program dependence is inherently a form of causal precedence:
if Node 𝑆𝑗 depends on Node 𝑆𝑖, a behavior change at 𝑆𝑖 will precede the behavior change at 𝑆𝑗 . In theory, a perfectly accurate PDG
can serve as the causal structure. However, in practice, the required static dependence analysis used to produce a PDG yields many
false-positives. Instead, we use ideas from the causal inference field and dynamically approximate the causal structure from the set
of observations.
9

4 If there is only one unique observed value, we use 1 for the sample standard deviation.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. 6. Example of Intervention Ancestors (IA) and Markovian Parents (MP). (For interpretation of the colors in the figure(s), the reader is referred to the web version
of this article.)

A = 42
B = A + 2
C = B % 2
D = A + C

𝑆𝑗 IA𝑗 MP𝑗

A ∅ ∅
B {A} {A}
C {A,B} {B}
D {A,B,C} {A,C} or {B,C}

Fig. 7. Example of a potential inconsistency between Markovian Parents and actual dependency in a program.

Let us first formally define the predecessors of a node, which we call the intervention ancestors (IA). Given Node 𝑆𝑗 in the program,
the intervention ancestors of 𝑆𝑗 , IA𝑗 , are a set of nodes whose mutation changes the behavior of 𝑆𝑗 for at least one input.

Definition 6.1 (Intervention ancestor (IA)). For a Program  and a set of nodes 𝑆 from  , the set of nodes IA𝑗 ⊆ 𝑆 ⧵ {𝑆𝑗} is the set
of intervention ancestors of node 𝑆𝑗 if mutating any node in IA𝑗 changes the behavior of 𝑆𝑗 for at least one input. In other words,
𝑆𝑘 ∈ IA𝑗 if and only if there exists a mutation of 𝑆𝑘 and an input that causes 𝑆𝑗 = 1.

A behavior change in one of a node’s intervention ancestors will, by definition, precede the behavior change in the node. However,
the precedence relationship may be direct (i.e., not pass through any other predecessor) or indirect (i.e., pass through a predecessor).
Based on the theory of causal inference, we define the Markovian parents (MPs) of a node as the minimal set of direct predecessors
among the intervention ancestors. Notice that there can be multiple subsets of intervention ancestors that meet the definition of
Markovian parents. Fig. 6 illustrates intervention ancestors and Markovian parents using a simple program. In the graph, the directed
edge 𝑋 → 𝑌 (both solid-red and dashed-black edges) represents that 𝑋 is an intervention ancestor of 𝑌 ; thus, a value change at
𝑋 leads to a value change at 𝑌 . Among the intervention ancestors, solid-red edges represent the Markovian parents. For example,
changing A in Fig. 6 may cause a change to the value at C, but only subsequently after the value at B changes; if the value at B does
not change, then the value at C does not change even though the value at A changes. Similarly, B is not a Markovian parent of D. The
Markovian parent-child relation provides the causal structure of the program. For instance, the graph with only solid edges in Fig. 6

is the causal structure of the sample program.

The definition of Markovian parents leads to the following requirements for the parent-child relations in the causal structure of a
program:

• Requirement 1 → the parent candidates include all nodes whose mutation can change the child’s behavior,

• Requirement 2 → if a child’s behavior has changed but the child was not mutated, one of its parents must also have changed
behavior, and

• Requirement 3 → each parent individually has an effect on the child.

The first requirement captures a core principle of dependence: if none of the mutations to program variable A lead to a change in the
behavior of variable B, then B does not depend on A. The second requirement also captures a core principle of dependence: if none of
the parents’ behaviors are changed, the child’s behavior cannot be changed unless it is mutated. The last requirement captures direct
dependence. If variable A directly affects variable B, it should individually affect B. In other words, there should be a path of effect
from A to B without interpolating other program elements.

The discovered Markovian parents of a node 𝑆𝑗 may not be the same as the actual parents of 𝑆𝑗 , i.e., the set of program elements
whose value directly affects the value/execution of the program element 𝑆𝑗 in terms of the program’s semantics, either because of
the insufficient observation samples or because more than one Markovian parents set exist. For example, consider a variant of source
code in Fig. 6 where ‘B = A + 2’ and ‘C = B % 2’ as Fig. 7 shows. Then, whenever the value of D changes due to the value change
of A, the value of B also changes. In this case, either {A, C} or {B, C} can be the Markovian parents of D; if the latter is chosen for the
Markovian parents of D, then the structure discovery algorithm produces both the false-positive (add a program element that is not
an actual parent of the child to the Markovian parents) and the false negative (miss the actual parent of the child in the Markovian
parents). Also, if every mutation on B has the same parity (even or odd) as the original value of B, then B ∉ 𝐼𝐴C, and, thus, the false
negative result is produced.

Both the false-positive and the false negative for Markovian parents can spoil causal program dependence analysis. A false negative
10

hinders inferring the correct degree of causation from the association. While causal inference derives the causation from the association

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

by taking away non-causal association appearing through a backdoor path (as described in Section 3.3), missing Markovian parents
may lead causal inference to ignore the existing backdoor path and infer a less accurate result. For instance, in the example of Fig. 3,
if we do not know that drinking a lot last night is a cause of the headache, there is no way that the causal inference determines that
there is no causal relation between the headache and sleeping with shoes on. A false-positive can harm the causal inference both
in terms of accuracy and efficiency. As we observed in the example of Fig. 7, if an additional node is mistakenly included in the
Markovian parents of a node, it can cause another actual parent of the node to be missed in the Markovian parents. Therefore, the
causal inference would infer that there is no causal effect from the actual parent node to the child node. Even if none of the actual
parents of the child node is missed in the Markovian parents, the number of causal relations to be inferred for the child node doubles
whenever there is a single false parent, as the cardinality of the Markovian parents set is increased, seriously harming the efficiency
of the causal inference.

To avoid Markovian parents having false-positives or false negatives, we tried to provide sufficient observations in the experiment
(Section 10) and apply heuristics to choose the Markovian parents that are more likely to be the actual parent of the child as described
in the following section.

In the remainder of this section, we introduce two causal discovery methods based on the definition of Markovian parents and the
three requirements. The first considers the probabilistic aspect of the Markovian parents; in particular, it utilized conditional inde-

pendence to find the Markovian parents. In addition, we also introduce a variation of the first method that relaxes the requirement of
conditional independence to the requirement of similar probabilities. The second method considers the requirement of the Markovian
parents in a deterministic and discrete manner interpreting the causal discovery problem as a hitting set problem.

6.2. Probability-based structure discovery

6.2.1. CP-method

The first method utilizes the definition of Markovian parents in the probabilistic causal model. This definition in probabilistic
notation is as follows:

Definition 6.2 (Markovian parent (MP)5). For a set of nodes 𝑆 , the Markovian parents of Node 𝑆𝑗 ∈ 𝑆 , MP𝑗 ⊆ IA𝑗 , is a minimal set of
predecessors of 𝑆𝑗 that renders 𝑆𝑗 independent of all its other intervention ancestors. In other words, MP𝑗 is any subset of IA𝑗 such
that 𝑃 (𝑠𝑗 ∣ mp𝑗) = 𝑃 (𝑠𝑗 ∣ ia𝑗) while no other proper subset 𝑇 ⊊ MP𝑗 satisfies 𝑃 (𝑠𝑗 ∣ 𝑡) = 𝑃 (𝑠𝑗 ∣ ia𝑗).

Therefore, the Markovian parents of a node 𝑆𝑗 is a minimal subset of its intervention ancestors that preserves the conditional
probability of 𝑆𝑗 . By computing conditional probabilities with various combinations of intervention ancestors, we can discover the
Markovian parents of a node. We call this method the conditional probability-based method, i.e., the CP-method.

However, it requires exponential work to compute the conditional probability as defined by Definition 6.2 for every possible com-

bination of intervention ancestors. Thus, in practice, we approximate the Markovian parents by iteratively removing non-Markovian
parents from the intervention ancestors. Algorithm 1 shows the process of removing non-Markovian parents from IA𝑗 . We choose one
Node 𝑆𝑑 from IA𝑗 and check whether 𝑆𝑗 is independent of 𝑆𝑑 , given all other candidate nodes.

If 𝑆𝑑 is the only candidate node left (Line 8-10), we check whether 𝑆𝑗 is independent of 𝑆𝑑 . If the conditional probability of 𝑆𝑗 = 1
differs depending on whether 𝑆𝑑 is changed (1) or unchanged (0), 𝑆𝑑 is a Markovian parent of 𝑆𝑗 (may_be_parent = 𝑇 𝑟𝑢𝑒). If there
are other candidate nodes 𝑆other (Line 11-16), we check the conditional independence of 𝑆𝑗 from 𝑆𝑑 for all observations of 𝑆other
(Val𝑆other

). If 𝑆𝑗 is conditionally independent of 𝑆𝑑 for all 𝑠other , 𝑆𝑑 is not a Markovian parent. Otherwise, 𝑆𝑑 could be a Markovian
parent of 𝑆𝑗 (Line 15). This is because 𝑆𝑗 can be conditionally independent of 𝑆𝑑 if 𝑆other changes. Therefore, we re-check all possible
Markovian parents every time we find a new non-Markovian parent (Line 19-21). To minimize the re-checking cost, we order the
candidate nodes and first choose the node most unlikely to be the Markovian parent (Line 5). Our distance metric Dist represents
how likely a candidate is to be a Markovian parent of 𝑆𝑗 . For a given Node 𝑆𝑗 , the intuition is that a node that appears close before
𝑆𝑗 in the program execution is more likely to be the Markovian parent of 𝑆𝑗 . Thus, nodes that appear after 𝑆𝑗 are firstly chosen in
Line 5 since they are farthest from 𝑆𝑗 , followed by nodes that appear earlier in the execution.

6.2.2. Drawbacks of the CP-method

During early experimentation, we uncovered several drawbacks to the CP-method, which can lead it to produce a causal structure
that is inconsistent with the actual program dependence.

• Inconsistency between program dependence and Markov condition: the definition of Markovian parents may not be con-

sistent with the notion of program dependency in a Δ-execution model. Fig. 8 shows an example of this inconsistency. The code
on the left shows two data dependencies in the program: a → b and b → c. The table on the right side shows the Δ-execution
model of the program; the dark color indicates that the value of the variable is changed (𝑆𝑖 = 1 (𝑖 ∈ {𝑎, 𝑏, 𝑐})), and the white
color indicates the value of the variable is not changed (𝑆𝑖 = 0) after the mutation. The text in the cell represents how the value
of the variable changes because of the mutation. For example, when mutating a (the cell of row 𝑆𝑎 under ‘Mutate val a’), a
11

5 Recall that lower case symbols (e.g., 𝑥, mp𝑗 , and ia𝑗) denote particular observed values of the corresponding variables (i.e., 𝑋, MP𝑗 , and IA𝑗).

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Algorithm 1: Get Markovian parents from intervention ancestors using the CP-method.

Input: IA𝑗 : Intervention ancestors of 𝑆𝑗 ,

Dist: Distance map from 𝑆𝑗 to other nodes,

𝑂: Observations generated from inputs that cover 𝑆𝑗 in the original program

Output: MP𝑗 : Markovian parents of 𝑆𝑗

1 MP𝑗 ← {}
2 Cand ← IA𝑗

3 while Cand ≠ {} ∧ Cand ≠ MP𝑗 do

4 Remain ← Cand ⧵ MP𝑗

5 𝑆𝑑 ← argmax𝑆𝑖∈Remain Dist(𝑆𝑖) ⊳ Get a single element from Remain to examine
6 𝑆other ← Cand ⧵ {𝑆𝑑}
7 may_be_parent ← 𝐹𝑎𝑙𝑠𝑒

8 if 𝑆other = {} then

9 if 𝑃𝑂(𝑆𝑗 = 1 ∣ 𝑆𝑑 = 0) ≠ 𝑃𝑂(𝑆𝑗 = 1 ∣ 𝑆𝑑 = 1) then

10 may_be_parent ← 𝑇 𝑟𝑢𝑒

11 else

12 Val𝑆other
←

{
𝑣 ∣ 𝑣 ∈𝑂|𝑆other

}
⊳ Get a unique observation set of 𝑆other in 𝑂

13 foreach 𝑠other ∈ Val𝑆other
do

14 if 𝑃𝑂(𝑆𝑗 = 1 ∣ 𝑆𝑑 = 0, 𝑠other) ≠ 𝑃𝑂(𝑆𝑗 = 1 ∣ 𝑆𝑑 = 1, 𝑠other) then

15 may_be_parent ← 𝑇 𝑟𝑢𝑒

16 break

17 if may_be_parent then

18 MP𝑗 .Add(𝑆𝑑)
19 else

20 Cand.Remove(𝑆𝑑)
21 MP𝑗 ← {}

22 return MP𝑗

Fig. 8. Inconsistency between program dependence and the CP-method.

changes to an arbitrary integer different from its original value V(a), and b changes from 0, 1, or 2 to 0, 1, or 2 (the cell of row
𝑆𝑏 under ‘Mutate val a’).

In cases when the value of a is mutated, the value of b changes in six-ninths of the cases, and the value of c changes in
four-ninths of the cases; thus, the conditional probability 𝑃 (𝑆𝑐 = 1 ∣ 𝑆𝑏 = 1, 𝑆𝑎 = 1) is 2∕3. In contrast, when the value of b is
mutated, it becomes an arbitrary integer different from its original value making the value of c changes in half of the cases
(𝑃 (𝑆𝑐 = 1 ∣ 𝑆𝑏 = 1, 𝑆𝑎 = 0) = 1∕2). Therefore, regarding the definition of Markovian parents, 𝑆𝑏 cannot screen 𝑆𝑐 from 𝑆𝑎,
leaving a → c in the causal structure. The two conditional probabilities are different because the value distributions of b in the
Δ-execution model are different when a is mutated (mutated b ∈ 0,1,2) and b is mutated (mutated b ∈ℤ ⧵ {original 𝑏}).

• Loss of probability precision due to sampling bias: Regardless of whether the value distributions of the program element are
identical, the equality checking of conditional probabilities itself may not lead to finding the correct causal structure. We use the
samples from the Δ-execution model during the experiment when computing the conditional probability. Due to the sampling
12

bias, there can be inaccuracies during equality checking.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Algorithm 2: Get parents in the causal structure from intervention ancestors using the HS-method.

Input: 𝐼𝐴𝑗 : Intervention ancestors of 𝑆𝑗 ,

Dist: Distance map from 𝑆𝑗 to other nodes,

𝑂: Samples from Δ-execution model

Output: MP𝑗 : Parents of 𝑆𝑗 in the causal structure

1 if 𝐼𝐴𝑗 = {} then

2 return {}

3 else

4 Collection ← {}
5 foreach 𝑜 ∈𝑂 do

6 if 𝑜[𝑆𝑑] = 1 then

7 SubS ← {𝑆𝑖 ∣ 𝑆𝑖 ∈ 𝐼𝐴𝑗 ∧ 𝑜[𝑆𝑖] = 1 ∧𝑆𝑖 ≠ 𝑆𝑗}
8 if SubS ≠ {} then

9 Collection.𝑎𝑑𝑑(SubS)

10 WeightMap ←
{
𝑆𝑖 ∶ 1 + Dist(𝑆𝑖) × 10−6 ∣ 𝑆𝑖 ∈ Dist

}
11 return HittingSet(Collection,WeightMap)

6.2.3. Relaxed CP-method

The CP-method determines that a node 𝑆𝑑 has no effect on another node 𝑆𝑗 if probabilities of 𝑆𝑗 under the conditions of 𝑆𝑑 = 0
and 𝑆𝑑 = 1 are the same given the other parent nodes of 𝑆𝑗 . However, it is often difficult to expect that two conditional probabilities
become the same, due to sampling bias and inconsistency between program dependence and Markovian parents, introducing a large
number of false-positive edges to the structure.

One remedy to this problem is to relax the equality checking of conditional probabilities. Our relaxed CP-method, RCP-method,
is an extension of the CP-method that takes a constant threshold value and checks whether the difference between the conditional
probabilities is less than the threshold. If the difference is less than the threshold, then the RCP-method finds that there is no effect
from the parent candidate node to the child node. This relaxation makes it easier to remove a parent candidate and reduces the number
of false-positive edges. Yet, it can instead introduce false negative edges to the structure. We investigate the effect of relaxation on
the structure discovery while varying the threshold value as part of our empirical investigation.

6.3. Structure discovery using hitting sets

6.3.1. HS-method

The second method exploits the requirements of the parent-child relation to discover the causal structure. Instead of relying on
the probabilistic notion, the HS-method formalizes the structure discovery problem as a collection of hitting set problems, a classical
question in combinatorics. Given a ground set of elements 𝑈 and a collection 𝐶 of subsets of 𝑈 , the hitting set problem is to find
the smallest subset 𝐻 of 𝑈 such that 𝐻 hits (includes an element of) every set found in 𝐶 . In the formal notation, a hitting set 𝐻 of
𝐶 ⊆ 2𝑆 is a minimal subset of 𝑆 satisfying

∀𝐸 ∈ 𝐶,𝐻 ∩𝐸 ≠∅.

In the HS-method, finding a set of Markovian parents of a node 𝑆𝑗 is equivalent to a single hitting set problem. The description
of the hitting set problem corresponds to each of the requirements from Section 6.1:

• Requirement 1 → A ground set of elements 𝑈 = IA𝑗 , intervention ancestors of 𝑆𝑗 .

• Requirement 2 → For each observation 𝑜 ∈𝑂 whose 𝑆𝑗 ’s behavior has changed without mutating 𝑆𝑗 , there is a corresponding
subset in the collection 𝐶 , where the subset elements are the intervention ancestors that changed together with 𝑆𝑗 in 𝑜; and vice
versa.

• Requirement 3 → The Markovian parents of 𝑆𝑗 , 𝑀𝑃𝑗 , is a hitting set of 𝐶 .

Algorithm 2 shows the algorithm for the HS-method. Similar to the CP-method, the HS-method first identifies the intervention
ancestors 𝐼𝐴𝑗 of a node 𝑆𝑗 . Then, given observations 𝑂 from a Δ-execution model, it identifies a subset SubS of 𝐼𝐴𝑗 whose value
also changed along with 𝑆𝑗 (Line 7). Unless 𝑆𝑗 is the only node that changed, one of the parent nodes of 𝑆𝑗 should also be changed
and thus be included in SubS. Solving a hitting set problem on the collection of SubS returns a minimal set of parents of 𝑆𝑗 satisfying
the above requirements (Line 11). There may be several subsets of 𝐼𝐴𝑗 satisfying the hitting set conditions. To cope with this, the
HS-method uses the same distance metric as the CP-method to choose the most plausible Markovian parents. We add a constraint to
the hitting set problem to prefer the Markovian parents whose sum of the weights, which is proportional to the distance metric from
𝑆𝑗 , is the smallest.

6.3.2. Advantages of the HS-method
13

The HS-method has the following advantages over the (un-relaxed) CP-method:

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

• More suitable to a Δ-execution model: the rules of the HS-method are deterministic; instead of comparing the conditional
probability, the hitting set-based algorithm checks the inclusive relationship between the parent candidates. It is more suitable
for a Δ-execution model because it is independent of the detailed difference between value distributions from different mutations.
We expect this to lead the HS-method to produce a causal structure closer to the program dependence structure. For example, in
the case of Fig. 8, whenever the values of a and c change, the value of b changes as well; thus, the HS-method removes 𝑆𝑎 from
the parent set of 𝑆𝑐 .

• Less sensitive to sampling bias: the CP-method is excessively sensitive to sampling bias as it requires two conditional probabil-

ities to be identical, which could easily become false when we estimate the probability from the samples. On the other hand, the
HS-method does not calculate the probability. It only considers whether there is another parent candidate that always changes
when one parent candidate and the child change. Thus, it is much less sensitive to the sampling bias than the original CP-method.

7. Causal program dependence model

In this section, we apply two metrics to measure the strength of the dependency in CPDA. The first, average causal effect [31],
measures the total effect of each node’s change that causes a change in another node. The second, natural direct effect [52], measures
the effect of one node on another excluding all indirect effects through other nodes. Finally, we build the causal program dependence
model (CPDM), a graphical representation of the program dependence based on the output of CPDA.

7.1. Average causal effect (ACE)

Given a causal structure, causal inference can measure the degree of causation with the causal effect 𝑃 (𝑦|𝑑𝑜(𝑥)), a probability
of 𝑌 having 𝑦 caused by setting 𝑋 to 𝑥. Yet, to quantify the dependence, we need to measure any difference in the behavior of the
affected program element due to the change of the affecting program element. For instance, if the behavior of program element 𝑆𝑗

is always changed no matter how we change the behavior of 𝑆𝑖, i.e., 𝑃 (𝑆𝑗 = 1 ∣ 𝑑𝑜(𝑆𝑖 = 1)) = 𝑃 (𝑆𝑗 = 1 ∣ 𝑑𝑜(𝑆𝑖 = 0)) = 1, then 𝑆𝑖 has
no effect on 𝑆𝑗 .

Average causal effect [31] measures the total effect of the change of one random variable 𝑋 on another random variable 𝑌 by
subtracting the causal effect on 𝑌 when 𝑋 is set to different values.

ACE(𝑋 → 𝑌) = 𝑃 (𝑦 ∣ 𝑑𝑜(𝑥1)) − 𝑃 (𝑦 ∣ 𝑑𝑜(𝑥0)).

In CPDA, we apply the average causal effect to measure the total effect of the causal dependency, i.e., the total effect of the behavior
change of 𝑆𝑖 on the behavior change of 𝑆𝑗 . The average causal effect in CPDA (ACE) is defined as follows:

Definition 7.1 (Average causal effect in CPDA (ACE)). Given a set of observations 𝑂 and two nodes 𝑆𝑖 and 𝑆𝑗 , the average causal
effect in CPDA (ACE) from 𝑆𝑖 to 𝑆𝑗 , ACE𝑂(𝑆𝑖, 𝑆𝑗), is defined as follows:

ACE𝑂(𝑆𝑖,𝑆𝑗) = 𝑃𝑂(𝑆𝑗 = 1 ∣ 𝑑𝑜(𝑆𝑖 = 1)) − 𝑃𝑂(𝑆𝑗 = 1 ∣ 𝑑𝑜(𝑆𝑖 = 0)) .

7.2. Natural direct effect (NDE)

Natural direct effect [52] quantifies the portion of the effect that is not mediated by any other nodes. More formally, it measures
the sensitivity of 𝑌 to changes in 𝑋 ∈ {Markovian parents of 𝑌 } while all other Markovian parents of 𝑌 are held fixed.

Definition 7.2 (Natural direct effect). The natural direct effect, denoted as nde𝑋∶𝑥→𝑥′ (𝑌) is the expected existence of a change in 𝑌
induced by changing 𝑋 from 𝑥 to 𝑥′ while keeping all mediating factors constant at whatever value they would have had under
𝑑𝑜(𝑥). nde𝑋∶𝑥→𝑥′ (𝑌) is calculated as follows:

∑
𝑧

[
𝐸
(
𝑌 ∣ 𝑑𝑜(𝑥′, 𝑧)

)
−𝐸 (𝑌 ∣ 𝑑𝑜(𝑥, 𝑧))

]
𝑃 (𝑧 ∣ 𝑑𝑜(𝑥)) ,

where 𝐸 is the expectation operator, and 𝑍 represents all parents of 𝑌 excluding 𝑋.

Similar to ACE, we apply the natural direct effect to quantify only the direct effect of the behavior change of 𝑆𝑖 on the behavior
change of 𝑆𝑗 . The natural direct effect in CPDA (NDE) is defined as follows:

Definition 7.3 (Natural direct effect in CPDA (NDE)). The natural direct effect in CPDA (NDE) from 𝑆𝑖 to 𝑆𝑗 , denoted as NDE (𝑆𝑖, 𝑆𝑗),
is the average of the natural direct effect in Definition 7.2 from 𝑆𝑖 to 𝑆𝑗 over all inputs :

NDE (𝑆𝑖,𝑆𝑗) =
1
||

∑
𝑡∈

nde𝑂𝑡,𝑆𝑖∶0→1(𝑆𝑗) ,

where nde𝑂𝑡,𝑆𝑖∶0→1(𝑆𝑗) denotes the natural direct effect in Definition 7.2 given 𝑂𝑡, the observations from input 𝑡, for computing the
14

probability.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

7.3. Causal program dependence model

Given the definition of the NDE, CPDM is a weighted dependence graph for the program. Its structure is the causal structure where
each edge weight denotes the NDE between the nodes. CPDM is thus a novel graph representation that explains program dependence
in a continuous, gradual way.

8. Experimental setup

This section presents the empirical evaluation we designed to investigate how CPDA and CPDM could identify and quantify the
program dependence and the potential of the quantified dependency to aid various downstream tasks. Subsequently, it introduces
the subject programs we consider, some baselines, and the implementation environment.

8.1. Research questions

Our research questions can be organized into two different sets. The first set investigates the structure discovery methods. We
evaluate the performance of the CP-method and the HS-method in terms of the accuracy of the causal structure compared to the
ground truth PDG and the efficiency of discovering the structure.

RQ1-1. Causal Structure and PDG: How accurate are the causal structures discovered by the CP-method and the HS-method compared to
the ground truth PDG? We examine the accuracy of the causal structure by counting the number of false positive edges (the
structure contains an edge that is not in the ground truth PDG) and the number of false-negative edges (the structure does
not contain an edge that is in the ground truth PDG). We also qualitatively analyze the root cause of such discrepancies.

RQ1-2. Efficiency: How efficient are the structure discovery algorithms? It is worth noticing that the dependence analysis often serves
as a pre-processing step for downstream analysis. Therefore, the efficiency of the dependency analysis is a critical factor in
its usefulness. We compare the efficiency of the CP-method and the HS-method using multiple subject programs. We report
the average time spent running each method ten times.

RQ1-3. RCP-method: How does the relaxation affect the performance of the CP-method? To overcome the drawbacks of the CP-method
we extend the CP-method by introducing a threshold to relax the criterion of dependence (RCP-method). We compare the
performance of the RCP-method using various thresholds.

The second set of research questions investigates the characteristics and potential benefits of CPDM’s quantified program depen-

dence. For evaluation, we present three scenarios to show the utility of CPDM. The first two have a straightforward comprehension
focus. The Quantified Dependence scenario uses CPDM to illustrate program semantics via clustering the strongly connected (i.e.,
strongly dependent) program elements, while the Execution Awareness scenario uses the CPDM to identify execution scenarios via ob-

servational subsetting. Finally, our Debugging scenario considers how CPDM can assist in debugging based on quantified dependence.

RQ2-1. Quantified Dependence: The strength of the dependency relations in a program can vary considerably depending on a
program’s semantics. A key characteristic of CPDA is its causal inference-based estimates of dependence strength. The first
scenario asks the question, does the CPDM capture dependence strength sufficiently to assist in understanding a program’s semantics?

For evaluation, we undertake CPDA for several subject programs and examine the CPDM from two different viewpoints. First,
we consider the whole CPDM of a program, clustering the nodes using dependence strength and checking how this can express
the functional aspects of the program. Second, we take a closer look at each program element and how the relative degree
of dependence to and from its neighbors helps us understand its semantics. In addition, we investigate whether CPDM can
accurately identify the non-existence of dependences, which are often produced as false-positive dependences by the static
analysis.

RQ2-2. Execution Awareness: A program may have several execution scenarios with different functionalities and dependences.
CPDA can estimate the dependence on a specific execution, or for some subset of executions, by simply choosing the corre-

sponding (subset of) observations. In this scenario, we ask how does the estimated CPDM from different execution scenarios aid
in program comprehension?

RQ2-3. Debugging: In the final scenario, we consider how quantified dependence estimated by CPDA can be employed when debugging.

8.2. Subject programs

To explore aspects of CPDA we make use of three subject programs with easily understood semantics: Triangle (tri), a classic
subject from software testing, word count (wc), a widely studied program in the program dependence literature [24,41], and Bill&Ted
(B&T), a program with more complicated control flow structure than tri and wc. In addition we consider tcas, a more substantial
program designed to determine if two airplanes are headed for a collision. We manually construct each program’s PDG regarding
the program elements (defined in Section 5.2) and use it as the ground truth. Finally, in order to capture various execution scenarios
in the experiments, we consider a range of test suites. We employ all the tests to estimate the CPDM in the quantified dependence
scenario (RQ2-1), while we consider several subsets in the execution awareness scenario (RQ2-2). We describe these four subjects in
15

greater detail and then briefly describe a few programs and techniques used for specific purposes in the empirical exploration.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

• Triangle (tri): Given three natural numbers corresponding to the length of each side of a triangle, Triangle determines whether
the sides form a triangle or not, and if so if the triangle is equilateral, isosceles, or scalene. The universal test input space considers
the values 1-5 for each side; it consists of 53 = 125 test cases in total. We choose a maximum length of 5 since a maximum of 3
constructs no scalene triangles, and a maximum of 4 yields only a single scalene triangle (of sides 2, 3, and 4). Along with the

total test suite, we use two additional test suites for tri:

valid : Tests where the sides satisfy the triangle inequality (65 of the 125 test cases).

ordered : Tests where the sides are ordered in non-decreasing order (35 of the 125 test cases).

While restricting the input to only valid sides significantly changes the distribution of triangle types, ordering of the sides causes
each side to play an asymmetric role; for example, when two sides are equal, the middle side length will always be one of the
equal sides.

• Word count (wc): The word count program counts the number of characters, lines, and words found in its input text. We manually
generate four test suites that combined with an empty input (Test 0) provide branch adequate coverage:

onechar: Test 1 contains a single letter.

oneword: Tests 2-3 contain a single word of multiple letters.

oneline: Tests 4-5 contain a single line with multiple words.

multiline: Tests 6-7 contain multiple lines of multiple words.

• Bill&Ted (B&T): Bill&Ted is a program designed to compute the parking fee for several classes of vehicles (e.g., cars, trucks, etc.)
staying for various lengths of time. We manually generated a path-coverage adequate test suite consisting of 114 tests.

• TCAS Version 1 (tcas-1): To evaluate the debugging task, we employ a buggy version of the program, TCAS Version 1 (tcas-1),
from the Siemens suite [17]. As is common in such studies, we assume a single failing test in a minimal statement-coverage
adequate test suite.

To investigate CPDA’s ability to correctly establish the non-existence of dependences, we employ two additional programs, mbe
and mug, from work by Binkley et al. [10]. These two demonstrate the limitation of static analysis, which commonly produces false-

positive dependences for these examples. Binkley et al. [9] show that observation-based analysis (observation-based slicing (ORBS))
can successfully identify the true negative dependences. We use these examples to investigate if, like ORBS, CPDA can correctly avoid
these potential false-positive dependences.

While we choose vetted programs for evaluating the CPDA’s causal dependency, the size and complexity of the programs are not
varied to investigate the accuracy and scalability of our structure discovery algorithms. To address this, we study artificial DAGs with
a given number of nodes and random edges for the structure discovery evaluation in addition to the above subject programs. Given
a graph, a sensitivity (the probability of a child change given one of its parent changes), and a mutation count (the number of times
a node is mutated), we generate samples of which nodes change together if one changes one of the nodes in the graph. We consider
three artificial graphs (each of 𝑛, 𝑒 (𝑟) denotes the number of nodes, edges 𝑒, and the edge ratio 𝑟 such that 𝑒 = (𝑛) × (𝑛 − 1) × 𝑟):

• 𝐺1: 5, 4 (0.2)

• 𝐺2: 50, 98 (0.04)

• 𝐺3: 500, 998 (0.002)

8.3. Baselines

We explore the characteristics of CPDA and CPDM against the use of static dependency found in a PDG [23]. Using a debugging
task, we also investigate how the quantified dependence from CPDA differs from that of the PPDG [6] and BNPDG [78] mentioned in
the motivating example of Section 2. To do so, we apply their work on dynamic dependence analysis to the fault localization problem.
The main hypothesis of PPDG’s fault localization is that the reaching definition with the smallest conditional probability in PPDG
learned from passing executions that occur in the failing test execution is deemed the most suspicious and, thus, the most likely to
have a fault. The BNPDG, on the other hand, assumes that a node is more likely to be faulty if the conditional probability of the node
given the state of an erroneous output is higher. We compare their ability to detect the fault compared with that of CPDM as part of

RQ2-3.

8.4. Implementation, configuration, and environment

The theory of causal inference assumes that the structure of the model is a DAG and thus acyclic. To apply CPDA on a program with
loops, we unroll the loops of the program. After applying CPDA to the unrolled program, we merge nodes that represent instances of
the same program element. Merging allows a self-loop, which represents a program element dependent on its previous value. After
the merge, the ACE (or NDE) between Node A and Node B is the maximum of the ACE (or NDE) between any instance of Node A and
any instance of Node B. The base idea of using the maximum is that if an instance of Node A always affects an instance of Node B in
16

the unrolled program, then we can say that Node A always affects Node B in the original program.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. 9. Causal structure of tri (left: the CP-method; right: the HS-method).

Table 1

Accuracy (TP: true-positive / FP: false-positive / FN: false-negative)
of causal structure with respect to the PDG.

TP/FP/FN tri B&T wc tcas

CP-method 19/0/0 108/93/4 28/7/1 92/55/10

HS-method 19/0/0 106/2/6 27/0/2 79/7/23

To select nodes for analysis and to insert logging functions in the original program we use srcML [15], an open-source tool that
parses the source code into an XML format. After performing a preliminary experiment with CPDA to choose a sufficient number of
mutation samples (𝑁mpn) that gives steady empirical results, we use 100 mutations (𝑁mpn = 100) for two smaller programs, tri and

wc, and 20 mutations (𝑁mpn = 20) for B&T and tcas for the rest of the experiments. We choose various thresholds including 0, powers
of 0.1, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1 (0.1), and 0.2, 0.3, 0.5 to evaluate the RCP-method. Then, we further choose thresholds
0.0002, 0.0004, 0. 0006, 0.0008, 0.002, 0.004, 0.006, and 0.008 for a more precise experiment as we observe the accuracy of the
structure varies largely around thresholds of 0.001.

All experiments are performed using Ubuntu 18.04 on an Intel(R) Core(TM) i7-6700K CPU @ 4.00 GHz with 32 GB of RAM.
Computing the conditional independence in the CP-method can be run in parallel. Our experiment uses Nvidia Titan X for parallelized
computation. All the experimental data are available in https://to .be .released.

9. Results

This section presents the empirical evaluation of our causal program dependence analysis.

9.1. RQ1. Structure discovery

9.1.1. RQ 1-1: causal structure and the PDG

Figs. 9, A.22, A.23, and A.24 show the causal structure discovered by the HS-method and the CP-method for the four benchmark
programs tri, B&T, wc, and tcas.6 While both causal structures for tri are the same and consistent with the ground-truth PDG, for the
other three subject programs the causal structures for the CP-method have significantly more edges than that for the HS-method.

Table 1 shows the accuracy of the two causal structures compared to the ground truth PDG. Overall the HS-method produces
significantly fewer false-positive edges (non-dependency edge in the causal structure) compared to the CP-method. Furthermore the
HS-method produces no false-positive edges for tri and wc and only two and seven, respectively, for B&T and tcas. On the other hand,
while the CP-method produces no false-positive edges for tri, it produces seven for wc and more than fifty for B&T and tcas. Thus the
HS-method produces significantly fewer false-positive edges than the CP-method, however, on the flip side it produces a few more
false-negative edges (no dependency edge in the causal structure) than the CP-method.

The left side of Fig. 10 shows a typical example of a false-negative edge in the causal structure. In the figure, the variable y is
control dependent on the variable p. However, whenever p is mutated, the value of x also changes. Therefore, the HS-method discards
the edge from p to y. This suggests that separating edges whose source is a control node from other edges might bring value as it
should separate control and data dependence edges. We will discuss this in the future work section.
17

6 Fig. A.22, A.23, and A.24 are in Appendix A due to their size.

https://to.be.released

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

1 if (p) {

2 x = f();

3 y = g(x);

4 }

1 a = ...;

2 p = f(a);

3 q = g(p);

4 if (q)

5 r = h(a);

Fig. 10. Example of a false-negative edge (left) and a false-positive edge (right) in the causal structure.

Table 2

Time spent (seconds) during Algorithm 1 and Algorithm 2 for the four benchmark programs and
three artificial graphs.

Time (s) tri B&T wc tcas 𝐺1 𝐺2 𝐺3
CP-method (w/o GPU) 0.7 13,281.3 44.9 40.7 0.0033 1.3 1600

CP-method (w/ GPU) 1.8 1,028.5 48.8 34.7 0.021 0.68 19

HS-method 0.6 23.5 8.6 1.5 0.00089 0.020 0.39

Table 3

Time spent during Algorithm 1 and Algorithm 2 for different number of edges.

𝑟 = 0.01 0.02 0.04 0.08 0.16

CP-method (w/o GPU) 0.007 0.12 1.3 2.0 2.2

CP-method (w/ GPU) 0.021 0.17 0.68 0.96 1.0

HS-method 0.0093 0.013 0.020 0.029 0.028

A large number of the false-positive edges in the CP-method’s causal structure are due to the inconsistency between program
dependence and the Markov condition we discussed in Section 6.2.2. The right side of Fig. 10 shows a typical example of a false
positive edge we found in the HS-method’s causal structure of tcas, which is also identical to what is described in Section 6.1. The
true Markovian parents of r at Line 5 are q and a from Lines 1 and 2, while p in Line 3 is also one of the parent candidates. In
the observation, a change of a’s behavior always changes p’s behavior. At the same time, there is an observation where a and p’s
behavior changed, but q is unchanged from True, therefore leading r’s behavior to change. Then, due to the distance-based heuristics,
the structure discovery algorithm prefers p as a Markovian parent above a, creating the false-positive edge.

Summary of RQ1-1: The HS-method produces significantly fewer edges compared to the CP-method. Compared to the ground truth
PDG of the benchmark program, the HS-method produces significantly fewer false-positive edges than the CP-method. However, it
produced slightly more false-negative edges.

9.1.2. RQ 1-2: efficiency

Next, we compare the efficiency of the CP-method and the HS-method in terms of the time spent for the four benchmark programs,

tri, B&T, wc, and tcas, and the artificially generated graphs. The second to the fifth columns of Table 2 compare the time spent
calculating the causal structure of the four benchmark programs using the CP-method and the HS-method. We only compare the
wall-clock time of Algorithm 1 and Algorithm 2 without the time getting the intervention parents as both methods share it. The result
shows that the HS-method is faster than the CP-method, both with or without using GPU. The difference is the largest for the biggest
program, B&T (227 lines), where the HS-method is 44 times faster than the CP-method with GPU. The difference is moderate for tcas
(182 lines) and wc (54 lines) while there is almost no difference for tri (20 lines). The sixth to the last columns of Table 2 compare
the time spent calculating the causal structure of the three artificial graphs. For this experiment, we assume that the graph is fully
sensitive (the child always changes when one of its parents changes) and generate samples by mutating each node once. The result
again shows that the HS-method is faster than the CP-method. Similar to the previous result, the difference becomes larger as the
graph size increases. We also can see that the GPU is useless for reducing the time cost when the program/graph size is small.

To take a closer look at the effect of the number of edges on the efficiency of the structure discovery algorithms, we run the same
experiment using 𝐺2 with a different edge density. Table 3 shows the time spent on graphs with different edge densities. The result
again shows that the HS-method is faster than the CP-method. It also finds that the time cost of the HS-method stabilizes by 𝑟 =
0.16, while the cost of the CP-method continues to increase.

Finally, we compare the effect of the number of samples. For this experiment, we consider the sensitivity of 0.75 for 𝐺2 for the
following reason: the edge ratio of 0.04 in 𝐺2 assigns two incoming edges for each node on average; the sensitivity of 0.75 limits
the chance of the parents’ effect not propagating to the child by around 5% (≈ 0.252) when two or more parents change. Then, we
mutate each node 1, 5, 10, and 20 times to generate a different number of samples. Along with the time spent, we also present the
number of true-positive, false-positive, and false-negative edges compared to the original graph. For comparison, we also include the
case of the fully sensitive graph with a single mutation per node.

Table 4 shows the time spent (T) and accuracy (Acc: TP/FP/FN) for Algorithm 1 and Algorithm 2 for a different number of samples.
The data find that the HS-method outperforms the CP-method in terms of efficiency. Notice that the HS-method is also more scalable
to the sample increase than the CP-method; the HS-method’s ratio of time spent as the number of samples increases is smaller than
that of the CP-method. The difference in the accuracy between the CP-method with and without GPU is due to a CPU versus GPU
18

floating-point difference.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Table 4

Time spent (T) and accuracy (Acc: TP/FP/FN) for Algorithm 1 and Algorithm 2 for different number of samples. “Sen” represents the sensitivity
and “Mut” represents the number of mutations per node.

Sen=1, Mut=1 Sen=0.75, Mut=1 Sen=0.75, Mut=5 Sen=0.75, Mut=10 Sen=0.75, Mut=20

T(s) Acc T(s) Acc T(s) Acc T(s) Acc T(s) Acc

CP (w/o GPU) 1.3 62/0/37 0.93 65/116/34 8.5 94/357/5 20 95/477/4 42 97/585/2

CP (w/ GPU) 0.68 62/0/37 0.64 66/119/33 1.6 92/363/7 6.4 95/482/4 15 97/585/2

HS 0.020 62/0/37 0.016 56/24/43 0.029 89/4/10 0.046 91/4/8 0.073 95/3/4

Table 5

The number of true-positive, false-positive, and false-negative edges for the RCP-method for different thresholds. “B&T” and “𝐺2 .” represents the B&T benchmark
program and artificial graph, respectively. The bold text shows the case when the sum of the numbers of false-positive edges and false-negative edges is the smallest.

Threshold 0 1e-6 1e-5 0.0001 0.0002 0.0004 0.0006 0.0008 0.001 0.002 0.004 0.006 0.008 0.01 0.1 0.2 0.3 0.5

B&T

TP 108 108 107 105 105 105 105 105 105 103 96 94 90 81 26 0 0 0

FP 93 63 43 22 14 13 10 10 8 6 3 2 2 2 0 0 0 0

FN 4 4 5 7 7 7 7 7 7 9 16 18 22 31 86 112 112 112

𝐺2

TP 97 97 94 91 91 91 88 84 83 76 64 63 55 48 2 0 0 0

FP 585 539 300 95 58 33 18 16 13 12 15 10 11 14 3 0 0 0

FN 2 2 5 8 8 8 11 15 16 23 35 36 44 51 97 99 99 99

According to Table 4, both the HS-method and the CP-method add more edges to their causal structure as the size of the sample
increases (TP + FP). The number of true-positive edges is marginally larger in the CP-method than that in the HS-method. However,
the number of false-positive edges is significantly larger in the CP-method than that in the HS-method. The number of false-negative
edges is marginally larger in the HS-method than that in the CP-method. An interesting point to notice is the change in the number
of true-positive, false-positive, and false-negative edges. While the number of false-positive edges and the number of false-negative
edges decreases in the HS-method as the number of samples increases, the number of true-positive edges increases dramatically in
the CP-method. The difference in the number of false-negative edges between the two methods decreases as the number of samples
increases.

Summary of RQ1-2: The HS-method is much more efficient than the CP-method. As the number of samples increases, the number
of false-positive edges and the false-negative edges decreases for the HS-method, while the number of false-positive edges increases
for the CP-method.

9.1.3. RQ 1-3 RCP-method

To evaluate the RCP-method, we choose the B&T benchmark program since the CP-method introduces the largest number of
false-positive edges to the causal structure. We also again use artificial graph 𝐺2 with a 0.75 sensitivity and 20 mutations per node,
which is where the CP-method performed poorly regarding the number of false-positive edges.

Table 5 shows the number of true-positive, false-positive, and false-negative edges found in the causal structure of the RCP-method
using different thresholds. In general, the number of true-positive edges and the number of false-positive edges decreases while the
number of false-negative edges increases as the threshold increases for both subjects, which naturally implies that a larger threshold
leads more parent candidates to be discarded. The number of true-positive edges increases when the threshold is from 0.002 to 0.004
and from 0.006 to 0.008. We expect this to happen since the order of parent candidate removal affects the final Markovian parent set;
removing one parent candidate by increasing the threshold may cause the inability to remove a larger number of parent candidates.

The result shows that the sum of the number of false-positive edges and false-negative edges is smallest when the threshold is
0.001, 0.002 for B&T, and 0.0006, 0.001 for 𝐺2. The number of true-positive edges only loses three (nine) when the threshold is
0.001 (0.006) for B&T (𝐺2) compared to when there is no threshold. Figs. 11 and A.25 present the result in Table 5 as well as the
result of the HS-method from Table 1 and Table 4.7 It shows that the RCP-method never produces a smaller sum of the number of
false-positive and false-negative edges than the HS-method. Nevertheless, the result of the RCP-method illustrates its potential to
control the trade-off between the false-positive and the false-negative in the structure discovery.

Summary of RQ1-3: The result of the RCP-method illustrates its potential to control the trade-off between the false-positive and
the false-negative in the structure discovery. Yet none of the RCP-method of thresholds we investigated produces a smaller sum of
the number of false-positive and false-negative edges than the one from the HS-method. Based on the result of RQ1, we use the
HS-method in addressing RQ2.

9.2. RQ2. Quantified dependency

9.2.1. RQ 2-1: program semantics

Clustering

Fig. 12 shows the pseudo-code of wc where node indexes are annotated with angular brackets. Figs. 13a and 13b show the resulting
PDG and CPDM. The first thing to notice is how similar the two graphs are. This illustrates that causal inference is able to distinguish
19

7 Fig. A.25 is in Section A due to the size of the figure.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. 11. The number of false-positive (FP), and false-negative (FN) edges found in the causal structure of the RCP-method using different thresholds and the HS-method.

1 def main() {

2 <1>characters, <2>lines, <3>words, <4>inword = 0, 0, 0, 0

3 while (<5>_pred1 = (scanf("%c", <6>&c) == 1)) {

4 <7>characters = characters + 1

5 if (<8>_pred2 = (c == ’\n’))

6 <9>lines = lines + 1

7 if (<10>_pred3 = isLetter(c)) {

8 if (<11>_pred4 = (inword == 0))

9 <12>words = words + 1

10 <13>inword = 1

11 }

12 else

13 <14>inword = 0

14 }

15 }

16 def isLetter(<15>c) {

17 if (<16>_pred5 = ((c >= ’A’ && c <= ’Z’) || (c >= ’a’ && c <= ’z’)))

18 <17>_ret = True

19 else

20 <18>_ret = False

21 return _ret

22 }

Fig. 12. Pseudo-code of the wc subject program with node numbers shown between angular brackets, ⟨n⟩ and predicates explicitly pulled out into assignment
statements.

many of the same dependences as found in a PDG. It does this without the need for the formal semantics of the programming language.
Furthermore, as illustrated below, the CPDM omits certain unwanted edges present in the PDG. In the CPDM the thickness of the edges
reflects the degree of NDE. Clustering program elements based on how strongly they depend on each other reveals patterns that relate
to features in the source code. This can be observed in Fig. 13b, in which nodes are grouped together based on the average degree
of dependence within subgroups. The clusters, shown using dashed lines, highlight nodes with strong connections that correspond to
features of the program. For example, nodes ⟨1⟩, ⟨5-7⟩, and ⟨15-18⟩ count the input character and check if it is alphabetic. Similarly,
nodes ⟨2⟩, ⟨8⟩, and ⟨9⟩ are involved with the line count, while ⟨10⟩, ⟨13⟩, and ⟨14⟩ capture the in-word logic. Finally nodes ⟨3⟩, ⟨4⟩,
⟨11⟩ and ⟨12⟩ count the number of words.

In comparison, the nodes weakly connected (grey edges in Fig. 13b) often reflect features that are only occasionally executed
by the test suite. For example, the word counting feature is only executed when there is at least one non-alphabet character in the
input. Related (weaker) dependences (denoted {⟨from⟩} → {⟨to⟩}) include {⟨18⟩} → {⟨10⟩}, {⟨13⟩} → {⟨11⟩}, and {⟨14⟩} → {⟨11⟩}.
Even a feature that is executed in every execution may have a small NDE. For example, the character read at node ⟨6⟩ affects the
predicate at node ⟨8⟩, which in turn checks whether the character is a newline or not. Because only newline characters matter the
causal relationship is not strong.

Such examples show that the quantified dependences with NDE in the CPDM can capture the aspects of program semantics more
concisely than the traditional indistinguishable dependences in the PDG. In contrast, despite being a small 40-line program, wc’s PDG
20

(Fig. 13a) in which all edges have equal weight makes it challenging to identify computationally related portions of the code.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. 13. (a) wc’s PDG, (b) CPDM and (c) B&T’s CPDM where thicker edges reflect larger NDE. The dashed lines represent the cluster of nodes based on the strength
of the NDE.

1 def main(args) {

2 <1>car_type = args[0]

3 <2>_pred1 = car_type == "SENIOR_CITIZEN"

4 if (_pred1) <3>fee = 0.0

5 else {

6 <4>_pred2 = !(car_type == "CAR" || car_type == "TRUCK")

7 if (_pred2) <5>fee = -2.0 // INVALID

8 else {

9 <6>day, <7>duration = args[1], args[2]

10 <8>_pred3 = car_type == "CAR"

11 if (_pred3) <9>cost = compute_car_fee(duration)

12 else <10>cost = compute_truck_fee(duration)

13 <11>_pred4 = cost == -1.0 // EXCEED MAX DURATION

14 if (_pred4) <12>fee = -1.0

15 else {

16 <13>_pred5 = day == "THURSDAY"

17 if (_pred5) <14>cost = cost * THURSDAY_DISCOUNT

18 else {

19 <15> _pred6 = day == "SATURDAY"

20 if (_pred6) <16>cost = cost * SATURDAY_SURCHARGE

21 }

22 <17>fee = cost

23 ...}}}} // END of main

Fig. 14. Pseudo-code of B&T.

As a second case study, Figs. 14 and 13c show the pseudo-code and the partial CPDM for the main function of the B&T example.
The CPDM includes the invocation of two functions (the two rectangles) that compute the fee for cars and trucks: it reveals two
clusters of strong dependence that differentiate the functional aspect of the code before and after the call to one of the fee calculation
functions. The former cluster captures the preparation ahead of the fee calculation: identifying the type of the vehicle and deciding
the charging rule. The latter cluster shows the post-processing applying a discount or a surcharge. From the case study, we posit that
the capability to focus on different bands of NDE can help an engineer better understand the code.

Note that Fig. 13c also shows some false dependence edges in the CPDM. In the ground truth PDG, ⟨4⟩ affects ⟨11⟩, and ⟨11⟩
affects ⟨17⟩. However, since ⟨9-10⟩ and ⟨13⟩ always change their behaviors when ⟨4⟩ and ⟨11⟩ change, respectively, CPDM ignores
21

the dependences {⟨4⟩} → {⟨11⟩} and {⟨11⟩} → {⟨17⟩} and adds {⟨13⟩} → {⟨17⟩} instead.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

1 int mbe(int <1>j, int <2>k) {

2 while (<3>p(j)) {

3 if (<4>q(k)) {

4 <5>k = f1(k);

5 } else {

6 <6>k = f2(k);

7 <7>j = f3(j);

8 }

9 }

10 return <8>j;

11 }

(a) mbe

1 int mug(int <1>i, int <2>c, int <3>x) {

2 while (<4>p(i)) {

3 if (<5>q(c)) {

4 <6>x = f();

5 <7>c = g();

6 }

7 <8>i = h(i);

8 }

9 return <9>x;

10 }

11

(b) mug

Fig. 15. Pseudo-code of (a) mbe and (b) mug.

Fig. 16. Causal structure of (a) mbe and (b) mug and the (c) causal dependency. In the graphs, the orange-diamond nodes represent the predicates in the program,
and the grey-rectangle nodes represent the function invocations and their return values.

Per element inspection

We next focus on individual elements of the CPDM and their dependences. The difference in NDE expresses the detailed semantics
around the element that conventional dependence analysis misses.

First, we investigate if CPDA can overcome a key limitation of the assumed transitivity inherent in static dependence analysis.
Fig. 15 shows the pseudo-code for mbe and mug, two small programs that explore the limits of static analysis. Each program includes
program elements that are not dependent on one another, yet transitive static analysis is unable to realize this. In mbe, the key
observation is that the value of j at ⟨7⟩ in any terminating execution of the program is independent of the value of k, as the loop
termination condition depends only on j. However, from a dependence point of view the value of k assigned to nodes ⟨2⟩, ⟨5⟩,
and ⟨6⟩ affects (via a data-dependence) the predicate q(k) of ⟨4⟩, on which ⟨7⟩ is control dependent. Thus, any transitive static
dependence analysis will conclude that the value of k affects the value of j.

Similarly, in mug example the final value of x at ⟨9⟩ is independent of ⟨7⟩: if the initial value of c makes q(c) (⟨5⟩) False, the
variable x maintains its initial value Otherwise, if the predicate is True (one or more times) the return value of g() becomes the final
value of x. However static dependence analysis finds that ⟨7⟩ affects ⟨9⟩ through path ⟨7⟩ 𝑑

←←←←←←←→ ⟨5⟩ 𝑐
←←←←←←→ ⟨6⟩ 𝑑

←←←←←←←→ ⟨9⟩.8
Fig. 16a and 16b show the causal structures generated for mbe and mug, respectively. CPDA successfully discovers structures

identical to the ground truth PDG for mbe and mug. What is different from the static dependence analysis is shown in Fig. 16c, the
ACE from other nodes to the return node for mbe and mug. The left side of the table shows no causal dependencies from nodes
corresponding to variable k to ⟨8⟩. Nodes ⟨1⟩ or ⟨7⟩ are likewise devoid of dependence on variable k. The quantified dependence
clearly captures that a change in the behavior of k has not affected the behavior of j, assuming that the program terminates. The
right side of the table shows CPDA determines that ⟨7⟩ has no effect on ⟨9⟩, as changing ⟨7⟩ does not make a difference to the return
value. These results demonstrate that CPDA can untangle the runtime dependence of the program. Unlike CPDA, PPDG and BNPDG
cannot untangle the runtime dependence since they quantify the frequency of control/data-flow transition, which is insufficient to
22

8
𝑑
←←←←←←→ and 𝑐←←←←←→ denote the data- and control-dependency, respectively.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. 17. Partial graph from CPDM of tri.

notice the behavior change. MOAD can untangle the runtime dependence as CPDA does, but it cannot produce the dependence graph
like Figs. 16a and 16b.

Next, we inspect how the difference in the magnitude of dependence exposes the detailed semantics of the program. To do so, we
demonstrate how the magnitude of NDEs between the nodes explains the detailed dependence of the program for wc and tri. From
the CPDA of wc, we observe the following (values in the parentheses are the degree of NDE):

• {⟨17⟩} → {⟨10⟩} (1.00) > {⟨18⟩} → {⟨10⟩} (0.80): In function isLetter, ⟨17⟩ and ⟨18⟩ are the nodes that express whether
the character is an alphabetic character or not. Since half of the tests lack non-alphabet characters, the effect on ⟨10⟩ of ⟨17⟩ is
stronger than that of ⟨18⟩.

• {⟨4⟩} → {⟨11⟩} (1.00) > {⟨13⟩} → {⟨11⟩} (0.97) > {⟨14⟩} → {⟨11⟩} (0.77): ⟨4⟩, ⟨13⟩, and ⟨14⟩ all correspond to the variable

inword. Because ⟨4⟩ affects ⟨11⟩ whenever there is at least one alphabetic character, {⟨4⟩} → {⟨11⟩} has the highest NDE,
while ⟨13⟩ and ⟨14⟩ only affect ⟨11⟩ if the input includes more than one alphabetic character, which is true of fewer test cases.
Furthermore, because there are test cases that include only alphabetic characters, ⟨13⟩ affects ⟨11⟩ more than ⟨14⟩ does.

Fig. 17 shows the partial graph from the CPDM of tri where Nodes ⟨S1⟩, ⟨S2⟩, ⟨S3⟩ represent inputs of the three sides lengths, and
⟨Tri?⟩, ⟨Equ?⟩, ⟨Iso?⟩ represent predicates checking whether the input is not-a-triangle, equilateral, or isosceles, respectively. In the
CPDM, we observe the following:

• {⟨S1⟩} → {⟨Tri?⟩} = {⟨S2⟩} → {⟨Tri?⟩} = {⟨S3⟩} → {⟨Tri?⟩}: The equivalence of these three weights in the CPDM is indicative
of the symmetry in the use of the three side lengths for judging whether they form a triangle. While not shown in Fig. 17, the
CPDA also assigns undifferentiatable weights to dependences on ⟨Iso?⟩ and ⟨Equ?⟩. These examples show how the CPDM reveals
the semantic symmetry beyond simple depends-on relations.

• {⟨S*⟩} → {⟨Tri?⟩} > {⟨S*⟩} → {⟨Iso?⟩} > {⟨S*⟩} → {⟨Equ?⟩}: In contrast, there is a clear difference in the dependence strength
from a side length (e.g., ⟨S1⟩ in Fig. 17) to the predicate nodes. This succinctly captures the relative challenge in finding inputs
that affect each condition. For example, it is easier to meet the requirements of an isosceles triangle than an equilateral triangle.

Note that frequency based approaches such as the PPDG and BNPDG cannot estimate such challenge: since all sides lengths
always reach each predicate if executed, the PPDG and BNPDG consider the dependence between the side lengths and each
predicate with the frequency of predicate execution. For example, if the nested if-structure in tri checks conditions in the order
of ⟨Tri?⟩, ⟨Equ?⟩, and ⟨Iso?⟩, the PPDG/BNPDG will estimate {⟨S*⟩} → {⟨Tri?⟩} > {⟨S*⟩} → {⟨Equ?⟩} > {⟨S*⟩} → {⟨Iso?⟩}.

Summary of RQ2-1: By clustering strongly connected nodes based on the quantified dependence, CPDM can aid in grouping the
program’s functionality. Strong NDE values indicate dependency relations having an effect in most executions, such as the program’s
dominant control-flow structure. While focusing on a specific element, the relative NDE values demonstrate information on the local
behavior of the element.

9.2.2. RQ2-2: execution-awareness

This section investigates how the CPDM changes when using different test suites.

Difference in the required functionality

Fig. 18 shows differences in the resulting CPDMs for wc when using the four test suites introduced in Section 8.2. These test suites
incrementally require additional functionality. The structure of the CPDM changes accordingly. In Fig. 18, regarding the caption
formatted as ‘𝐴 −𝐵,’ solid red edges are found only in the CPDM with the test suite 𝐴, and gray edges are found in both the CPDM
with the test suites 𝐴 and the CPDM with the test suite 𝐵. We actually represent edges only in the CPDM from the test suite 𝐵 as
dashed blue edges, but there are no such edges. We now consider the three comparisons shown in the figure in greater detail.

• One (multi-characters) word vs. one char (Fig. 18a): Variable characters of ⟨7⟩ either increments the prior values of 0 from
⟨1⟩ or itself. The second of these only occurs when there is more than one character in the input. Thus, the self-dependence of ⟨7⟩
appears when using the oneword test suite but not when using the onechar test suite. Similarly, the predicate of ⟨11⟩ is either
affected by the initial value of variable inword at ⟨4⟩ or the assigned value at ⟨13⟩ or ⟨14⟩. The dependence on ⟨11⟩ from ⟨13⟩
finally appears when more than one alphabet character exists, yet the dependence on ⟨11⟩ from ⟨14⟩ does not, as it needs a test
suite with at least one non-alphabetic character.

• One (multi-word) line vs. one word (Fig. 18b): The main change of the inputs in the oneline test suite compared to the inputs
23

in the oneword test suite is the inclusion of non-alphabet characters that separate the words. This brings into play the sequence

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. 18. Differences in the CPDMs for wc created using the four different partitions of the test suite. In each figure caption A − B, shows edges in A only in solid-red,
and edges in both in gray.

Test suite ⟨Tri?⟩ ⟨Equ?⟩ ⟨Iso?⟩
Total 0.51 0.13 0.35

Valid 0.97 0.13 0.35

(a) {⟨S1⟩} → {⟨predicate node⟩}

Ordered ⟨S1⟩ ⟨S2⟩ ⟨S3⟩
⟨Equ?⟩ 0.29 0.18 0.24

⟨Iso?⟩ 0.21 0.46 0.33

(b) {⟨S*⟩} → {⟨Equ?⟩,⟨Iso?⟩}
Fig. 19. (a) Select NDEs involving ⟨S1⟩ (the NDEs for ⟨S2⟩ and ⟨S3⟩ are essentially the same) from tri using all tests (Total) and those satisfying the triangle inequality
(Valid). (b) Select NDEs obtained using the Ordered test suite.

of nodes ⟨16⟩ → ⟨18⟩ → ⟨10⟩ → ⟨14⟩ → ⟨11⟩, which determine whether the current character is in a word or not. Also, a
self-dependence involving ⟨12⟩ appears, as there is more than one word to count. Note that, unlike Fig. 13b, the degree of
NDE of {⟨18⟩} → {⟨10⟩} and {⟨17⟩} → {⟨10⟩} are the same. This is because every test in oneline contains both alphabet and
non-alphabet characters.

• Multiple lines vs. one line (Fig. 18c): The presence of newline characters in the multiline test suite brings into play wc’s line
counting functionality captured by ⟨2⟩, ⟨6⟩, ⟨8⟩, and ⟨9⟩, which is not present in the oneline or onechar inputs.

To summarize, the CPDM allows an engineer to uncover different flow patterns within the code by varying the test suite. Using
different test suites that differ only in some key feature, an engineer can understand the connections in the program between the
elements supporting that feature using the CPDM.

Differences in the input distribution

Fig. 19 shows select NDEs for tri using three different test suites: Total, which contains all 125 tests, Valid, which contains the
inputs that satisfy the triangle inequality, and Ordered, which contains the inputs where S1 ≤ S2 ≤ S3. The following two examples
consider the impact of the differences in their distribution.

• In Table 19a the NDE of {⟨S1⟩} → {⟨Tri?⟩} is considerably larger in Valid (0.97) than in Total (0.51), while it is almost identical
for {⟨S1⟩} → {⟨Equ?⟩} and {⟨S1⟩} → {⟨Iso?⟩}. The difference clearly demonstrates the ease of violating the triangle inequality.

• Turning to Table 19b, when compared to side lengths ⟨S1⟩ and ⟨S3⟩, the middle-length side, ⟨S2⟩, shows a smaller NDE with the
equilateral condition and a larger NDE with the isosceles condition. If sides are ordered, the triangle is equilateral if and only
if S1 = S3, and, if not, changing S2 cannot form an equilateral. Thus, ⟨S2⟩ only affects ⟨Equ?⟩ when the triangle is already an
equilateral, so it has an NDE. In contrast, if the triangle is isosceles, ⟨S2⟩ is always one of two sides of equal length, consequently,
has the highest NDE among the three sides. Notice that reaching-dependence based methods, such as the PPDG and BNPDG,
cannot distinguish between the effect of each side length.

Summary of RQ2-2: The CPDM is able to differentiate the dependence pattern from different executions. Such information can
highlight a part of a program related to a particular execution. Also, the CPDM can identify different dependence structures and their
corresponding test cases. Leveraging this, applying CPDA to appropriate test subsets can make the CPDM distinctive. CPDA can guide
24

test clustering and may even expose shortcomings in the current test suite.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

1 bool Non_Crossing_Biased_Climb() {

2 upward_preferred = Inhibit_Biased_Climb() > Down_Separation;

3 if (upward_preferred)

4 result = !(Own_Below_Threat()) || ((Own_Below_Threat())

5 && (!(Down_Separation > ALIM()))); // bug: > should be >=

6 else ...

7 return result;

8 } ...

Fig. 20. Faulty code in TCAS buggy version 1 (tcas-1).

Fig. 21. Illustration of the ACEs found for tcas-1. The darker the color, the stronger the ACE.

9.2.3. RQ2-3: debugging

The final scenario considers the challenge of debugging. This scenario illustrates how CPDA, which gives finer granularity depen-

dence information and differentiates it by execution, can aid an engineer while debugging faulty code.

Fig. 20 shows tcas buggy Version 1, tcas-1. The fault is on Line 5, in which the boolean operator ‘>’ should be ‘>=.’ Assume that
we aim to find the location of this defect given a set of passing tests and a single failing test. In the failing test the effect of the defect
must propagate to an output; consequently, an orthodox approach, which aims to reduce the search space for the faulty program
element, is to compute a dynamic slice using a failing test [2]. However, as mentioned in Section 1, the use of a dynamic slice may
yield a significant number of fault candidates. The dynamic slice of tcas-1 (colored nodes in Fig. 21) is a typical example. Dicing [3]

reduces the large candidate set by filtering out program elements in the dynamic slice of a passing execution. Yet, the defect may
exist in both slices, as it does in tcas-1. Consequently, dicing will miss such defects.

Where a binary decision is often too coarse, CPDA can quantify the (total) effect of a program element on an output (element).
In Fig. 21 the output has an ACE on the colored nodes where the darker the color, the stronger the dependence. Red is used for the
ACE based on the failing test, while blue is used for the passing tests. Assuming that the defect strongly affects the failing output, we
can reduce the number of candidates using the degree of the ACE. In the case of tcas-1, only 15 nodes (double-colored in Fig. 21)
of the dynamic slices’ 37 nodes have more than 0.5 ACE (41% reduction). While the search space has decreased considerably, we
can narrow down the defect by employing a similar tactic to dicing, i.e., assuming that the defect has less effect on passing tests.
The (darkness of the) blue color on the right side of the double-colored nodes in Fig. 21 presents the degree of ACE of the 15 defect
candidates to the passing output. Among them, ⟨⋆⟩ has the smallest effect on the passing output and is the faulty node (result) in
tcas-1.

The debugging scenario for tcas-1 illustrates how effective causal inference’s quantified dependence can be at reducing debugging
effort. In contrast, because the passing and failing tests follow almost identical control-flow, frequency based techniques such as the
PPDG and BNPDG are ineffective at the same task: in PPDG, the probability of the reaching definition of the defect is high in the
passing executions, while all the program elements have the same probability given the state of erroneous output in BNPDG.

Summary of RQ2-3: CPDA provides a finer granularity of dependence information than existing dependence analyses, which is an
25

asset to the debugging process.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

10. Threats to validity

Using a limited set of program inputs and approximating dependence is an internal threat to any dynamic analysis and, thus,
also to CPDA. However, CPDA is less vulnerable to the limited number of inputs than dynamic slicing techniques as its intervention
relies not only on inputs but also on various mutations. In turn, CPDA’s mutant sampling poses another threat to internal validity. The
analysis may be biased if the mutation values are not representative of the actual program behavior. To mitigate this, we aim to choose
the mutation values that are likely to be observed in real-world programs; if the value domain is known, we choose the mutation
values from the domain. Otherwise, we use the distribution of the observed values in the test suite. To mitigate the selection bias, we
use a sufficiently large number of samples based on the result of a preliminary experiment regarding the effect of 𝑁mpn (Section 8.4).
To choose a sufficient 𝑁mpn to get steady empirical results, our preliminary experiment repeated the analysis while varying 𝑁mpn (the
number of samples) from 2 to 20 at intervals of two as well as 30, 40, 50. The results converged to similar values when 𝑁mpn ≥ 10.
Based on this, we use a sufficiently large sample of 100 mutations (𝑁mpn = 100) for two smaller programs, tri and wc, and 20 mutations
(𝑁mpn = 20) for B&T and tcas.

The use of six example programs with a single buggy version from the Siemens suite poses a threat to external validity. While
our future plans include the intensive empirical study of CPDA and CPDM, our goal in this paper is to introduce the basic idea of
causal dependence analysis and empirically validate that it is worthy of future study. Overall the results are quite promising. For
example, we repeatedly found that the CPDM matched the basic structure of the ground truth PDG despite performing no data or
control dependence analysis. Thus we see the initial qualitative analysis presented in this paper as illustrative of our technique’s
future potential.

11. Related work

This paper introduces Causal Program Dependence Analysis (CPDA) and empirically consider its use in building a Causal Program
Dependence Model (CPDM). We thus consider work related to program dependence analysis. Because we study non-binary dependence
weightings, we also consider work relating to probabilistic symbolic execution.

11.1. Program dependence analysis

Static analysis attempts to uncover facts about a program that apply to any possible execution. It is therefore necessarily conserva-

tive and consequently often produces many false-positives. Static dependence analysis is often used to produce a Program Dependence
Graph (PDG), which was first used in compiler optimization and parallelization [23], and has subsequently found many uses including
program slicing [32,33]. Dynamic dependence analysis incorporates one or more program inputs. A simple example is early dynamic
slicing algorithms that computed a static slice of the PDG and then removed edges that were not executed [2].

There have been a few proposals to quantify dependences, two of which we consider in our study: the PPDG [6] and the BN-

PDG [77]. Both rely on frequency-of-execution to quantify dependence while avoiding any confounding bias by only considering the
definitions that reach each variable during execution, ensuring that the quantified dependence reflects causation. However, they pay
the cost of exact dataflow analysis. In contrast, CPDA is not tied to a statically computed PDG, freeing us from having to solve hard
data-flow problems (such as pointer analysis) while enabling us to perform interprocedural analysis (neither the PPDG nor the BNPDG
support interprocedural analysis). CPDA can also analyze purely value-centric dependence, while PPDG and BNPDG only detect those
manifested by control-flow changes. A typical example involves the use of the modulo operator. For example given the expression

z = x + y % 2, neither the PPDG nor the BNPDG distinguish the effect of the reaching definitions of x and y. In contrast, CPDA
quantifies that x has a larger effect on z than y since the effect of changing y is partially masked by the modulo operation.

MOAD is another recent technique that estimates the degree of dependence without any static analysis by employing an
observation-based method [40,41]. While, unlike PPDG and BNPDG, MOAD is able to quantify the effect in terms of the value
difference as CPDA can, it cannot discriminate whether the effect is happening directly or indirectly, being incapable of producing a
dependence graph.

Causal Program Slicing [27] (CPS) is another technique that aims to reason the program dependence and quantify the degree
of dependence. While it also uses causal inference, the main purpose of CPS is on program slicing rather than a general program
dependence analysis, as in CPDA. Consequently, it requires the static dependence graph, while CPDA does not. In addition, CPS
gathers observations only from the input change, which is not as fine-grained as CPDA, as it can intervene at any program point and
observe the effect of the change.

11.2. Probabilistic symbolic execution

Probabilistic Symbolic Execution (PSE) is another area that analyzes program semantics from a probabilistic perspective [25].
PSE aims to ascertain how many inputs satisfy a particular path condition in a program. Given a symbolic path constraint and an
input space, PSE uses a model counting technique [16] to compute the ratio of inputs satisfying the condition. While PSE was initially
restricted to solving linear constraints, more recent work adopted path decomposition and statistical approaches to handle arbitrarily
complex mathematical constraints [11,64]. The feasibility and scalability of PSE are nonetheless restricted by the computational cost of
both symbolic execution and model counting. PSE is often unsuccessful in supporting non-linear constraints, sophisticated string oper-

ators, floating-point arithmetic, and inter-procedural analysis. An analytical approach is also typically incapable of analyzing heteroge-
26

neous features beyond the language’s formal semantics, including incorporating third-party libraries or server-client communication.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

In addition, representing the counterfactual statement using a symbolic constraint requires a joint constraint of symbolic paths, whose
computational cost can be significantly more expensive than the normal symbolic path. Recent work by Lee and Böhme [43] exposes
the limitation of symbolic execution and model counting-based probabilistic program analysis in terms of scalability and precision.
In that same work, the authors propose a sampling-based statistical approach to overcome the limitation of analytical approaches.

11.3. Fault localization

One application for CPDA is fault localization (FL). We have demonstrated how the ACE can facilitate finding the location of the
fault. In general, CPDA differs from FL techniques in that the primary purpose of CPDA is to identify and understand the dependencies
(including their structure) in any software system, while FL focuses specifically on pinpointing the location of the fault in the source
code. More specifically, while FL and CPDA both rely on test inputs, unlike FL, CPDA does not require a test oracle,9 which provides the
correctness of the program’s output for each input. Our work also incorporates substantial case studies to showcase the effectiveness
of causal dependencies of CPDA in other downstream activities.

One of the most widely studied FL techniques is Spectrum Based Fault Localization (SBFL), a dynamic approach that ranks program
elements based on their suspiciousness, which is computed from test coverage and outcomes [70]. SBFL has been widely studied both
as an independent technique [1,74,51] and in hybridization with other FL input features and techniques [68,4,46,38]. However, it
tends to produce many ties when program elements share the same test coverage and outcome. Being based on coverage, SBFL also
suffers from Coincidental Correctness (CC), i.e., passing executions that cover faulty elements [50].

Finally, several existing works utilize causal inference for fault localization. Baah et al. [5,7] use a linear model to capture the
causal effect from coverage of program elements to test outcomes. Gore and Reynolds [28] and Shu et al. [66] apply a similar linear
regression approach to predicate values and method level coverage, respectively.

12. Discussion and future work

This section considers how more advanced causal models can improve CPDA. We also propose potential applications of CP-

DA/CPDM to other software engineering tasks.

Advanced modeling

Our CPDA model considers the quantification of the program dependence in terms of how often one program element affects
another. We choose the rate of occurrence in our initial model for two reasons. First, the observation for the causal analysis is
sufficient to capture the existence of the behavior change. Second, it allows easy handling of complex data structures, such as trees.
Yet, as we mentioned in Section 4, there could be many different notions regarding the degree of dependence. For instance, one might
wish to quantify the strength of dependence regarding the magnitude of the change in the value of a variable. The question one wants
to ask CPDA, then, would be something similar to “when there is an effect caused by element A on element B, how large/dramatic
does it tend to be.” Such a question could be more interesting than the question “does A affect B.” For example, if one is interested
in the program implementing “Newton’s law of gravity”,

𝐹 ∼ 𝑀1 ⋅𝑀2
𝑟2

,

the rate of occurrence of the dependence is not very interesting, as it always happens, but the magnitude of the change in the value
of the variable 𝐹 due to the other variables is more tempting to investigate. In such a case, the ratio of the change in the value of the
source variable to the change in the value of the target variable could be used as a measure of dependence. A causal model built for a
lower-level representation of the program, such as bytecode, may allow us to quantify the magnitudes of changes for programs with
complex data structures. Alternatively, future work will explore if general notions of similarity and diversity [22,21] can be used to
quantify levels of change and, thus, further refine CPDA modeling as well as the subsequent comprehension tasks.

There are two future technical improvements to CPDA. First, one of the existing challenges for causal inference that CPDA inherits
is cycle handling. While causal inference was initially developed on acyclic structures, numerous scientific fields have attempted
to extend causal inference to cyclic dependences. For example, a recent brain connectivity study considers variables in a temporal
dimension to cater to cyclic relations [13]. While the contextual constraints in programs prohibit such a temporal approach, the
progress on the cyclic causal models [61] suggests that CPDA will handle cycles better in the future.

The second aspect is to distinguish between control-dependence and data-dependence edges and to treat them separately. Dis-

tinguishing between control and data dependence can serve as additional information to understand the program’s semantics. For
example, in optimization and parallelization, treating data dependence separately assists in designing synchronization mechanisms
that prevent race conditions and ensure data consistency [37,36]. Additionally, code obfuscation can help hide the control flow of
the program, making it harder to reverse-engineer. Thus, each type of dependence finds independent uses in downstream software
engineering tasks. In addition to the above, distinguishing may also help to reduce the imprecision of the discovered causal structure
compared to the dependence graph in terms of the program semantics. As we mentioned in the result of RQ 1-1, one of the reasons
for the imprecision is the masking effect of two independent dependencies, which can be compensated for by distinguishing between
27

9 The tests in CPDA are only used to observe the reference, i.e., the original behavior of the program.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

control and data dependence edges. One way to determine whether a dependence edge is a control or a data dependence is to check
the source node of the edge; if the source node is a control node (e.g., a predicate), then the edge is a control dependence edge;
otherwise, it is a data dependence edge.

Finally, we postulate that advanced modeling techniques can help to reduce the cost of intervention. If we use algorithms that
can work from observational data only, the cost of CPDA can be significantly reduced. For example, we may be able to leverage
observational data from existing test automation and regression testing activities that are typically available in modern Continu-

ous Integration. We note that newer causal inference techniques can work with a combination of observational and interventional
data [29]: such methods have the potential to guide CPDA to adaptively intervene on program elements that are likely to lead to
a relatively larger improvement in the dependence model, in a way similar to active learning [14]. In addition, the traces from
the executions of different test cases themselves can be more efficiently obtained using advanced computation techniques such as
incremental computation [48].

Potential applications

Our program comprehension scenarios exploit the execution awareness of CPDA to extract information related to program seman-

tics using known test inputs: by reversing this process, we posit that it is possible to extract information about test inputs using CPDA.
Measuring and reporting quantified dependence relationships that come into existence during executions of different test cases may
provide much richer information than binary coverage. Distances between CPDMs derived from different test suites can also provide
valuable information to tasks such as test prioritization [45], failure clustering [57,47], and scenario-based specification mining [49],
in addition to the traditional distance metrics defined over coverage [63], test history [30], or lexical similarity [72].

Our application of CPDA to debugging suggests that quantified dependence can potentially make a significant contribution to
downstream maintenance tasks. In particular, we plan to investigate the notion of the counterfactual in the context of various mutation-

based techniques for Automated Program Repair (APR) and Genetic Improvement (GI). In such applications, the question of “what
would have happened in a particular execution if a specific program element changed?” plays a critical role.

One of the primary aspects of purely observation-based approach is handling programs written in languages with non-conventional
semantics. Earlier work on ORBS successfully sliced Simulink/Stateflow models that are saved textually as an XML file [26] and images
written in Picture Description Languages (PDLs) [75,76]. Likewise, estimating dependence relations and their degree employing non-

conventional semantics of those languages is worth addressing. The central question is “how can we define the behavior of a program
element?” While it is rather straightforward to consider the value (or trajectory) of a variable as the behavior of the program element,
it is less clear for programs with non-conventional semantics such as those written using PDLs, where the individual effect of each
program element is difficult to ascertain when focusing solely on the output. Subsequently, defining a mutation that well mimics the
change of the program behavior also involves significant design choices. For instance, to mutate a program written in a dataflow
programming language, either tweaking a single data packet, polluting the entire stream of data going out from a channel, or any
intervention level between two are all feasible candidates for the mutation.

13. Conclusion

We propose Causal Program Dependence Analysis (CPDA), a way of identifying and then measuring the strength of the dependences
between program elements by modeling their causal relationships. Existing dependence analysis techniques typically present binary
relationships between program elements, ignoring the varying strengths of dependence relationships. By applying causal inference to
observational data from mutated executions, we quantify the degree of a value change in a program element 𝐴 causing a value change
in another program element 𝐵. Furthermore, we do this without the burden of static analysis. The paper also examines the benefit of
quantified program dependence from CPDA on multiple applications, including a new graphical program dependence model Causal
Program Dependence Model (CPDM). Our empirical results show that CPDA with its quantified dependence can aid engineers by
identifying program semantics that would be missed when using conventional analyses.

CRediT authorship contribution statement

Seongmin Lee: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Formal analysis, Data curation, Conceptualization. Dave Binkley: Writing – review & editing,
Writing – original draft, Validation, Methodology, Formal analysis, Conceptualization. Robert Feldt: Writing – review & editing,
Writing – original draft, Validation, Methodology, Formal analysis, Conceptualization. Nicolas Gold: Writing – review & editing,
Writing – original draft, Validation, Methodology, Formal analysis, Conceptualization. Shin Yoo: Writing – review & editing, Writing –
original draft, Validation, Supervision, Software, Resources, Project administration, Methodology, Investigation, Funding acquisition,
Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Shin Yoo reports financial support was provided by Korea Ministry of Science and ICT. Robert Feldt reports was provided
by Swedish Scientific Council. If there are other authors, they declare that they have no known competing financial interests or
28

personal relationships that could have appeared to influence the work reported in this paper.

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Acknowledgements

This work was partially funded by the Institute for Information & Communications Technology Promotion grant funded by the Ko-

rean government MSIT (No. 2022-0-00995) and Swedish Scientific Council (No. 2015-04913, ‘Basing Software Testing on Information
Theory’ and No. 2020-05272, ‘Automated boundary testing for QUality of AI/ML modelS’).

Appendix A. Figures in RQ1-1

Below three figures shows the causal structure from CP-method and HS-method for three subjects B&T, wc, and tcas. The box
represents the function boundary.
29

Fig. A.22. Causal structure of B&T (left: the CP-method; right: the HS-method).

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. A.23. Causal structure of wc (left: the CP-method; right: the HS-method).
30

Fig. A.24. Causal structure of tcas (left: the CP-method; right: the HS-method).

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

Fig. A.25. The number of true-positive (TP), false-positive (FP), and false-negative (FN) edges found in the causal structure of the RCP-method using different
thresholds. The horizontal lines show TP, FP, and FN of the causal structure of the HS-method.
31

References

[1] R. Abreu, P. Zoeteweij, A.J.C. van Gemund, On the accuracy of spectrum-based fault localization, in: Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION (TAICPART-MUTATION 2007), 2007, pp. 89–98.

[2] H. Agrawal, J.R. Horgan, Dynamic program slicing, SIGPLAN Not. 25 (1990) 246–256, https://doi .org /10 .1145 /93548 .93576, http://doi .acm .org /10 .1145 /
93548 .93576.

[3] H. Agrawal, J.R. Horgan, S. London, W.E. Wong, Fault localization using execution slices and dataflow tests, in: Proceedings of Sixth International Symposium
on Software Reliability Engineering, ISSRE’95, 1995, pp. 143–151.

[4] B.T.D. Le, D. Lo, C. Le Goues, L. Grunske, A learning-to-rank based fault localization approach using likely invariants, in: Proceedings of the 25th International
Symposium on Software Testing and Analysis, ACM, New York, NY, USA, 2016, pp. 177–188, http://doi .acm .org /10 .1145 /2931037 .2931049.

[5] G. Baah, A. Podgurski, M. Harrold, Causal inference for statistical fault localization, in: ISSTA’10, 2010, pp. 73–84.

[6] G.K. Baah, A. Podgurski, M.J. Harrold, The probabilistic program dependence graph and its application to fault diagnosis, IEEE Trans. Softw. Eng. 36 (2010)
528–545, https://doi .org /10 .1109 /TSE .2009 .87.

[7] G.K. Baah, A. Podgurski, M.J. Harrold, Matching Test Cases for Effective Fault Localization, Technical Report, Georgia Institute of Technology, 2011.

[8] D. Binkley, Semantics guided regression test cost reduction, IEEE Trans. Softw. Eng. 23 (1997) 498–516, https://doi .org /10 .1109 /32 .624306.

[9] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, S. Yoo, ORBS: language-independent program slicing, in: Proceedings of the 22nd ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, 2014, pp. 109–120.

[10] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, S. Yoo, Orbs and the limits of static slicing, in: 2015 IEEE 15th International Working Conference on Source
Code Analysis and Manipulation (SCAM), 2015, pp. 1–10.

[11] M. Borges, A. Filieri, M. D’Amorim, C.S. Păsăreanu, Iterative distribution-aware sampling for probabilistic symbolic execution, in: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, Association for Computing Machinery, New York, NY, USA, 2015, pp. 866–877.

[12] P. Caillet, S. Klemm, M. Ducher, A. Aussem, A.M. Schott, Hip fracture in the elderly: a re-analysis of the epidos study with causal bayesian networks, PLoS ONE
10 (2015) e0120125.

[13] D. Chicharro, S. Panzeri, Algorithms of causal inference for the analysis of effective connectivity among brain regions, Front. Neuroinform. 8 (2014) 64.

[14] D.A. Cohn, Z. Ghahramani, M.I. Jordan, Active learning with statistical models, J. Artif. Intell. Res. 4 (1996) 129–145.

[15] M. Collard, M. Decker, J. Maletic, srcml: An infrastructure for the exploration, analysis, and manipulation of source code: a tool demonstration, 2013, pp. 516–519.

http://refhub.elsevier.com/S0167-6423(24)00131-X/bibBC8DEF8B3FC27631F5E72A3F54418D92s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibBC8DEF8B3FC27631F5E72A3F54418D92s1
https://doi.org/10.1145/93548.93576
http://doi.acm.org/10.1145/93548.93576
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE91A51A167069856D18B6D8E20F1BE20s1
http://doi.acm.org/10.1145/93548.93576
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE91A51A167069856D18B6D8E20F1BE20s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9111F44E74524891B77687E08AF652CCs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9111F44E74524891B77687E08AF652CCs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9F80F75B4C7E52A063E64F8603DE4431s1
http://doi.acm.org/10.1145/2931037.2931049
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9F80F75B4C7E52A063E64F8603DE4431s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib1D96C7326F6F09A0644C590B00F1E605s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9287A93B5576A52D2DEF65CBCD0E5028s1
https://doi.org/10.1109/TSE.2009.87
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9287A93B5576A52D2DEF65CBCD0E5028s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib75CC748AD0C3CE4D5DE54BC976D7EC3Bs1
https://doi.org/10.1109/32.624306
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib1E4480D9B4AF337320D581761177A2CFs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9699017A24380AB716B45B672FE801C8s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9699017A24380AB716B45B672FE801C8s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib4B0C975FD69A54F44966C9240493A6FFs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib4B0C975FD69A54F44966C9240493A6FFs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib50B80A3FA1C1F90103BE12C095B25CDCs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib50B80A3FA1C1F90103BE12C095B25CDCs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib2E2158D3EE2CC75C8B998830162A4271s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib2E2158D3EE2CC75C8B998830162A4271s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibB2D2A03E4B8F7D9B2E32011E08C9D0A4s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibD180A68930733BE8E1ADF9F6BAD9905Cs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE47036F7217D411F9603714A5C3FD7CBs1

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

[16] J.A. De Loera, R. Hemmecke, J. Tauzer, R. Yoshida, Effective lattice point counting in rational convex polytopes, J. Symb. Comput. 38 (2004) 1273–1302, https://

doi .org /10 .1016 /j .jsc .2003 .04 .003, symbolic Computation in Algebra and Geometry, https://www .sciencedirect .com /science /article /pii /S0747717104000422.

[17] H. Do, S. Elbaum, G. Rothermel, Supporting controlled experimentation with testing techniques: an infrastructure and its potential impact, Empir. Softw. Eng.
10 (2005) 405–435, https://doi .org /10 .1007 /s10664 -005 -3861 -2.

[18] M.D. Ernst, J. Cockrell, W.G. Griswold, D. Notkin, Dynamically discovering likely program invariants to support program evolution, IEEE Trans. Softw. Eng. 27
(2001) 99–123, https://doi .org /10 .1109 /32 .908957.

[19] R. Ettinger, M. Verbaere, Untangling: a slice extraction refactoring, in: Proceedings of the 3rd International Conference on Aspect-Oriented Software Development,
ACM, New York, NY, USA, 2004, pp. 93–101, http://doi .acm .org /10 .1145 /976270 .976283.

[20] R. Feldt, S. Poulding, Finding test data with specific properties via metaheuristic search, in: 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE), IEEE, 2013, pp. 350–359.

[21] R. Feldt, S. Poulding, D. Clark, S. Yoo, Test set diameter: quantifying the diversity of sets of test cases, in: 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2016, pp. 223–233.

[22] R. Feldt, R. Torkar, T. Gorschek, W. Afzal, Searching for cognitively diverse tests: towards universal test diversity metrics, in: 2018 Advances in Neural Information
Processing Systems, IEEE, 2008, pp. 178–186.

[23] J. Ferrante, K.J. Ottenstein, J.D. Warren, The program dependence graph and its use in optimization, ACM Trans. Program. Lang. Syst. 9 (1987) 319–349.

[24] K.B. Gallagher, J.R. Lyle, Using program slicing in software maintenance, IEEE Trans. Softw. Eng. 17 (1991) 751–761, https://doi .org /10 .1109 /32 .83912.

[25] J. Geldenhuys, M.B. Dwyer, W. Visser, Probabilistic symbolic execution, in: Proceedings of the 2012 International Symposium on Software Testing and Analysis,
Association for Computing Machinery, New York, NY, USA, 2012, pp. 166–176.

[26] N.E. Gold, D. Binkley, M. Harman, S. Islam, J. Krinke, S. Yoo, Generalized observational slicing for tree-represented modelling languages, in: Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, ACM, New York, NY, USA, 2017, pp. 547–558, http://doi .acm .org /10 .1145 /3106237 .3106304.

[27] R. Gore, P.F. Reynolds, Causal program slicing, in: 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation, 2009, pp. 19–26.

[28] R. Gore, P.F. Reynolds Jr., Reducing confounding bias in predicate-level statistical debugging metrics, in: Proceedings of the 34th International Conference on
Software Engineering, IEEE Press, 2012, pp. 463–473.

[29] R. Guo, L. Cheng, J. Li, P.R. Hahn, H. Liu, A survey of learning causality with data: problems and methods, ACM Comput. Surv. 53 (2020) 1–37.

[30] H. Hemmati, Z. Fang, M.V. Mäntylä, B. Adams, Prioritizing manual test cases in rapid release environments, Softw. Test. Verif. Reliab. 27 (2017) e1609.

[31] P.W. Holland, Causal inference, path analysis and recursive structural equations models, ETS Research Report Series 1988, 1988, I–50.

[32] S. Horwitz, T. Reps, The use of program dependence graphs in software engineering, in: 14𝑡ℎ International Conference on Software Engineering, Melbourne,
Australia, 1992, pp. 392–411.

[33] S. Horwitz, T. Reps, D. Binkley, Interprocedural slicing using dependence graphs, SIGPLAN Not. 23 (1988) 35–46, https://doi .org /10 .1145 /960116 .53994,
http://doi .acm .org /10 .1145 /960116 .53994.

[34] S. Jiang, C. McMillan, R. Santelices, Do programmers do change impact analysis in debugging?, Empir. Softw. Eng. 22 (2017) 631–669, https://doi .org /10 .1007 /
s10664 -016 -9441 -9.

[35] R. Karim, F. Tip, A. Sochurkova, K. Sen, Platform-independent dynamic taint analysis for javascript, IEEE Trans. Softw. Eng. (2018) 1, https://doi .org /10 .1109 /
TSE .2018 .2878020.

[36] A. Ketterlin, P. Clauss, Profiling data-dependence to assist parallelization: framework, scope, and optimization, in: 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, 2012, pp. 437–448.

[37] M.T. Lazarescu, L. Lavagno, Dynamic trace-based data dependency analysis for parallelization of c programs, in: 2012 IEEE 12th International Working Conference
on Source Code Analysis and Manipulation, 2012, pp. 126–131.

[38] T.D.B. Le, R.J. Oentaryo, D. Lo, Information retrieval and spectrum based bug localization: better together, in: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ACM, New York, NY, USA, 2015, pp. 579–590, http://doi .acm .org /10 .1145 /2786805 .2786880.

[39] S. Lee, Scalable and approximate program dependence analysis, in: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering:
Companion Proceedings, Association for Computing Machinery, New York, NY, USA, 2020, pp. 162–165.

[40] S. Lee, D. Binkley, R. Feldt, N. Gold, S. Yoo, Moad: modeling observation-based approximate dependency, in: 2019 19th International Working Conference on
Source Code Analysis and Manipulation (SCAM), 2019, pp. 12–22.

[41] S. Lee, D. Binkley, R. Feldt, N. Gold, S. Yoo, Observation-based approximate dependency modeling and its use for program slicing, J. Syst. Softw. 179 (2021)
110988, https://doi .org /10 .1016 /j .jss .2021 .110988, https://www .sciencedirect .com /science /article /pii /S0164121221000856.

[42] S. Lee, D. Binkley, N. Gold, S. Islam, J. Krinke, S. Yoo, Evaluating lexical approximation of program dependence, J. Syst. Softw. 160 (2020) 110459, https://

doi .org /10 .1016 /j .jss .2019 .110459, http://www .sciencedirect .com /science /article /pii /S016412121930233X.

[43] S. Lee, M. Böhme, Statistical reachability analysis, in: Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Association for Computing Machinery, New York, NY, USA, 2023, pp. 326–337.

[44] S. Lee, S. Hong, J. Yi, T. Kim, C. Kim, S. Yoo, Classifying false positive static checker alarms in continuous integration using convolutional neural networks, in:
2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST), 2019, pp. 391–401.

[45] D. Leon, A. Podgurski, A comparison of coverage-based and distribution-based techniques for filtering and prioritizing test cases, in: Proceedings of the IEEE
International Symposium on Software Reliability Engineering (ISSRE 2003), IEEE Computer Society Press, 2003, pp. 442–456.

[46] X. Li, W. Li, Y. Zhang, L. Zhang, Deepfl: integrating multiple fault diagnosis dimensions for deep fault localization, in: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, Association for Computing Machinery, New York, NY, USA, 2019, pp. 169–180.

[47] C. Liu, J. Han, Failure proximity: a fault localization-based approach, in: Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2006, pp. 46–56.

[48] Y.A. Liu, Incremental computation: what is the essence?, arXiv :2312 .07946, 2023.

[49] D. Lo, S. Maoz, S.C. Khoo, Mining modal scenario-based specifications from execution traces of reactive systems, in: Proceedings of the 22nd IEEE/ACM Inter-

national Conference on Automated Software Engineering, Association for Computing Machinery, New York, NY, USA, 2007, pp. 465–468.

[50] W. Masri, R. Assi, Cleansing test suites from coincidental correctness to enhance fault-localization, in: Software Testing, Verification and Validation (ICST), 2010
Third International Conference on, 2010, pp. 165–174.

[51] L. Naish, H.J. Lee, K. Ramamohanarao, A model for spectra-based software diagnosis, ACM Trans. Softw. Eng. Methodol. 20 (2011) 11:1–11:32.

[52] J. Pearl, Direct and indirect effects, in: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2001, pp. 411–420.

[53] J. Pearl, Causality, Cambridge University Press, 2009.

[54] J. Pearl, The seven tools of causal inference, with reflections on machine learning, Commun. ACM 62 (2019) 54–60.

[55] J. Pearl, et al., Causal inference in statistics: an overview, Stat. Surv. 3 (2009) 96–146.

[56] J. Peters, D. Janzing, B. Schölkopf, Elements of Causal Inference: Foundations and Learning Algorithms, MIT Press, 2017.

[57] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, B. Wang, Automated support for classifying software failure reports, in: 25th International
Conference on Software Engineering, 2003. Proceedings, 2003, pp. 465–475.

[58] G. Ramalingam, The undecidability of aliasing, ACM Trans. Program. Lang. Syst. 16 (1994) 1467–1471.

[59] K. Rantanen, A. Hyttinen, M. Järvisalo, Learning optimal causal graphs with exact search, in: International Conference on Probabilistic Graphical Models, PMLR,
32

2018, pp. 344–355.

https://doi.org/10.1016/j.jsc.2003.04.003
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE211B3579B80439FECE70B918B92BDCEs1
https://doi.org/10.1016/j.jsc.2003.04.003
https://www.sciencedirect.com/science/article/pii/S0747717104000422
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE211B3579B80439FECE70B918B92BDCEs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib336C7B3EA8E3CB8EE85271786D9CE706s1
https://doi.org/10.1007/s10664-005-3861-2
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib336C7B3EA8E3CB8EE85271786D9CE706s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibFB65A1ED7024B67D0BC49F8708838CC4s1
https://doi.org/10.1109/32.908957
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibFB65A1ED7024B67D0BC49F8708838CC4s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib7255BC72583D4823805B4C3E84D37B78s1
http://doi.acm.org/10.1145/976270.976283
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib7255BC72583D4823805B4C3E84D37B78s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib44CC8337E87516C22E146B919AA2B274s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib44CC8337E87516C22E146B919AA2B274s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9EB9F3A73441F73F83A8B137B66DCDB0s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9EB9F3A73441F73F83A8B137B66DCDB0s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib2DC114779E0EF21DC6CE041FAD6FC38Fs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib2DC114779E0EF21DC6CE041FAD6FC38Fs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9E1FF629E05CC1474D092AECEFAA28A1s1
https://doi.org/10.1109/32.83912
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibCA5C9E662D88603FE8F784D97DE67653s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibD5735F071D88469E3C593C87BC305791s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibD5735F071D88469E3C593C87BC305791s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib47579111D5E548756B285142260132CCs1
http://doi.acm.org/10.1145/3106237.3106304
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib47579111D5E548756B285142260132CCs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibBD1AF3585FF2896BD38C4EF4B80F7A66s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib42DFD85A09810C1BC8105D9E8C7579E6s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib42DFD85A09810C1BC8105D9E8C7579E6s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib1AD22869861B3153B0971D2C14A40D39s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib28DBB92537EA3E463E32371C1E9FF8DEs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibB1DA7DD26676DC9A7F45447537F9328Fs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE46629A09DDF9E10844E8E4380288BD1s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE46629A09DDF9E10844E8E4380288BD1s1
https://doi.org/10.1145/960116.53994
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibAF02056C21E586DA19FCC3727A5C302Cs1
http://doi.acm.org/10.1145/960116.53994
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibAF02056C21E586DA19FCC3727A5C302Cs1
https://doi.org/10.1007/s10664-016-9441-9
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibAB21A2F4F756FA80270D36B11856BF31s1
https://doi.org/10.1007/s10664-016-9441-9
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibAB21A2F4F756FA80270D36B11856BF31s1
https://doi.org/10.1109/TSE.2018.2878020
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib93EB36C14FD730F7293F274BA03ABAC2s1
https://doi.org/10.1109/TSE.2018.2878020
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib93EB36C14FD730F7293F274BA03ABAC2s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib5AF13234C8895A1B31290BD00A12306Cs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib5AF13234C8895A1B31290BD00A12306Cs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib89A1EC19AC829240E66B24036C3518E7s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib89A1EC19AC829240E66B24036C3518E7s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib74935692230A91E6EDCD8969E17A8FEDs1
http://doi.acm.org/10.1145/2786805.2786880
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib74935692230A91E6EDCD8969E17A8FEDs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE8C2E67B1B1F3DA3CAF7973CE8F674B7s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE8C2E67B1B1F3DA3CAF7973CE8F674B7s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibA40BAB1B30C7FF8AD23ED5F4F6BB9B59s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibA40BAB1B30C7FF8AD23ED5F4F6BB9B59s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibA6BA1A25349A149B55F53598F16A2A06s1
https://doi.org/10.1016/j.jss.2021.110988
https://www.sciencedirect.com/science/article/pii/S0164121221000856
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibA6BA1A25349A149B55F53598F16A2A06s1
https://doi.org/10.1016/j.jss.2019.110459
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib5766925269F3FEF1A9BFE14E1B35467Cs1
https://doi.org/10.1016/j.jss.2019.110459
http://www.sciencedirect.com/science/article/pii/S016412121930233X
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib5766925269F3FEF1A9BFE14E1B35467Cs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib60906B9CEE3EF4194733B5CE14B01B24s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib60906B9CEE3EF4194733B5CE14B01B24s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib68096B1973EF51B5D40FC18367BE0B25s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib68096B1973EF51B5D40FC18367BE0B25s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib18AE46BE89665CCDCE41B3FF0696AAF4s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib18AE46BE89665CCDCE41B3FF0696AAF4s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib5CD7457CF49F01ACEFD2A6718F7061CEs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib5CD7457CF49F01ACEFD2A6718F7061CEs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib7C5D24A4F32C11C743263780DCAAFC4Es1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib7C5D24A4F32C11C743263780DCAAFC4Es1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib39787FAB8DB0749226BA1F3397625495s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib3D08C9550FF78FD2DABF3AAB554BDE02s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib3D08C9550FF78FD2DABF3AAB554BDE02s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9E83CA4772A8D45F3B9CE5ED135E6892s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9E83CA4772A8D45F3B9CE5ED135E6892s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE8DAB8700B4D5F71752591A904358F3Ds1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE3A0269C2500A534EE040CC26E680BE6s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE3A0269C2500A534EE040CC26E680BE6s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib4C5D3148A1E4596B2DBB3FBA4703283As1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibB264C5C57C583F3EBAB6D489B6669768s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibFC5D3C050BDFEDA6CA20595210152401s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibFEBDCE8E445F93B3BE51AA03EA407A07s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibC7CECBAB3D656D9F25B2C4A85AA203BAs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibC7CECBAB3D656D9F25B2C4A85AA203BAs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib071E192518FC3856CAB561D5C743F8CDs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE5171199F5709D517E042A182034789Cs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE5171199F5709D517E042A182034789Cs1

Science of Computer Programming 240 (2025) 103208S. Lee, D. Binkley, R. Feldt et al.

[60] K. Rantanen, A. Hyttinen, M. Järvisalo, Discovering causal graphs with cycles and latent confounders: an exact branch-and-bound approach, Int. J. Approx.
Reason. 117 (2020) 29–49.

[61] K. Rantanen, A. Hyttinen, M. Järvisalo, Learning optimal cyclic causal graphs from interventional data, 2020.

[62] J.G. Richens, C.M. Lee, S. Johri, Improving the accuracy of medical diagnosis with causal machine learning, Nat. Commun. 11 (2020) 1–9.

[63] G. Rothermel, R.H. Untch, Chengyun Chu, M.J. Harrold, Prioritizing test cases for regression testing, IEEE Trans. Softw. Eng. 27 (2001) 929–948, https://

doi .org /10 .1109 /32 .962562.

[64] S. Saha, M. Downing, T. Brennan, T. Bultan, Preach: a heuristic for probabilistic reachability to identify hard to reach statements, in: International Conference
on Software Engineering (ICSE), 2022.

[65] M. Scutari, C. Vitolo, A. Tucker, Learning bayesian networks from big data with greedy search: computational complexity and efficient implementation, Stat.
Comput. 29 (2019) 1095–1108, https://doi .org /10 .1007 /s11222 -019 -09857 -1.

[66] G. Shu, B. Sun, A. Podgurski, F. Cao, Mfl: method-level fault localization with causal inference, in: 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, 2013, pp. 124–133.

[67] M. Singh, M. Valtorta, Construction of bayesian network structures from data: a brief survey and an efficient algorithm, Int. J. Approx. Reason. 12 (1995)
111–131, https://doi .org /10 .1016 /0888 -613X(94)00016 -V, https://www .sciencedirect .com /science /article /pii /0888613X9400016V.

[68] J. Sohn, S. Yoo, Fluccs: using code and change metrics to improve fault localization, 2017, pp. 273–283.

[69] P. Spirtes, K. Zhang, Causal discovery and inference: concepts and recent methodological advances, in: Applied Informatics, SpringerOpen, 2016, pp. 1–28.

[70] F. Steimann, M. Frenkel, R. Abreu, Threats to the validity and value of empirical assessments of the accuracy of coverage-based fault locators, in: Proceedings of
the 2013 International Symposium on Software Testing and Analysis, ACM, New York, NY, USA, 2013, pp. 314–324.

[71] D.W. Stroock, Probability Theory: an Analytic View, Cambridge University Press, 2010.

[72] S.W. Thomas, H. Hemmati, A.E. Hassan, D. Blostein, Static test case prioritization using topic models, Empir. Softw. Eng. 19 (2014) 182–212, https://doi .org /
10 .1007 /s10664 -012 -9219 -7.

[73] R.H. Untch, A.J. Offutt, M.J. Harrold, Mutation analysis using mutant schemata, SIGSOFT Softw. Eng. Notes 18 (1993) 139–148, https://doi .org /10 .1145 /
174146 .154265.

[74] X. Xie, T.Y. Chen, F.C. Kuo, B. Xu, A theoretical analysis of the risk evaluation formulas for spectrum-based fault localization, ACM Trans. Softw. Eng. Methodol.
22 (2013) 31:1–31:40.

[75] S. Yoo, D. Binkley, R. Eastman, Seeing is slicing: observation based slicing of picture description languages, in: 2014 IEEE 14th International Working Conference
on Source Code Analysis and Manipulation, 2014, pp. 175–184.

[76] S. Yoo, D. Binkley, R. Eastman, Observational slicing based on visual semantics, J. Syst. Softw. 129 (2017) 60–78.

[77] X. Yu, J. Liu, Z. Yang, X. Liu, The bayesian network based program dependence graph and its application to fault localization, J. Syst. Softw. 134 (2017) 44–53,
https://doi .org /10 .1016 /j .jss .2017 .08 .025, http://www .sciencedirect .com /science /article /pii /S0164121217301796.

[78] X. Yu, J. Liu, Z.J. Yang, X. Liu, X. Yin, S. Yi, Bayesian network based program dependence graph for fault localization, in: 2016 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), 2016, pp. 181–188.

[79] Zhifeng Yu, V. Rajlich, Hidden dependencies in program comprehension and change propagation, in: Proceedings 9th International Workshop on Program
33

Comprehension, IWPC 2001, 2001, pp. 293–299.

http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE227D2D3447D956268619D1C92B0DB90s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE227D2D3447D956268619D1C92B0DB90s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib3F56769CD1485701D4225C1A6D94CF08s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib4E0F2755311296D08C693A84248169F8s1
https://doi.org/10.1109/32.962562
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib2225143EFBC565F3E8E0CE24C8D1E5AFs1
https://doi.org/10.1109/32.962562
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib2225143EFBC565F3E8E0CE24C8D1E5AFs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibD20FD121197FB2A06861B88A29A598DDs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibD20FD121197FB2A06861B88A29A598DDs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib0D00E586FA3DF0E9B07A4AE1B8C21544s1
https://doi.org/10.1007/s11222-019-09857-1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib0D00E586FA3DF0E9B07A4AE1B8C21544s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibCE72BA57E82834305FFDA0C449A3BC81s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibCE72BA57E82834305FFDA0C449A3BC81s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibD779143CD533F9132833B11213F64E59s1
https://doi.org/10.1016/0888-613X(94)00016-V
https://www.sciencedirect.com/science/article/pii/0888613X9400016V
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibD779143CD533F9132833B11213F64E59s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibE4F272450AE20BDAC7624F6A8A98D937s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib26A8378A756B2A2494E7A87B68EEB76Es1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibEA2551A3039EBD56261D2A0BBF8AA6BFs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibEA2551A3039EBD56261D2A0BBF8AA6BFs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib35B3A8A4CD0175A63CDA40D86C3323BDs1
https://doi.org/10.1007/s10664-012-9219-7
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib052FAE0033006EE36CA539395608BB34s1
https://doi.org/10.1007/s10664-012-9219-7
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib052FAE0033006EE36CA539395608BB34s1
https://doi.org/10.1145/174146.154265
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib6ABC141C5125B0AF23E0A375CAA074BAs1
https://doi.org/10.1145/174146.154265
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib6ABC141C5125B0AF23E0A375CAA074BAs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib94BCAE260325E98158D27D24ED8FC464s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib94BCAE260325E98158D27D24ED8FC464s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibD9FE023A0B4B0103503E4433C7FB84DEs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibD9FE023A0B4B0103503E4433C7FB84DEs1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib9F8CE7B3988D7D3C8F0614A688DDAE49s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibA8FCE29E2AC6C80385AECD99EA93B069s1
https://doi.org/10.1016/j.jss.2017.08.025
http://www.sciencedirect.com/science/article/pii/S0164121217301796
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibA8FCE29E2AC6C80385AECD99EA93B069s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib15F87C5D761D90349ECFBE0DBF884E19s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bib15F87C5D761D90349ECFBE0DBF884E19s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibC7D5109CE7FB121A208F878A348E5058s1
http://refhub.elsevier.com/S0167-6423(24)00131-X/bibC7D5109CE7FB121A208F878A348E5058s1

	Causal program dependence analysis
	1 Introduction
	2 Illustrative example
	3 Background
	3.1 Causal inference
	3.2 Causal model and causal structure
	3.3 Causal effect

	4 Overview of causal program dependence analysis
	5 Transforming program semantics to a probability distribution
	5.1 Δ-execution model and probability of a behavior change
	5.2 Implementation
	5.2.1 Oracle
	5.2.2 Mutation

	6 Structure discovery
	6.1 Causal structure of a program
	6.2 Probability-based structure discovery
	6.2.1 CP-method
	6.2.2 Drawbacks of the CP-method
	6.2.3 Relaxed CP-method

	6.3 Structure discovery using hitting sets
	6.3.1 HS-method
	6.3.2 Advantages of the HS-method

	7 Causal program dependence model
	7.1 Average causal effect (ACE)
	7.2 Natural direct effect (NDE)
	7.3 Causal program dependence model

	8 Experimental setup
	8.1 Research questions
	8.2 Subject programs
	8.3 Baselines
	8.4 Implementation, configuration, and environment

	9 Results
	9.1 RQ1. Structure discovery
	9.1.1 RQ 1-1: causal structure and the PDG
	9.1.2 RQ 1-2: efficiency
	9.1.3 RQ 1-3 RCP-method

	9.2 RQ2. Quantified dependency
	9.2.1 RQ 2-1: program semantics
	Per element inspection
	9.2.2 RQ2-2: execution-awareness
	Difference in the required functionality
	Differences in the input distribution
	9.2.3 RQ2-3: debugging

	10 Threats to validity
	11 Related work
	11.1 Program dependence analysis
	11.2 Probabilistic symbolic execution
	11.3 Fault localization

	12 Discussion and future work
	13 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Figures in RQ1-1
	References

