
STATISTICAL PROGRAM
DEPENDENCE APPROXIMATION

— DOCTORAL DISSERTATION DEFENSE —

COINSE

2022.03.25

Presenter
 Advisor

SEONGMIN LEE
SHIN YOO

-
-

PROGRAM DEPENDENCY ANALYSIS

2

a

b

c

• Program comprehension

• Software maintenance and evolution

• Which part of the program should be
considered for the task

• Shrink the search space of the source code

• e.g. fault localization, refactoring,
 code reuse, etc.

a = 3;

if (b > 0) {

 c = a + 42;

}

Program

Program Dependency

● INTRO / ○MOBS / ○MOAD / ○CPDA

OBSERVATION BASED ANALYSIS

3

a

b

c

a = 3;

if (b > 0) {

 c = a + 42;

}

● INTRO / ○MOBS / ○MOAD / ○CPDA

OBSERVATION BASED ANALYSIS

3

a

b

c

a = 3;

if (b > 0) {

 c = a + 42;

}
a = 3;

if (b > 0) {

 c = a + 42;

}

a = 3;

if (b > 0) {

 c = a + 42;

}

Mutate

M
utate

● INTRO / ○MOBS / ○MOAD / ○CPDA

OBSERVATION BASED ANALYSIS

3

a

b

c

a = 3;

if (b > 0) {

 c = a + 42;

}
a = 3;

if (b > 0) {

 c = a + 42;

}

a = 3;

if (b > 0) {

 c = a + 42;

}

Mutate

M
utate

Observe

Observe

● INTRO / ○MOBS / ○MOAD / ○CPDA

OBSERVATION BASED ANALYSIS

4

● INTRO / ○MOBS / ○MOAD / ○CPDA

s = “Linux”

with open(“/tmp/arch.txt”, “w”) as f:

 f.write(s)

...

with open(“/tmp/arch.txt”) as f:

 arch = f.read()

Linux

OBSERVATION BASED ANALYSIS

4

● INTRO / ○MOBS / ○MOAD / ○CPDA

s = “Linux”

with open(“/tmp/arch.txt”, “w”) as f:

 f.write(s)

...

with open(“/tmp/arch.txt”) as f:

 arch = f.read()

Linux

Formal semantics

OBSERVATION BASED ANALYSIS

4

● INTRO / ○MOBS / ○MOAD / ○CPDA

s = “Linux”

with open(“/tmp/arch.txt”, “w”) as f:

 f.write(s)

...

with open(“/tmp/arch.txt”) as f:

 arch = f.read()

Linux

Window

Mutate
s = “Window”

dynamically
observable:

Formal semantics

OBSERVATION BASED ANALYSIS

4

● INTRO / ○MOBS / ○MOAD / ○CPDA

s = “Linux”

with open(“/tmp/arch.txt”, “w”) as f:

 f.write(s)

...

with open(“/tmp/arch.txt”) as f:

 arch = f.read()

Linux

Features beyond formal semantics

Binary library Server/client
interaction

Cross-language
interface

File system

Window

Mutate
s = “Window”

dynamically
observable:

Formal semantics

OBSERVATION BASED ANALYSIS

4

● INTRO / ○MOBS / ○MOAD / ○CPDA

s = “Linux”

with open(“/tmp/arch.txt”, “w”) as f:

 f.write(s)

...

with open(“/tmp/arch.txt”) as f:

 arch = f.read()

Linux
Multi-lingual
Program

checker.java:

1 class checker {
2 public static void main(String[] args) {
3 int dots = 0;
4 int chars = 0;
5 for (int i = 0; i < args[0].length(); ++i) {
6 if (args[0].charAt(i) == ’.’) {
7 ++dots;
8 } else if ((args[0].charAt(i) >= ’0’)
9 && (args[0].charAt(i) <= ’9’)) {

10 ++chars;
11 }
12 }
13 System.out.println(dots); // Slice here
14 System.out.println(chars);
15 }
16 }

reader.c:

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <locale.h>
4

5 int main(int argc, char **argv) {
6 setlocale(LC_ALL, "");
7 struct lconv *cur_locale = localeconv();
8 if (atoi(argv[1]))
9 {

10 printf("%s\n", cur_locale->decimal_point);
11 }
12 else
13 {
14 printf("%s\n", cur_locale->currency_symbol);
15 }
16 return 0;
17 }

glue.py:

1 # Glue reader and checker together.
2 import commands
3 import sys
4

5 use_locale = True
6 currency = "?"
7 decimal = ","
8

9 if use_locale:
10 currency = commands.getoutput(’./reader 0’)
11 decimal = commands.getoutput(’./reader 1’)
12

13 cmd = (’java checker ’ + currency
14 + sys.argv[1] + decimal + sys.argv[2])
15 print commands.getoutput(cmd)

Figure 1: Example Multi-Language Application
These techniques might also be considered as candidates for the
observation-based slicing we propose and will be discussed in detail.
The comparative study in Section 5 shows that Critical Slicing often
produces incorrect slices (while observation-based slices are always
correct by construction) and observation-based slicing using delta
debugging is too expensive for practical use.

The contributions of this paper are
• A language-independent algorithm, ORBS, for computing

observation-based slices in a serial and a parallel version,
• Empirical studies that demonstrate the application, operation,

and comparability of the approach,
• An in-depth case study that explores and illustrates character-

istics of our approach, and
• A parallelised implementation of ORBS that significantly

decreases the runtime.

checker.java:

1 class checker {
2 public static void main(String[] args) {
3 int dots = 0;
4 for (int i = 0; i < args[0].length(); ++i) {
5 if (args[0].charAt(i) == ’.’) {
6 ++dots;
7 }
8 }
9 }

reader.c:

1 #include <locale.h>
2 int main(int argc, char **argv) {
3 struct lconv *cur_locale = localeconv();
4 {
5 printf("%s\n", cur_locale->decimal_point);
6 }
7 }

glue.py:

1 import commands
2 import sys
3 use_locale = True
4 currency = "?"
5 if use_locale:
6 decimal = commands.getoutput(’./reader 1’)
7 cmd = (’java checker ’ + currency
8 + sys.argv[1] + decimal + sys.argv[2])
9 print commands.getoutput(cmd)

Figure 2: Sliced Example from Fig. 1

2. SLICING DEFINITIONS
Program slicing is classified as either static or dynamic: A static

slice considers all possible executions while a dynamic slice con-
siders specific executions. We will show how to derive observation-
based slicing from the traditional forms of dynamic slicing.

2.1 Traditional Slicing
Static slicing [41] computes a subset of a program such that

executing the subset will have the same behaviour for a specified
variable at a specified location (the slicing criterion) as for the
original program for all possible inputs.

Dynamic slicing [20] uses a specific input and only preserves the
behaviour for that input. Most work on dynamic slicing (e.g., the
work of Agrawal and Horgan [1]) o↵ers only a description rather
than a definition of the term. Thus there exist many di↵erent formu-
lations of dynamic slicing, relating to the particular technique being
reported to compute the slices, rather than to a general definition.
We use a generalised definition of dynamic slicing that involves a
state trajectory and a projection function, PROJ [41]. Informally
each state in a trajectory gives the value of each of the program’s
variables, while the projection function extracts those values relevant
to a slicing criterion. The generalised definition of a dynamic slice
is based on Weiser’s definition of a static slice [41] (additions are
shown in italics). This definition is similar to Korel and Laski’s [20]
definition:

Dynamic Slice: A dynamic slice S of a program P on a slicing
criterion C and for inputs I is any executable program with the
following two properties:

1. S can be obtained from P by deleting zero or more statements
from P.

2. Whenever P halts on input I from I with state trajectory T ,
then S also halts on input I with state trajectory T 0, and
PROJC(T) = PROJC(T 0), where PROJC is the projection
function associated with criterion C.

110

Original Image: Raindrop

Slicing Criteria Rendered Slice

Fig. 3. A picture written using the TikZ/PGF drawing language and three of its slices. Unlike Figure 2, the slice (the source code) is not shown because it
does not easily fit in the figure. The original source and that of the first slice are shown in Figure 4.

181181

Picture
Description

Language

Programs with non-conventional semantics

Features beyond formal semantics

Binary library Server/client
interaction

Cross-language
interface

File system

Window

Mutate
s = “Window”

dynamically
observable:

Formal semantics

5

OBSERVATION-BASED SLICING (ORBS)

"ORBS: Language-independent Program Slicing”, Binkley et al., FSE’14

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

Original program

● INTRO / ○MOBS / ○MOAD / ○CPDA

5

OBSERVATION-BASED SLICING (ORBS)

"ORBS: Language-independent Program Slicing”, Binkley et al., FSE’14

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

Original program

Slicing criterion

● INTRO / ○MOBS / ○MOAD / ○CPDA

5

OBSERVATION-BASED SLICING (ORBS)

"ORBS: Language-independent Program Slicing”, Binkley et al., FSE’14

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

Original program

Slicing criterion

● INTRO / ○MOBS / ○MOAD / ○CPDA

5

OBSERVATION-BASED SLICING (ORBS)

"ORBS: Language-independent Program Slicing”, Binkley et al., FSE’14

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

Original program

int main() {

 int i = 1;
 while (i < 11) {

 i = i + 1;
 }

 printf(“%d\n”, i);
}

Program slice

PROGRAM
SLICING

Slicing criterion

● INTRO / ○MOBS / ○MOAD / ○CPDA

5

OBSERVATION-BASED SLICING (ORBS)

"ORBS: Language-independent Program Slicing”, Binkley et al., FSE’14

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

$ 11

Trajectory

Run

Original program

int main() {

 int i = 1;
 while (i < 11) {

 i = i + 1;
 }

 printf(“%d\n”, i);
}

Program slice

PROGRAM
SLICING

Slicing criterion

● INTRO / ○MOBS / ○MOAD / ○CPDA

5

OBSERVATION-BASED SLICING (ORBS)

"ORBS: Language-independent Program Slicing”, Binkley et al., FSE’14

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

$ 11

Trajectory

Run

Original program

int main() {

 int i = 1;
 while (i < 11) {

 i = i + 1;
 }

 printf(“%d\n”, i);
}

Program slice

Run

PROGRAM
SLICING

Slicing criterion

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run
$ 11

Oracle

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run
$ 11

Oracle

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MUTATE PROGRAM

OBSERVE
IMPACT ON
OTHERS

curr. line

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MUTATE PROGRAM

OBSERVE
IMPACT ON
OTHERS

$ Not compile

The line/lines may be needed for the slice.
curr. line

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MUTATE PROGRAM

OBSERVE
IMPACT ON
OTHERS

$ Not compile

The line/lines may be needed for the slice.

WINDOW DELETION

curr. line

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MUTATE PROGRAM

OBSERVE
IMPACT ON
OTHERS

$ Not compile

The line/lines may be needed for the slice.

WINDOW DELETION

curr. line

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MUTATE PROGRAM

OBSERVE
IMPACT ON
OTHERS

WINDOW DELETION

curr. line

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MUTATE PROGRAM

OBSERVE
IMPACT ON
OTHERS

WINDOW DELETION

curr. line

PROCESS
OBSERVATION

KEEP LINE
& MOVE ON

$ _

The line/lines may be needed for the slice.

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MUTATE PROGRAM

OBSERVE
IMPACT ON
OTHERS

WINDOW DELETION

curr. line

PROCESS
OBSERVATION

KEEP LINE
& MOVE ON

$ 11

The line/lines do not need to be in the slice.

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MUTATE PROGRAM

OBSERVE
IMPACT ON
OTHERS

WINDOW DELETION

curr. line

PROCESS
OBSERVATION

KEEP LINE
& MOVE ON

$ 11

The line/lines do not need to be in the slice.

REMOVE/

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MUTATE PROGRAM

OBSERVE
IMPACT ON
OTHERS

WINDOW DELETION

PROCESS
OBSERVATION

KEEP LINE
& MOVE ON

$ 11

The line/lines do not need to be in the slice.

REMOVE/

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MUTATE PROGRAM

OBSERVE
IMPACT ON
OTHERS

WINDOW DELETION

PROCESS
OBSERVATION

KEEP LINE
& MOVE ON

$ 11

The line/lines do not need to be in the slice.

…

Multiple iterations

REMOVE/

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MUTATE PROGRAM

OBSERVE
IMPACT ON
OTHERS

WINDOW DELETION

PROCESS
OBSERVATION

KEEP LINE
& MOVE ON

$ 11

The line/lines do not need to be in the slice.

…

Multiple iterations

REMOVE/

Until there is
no change

● INTRO / ○MOBS / ○MOAD / ○CPDA

6

OBSERVATION-BASED SLICING (ORBS)

Run

Slicing criterion

Program

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MUTATE PROGRAM

OBSERVE
IMPACT ON
OTHERS

WINDOW DELETION

PROCESS
OBSERVATION

KEEP LINE
& MOVE ON

$ 11

The line/lines do not need to be in the slice.

…

Multiple iterations

REMOVE/ Program slice

● INTRO / ○MOBS / ○MOAD / ○CPDA

7

LIMITATIONS OF ORBS

REMOVE/KEEP LINE
& MOVE ON

MUTATE PROGRAM

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

Program slice

● INTRO / ○MOBS / ○MOAD / ○CPDA

• Costly analysis
- Requires a large number of compilations &

executions

- Takes > 2 hours for a single iteration
(=skimming every line once) for 1.5K NCLOC.

- Be critical to the usability

SCALABILITY

7

LIMITATIONS OF ORBS

REMOVE/KEEP LINE
& MOVE ON

MUTATE PROGRAM

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

Program slice

● INTRO / ○MOBS / ○MOAD / ○CPDA

• Costly analysis
- Requires a large number of compilations &

executions

- Takes > 2 hours for a single iteration
(=skimming every line once) for 1.5K NCLOC.

- Be critical to the usability

SCALABILITY

• Partial analysis
- Produce a single program slice

- Does not provide dependence for
other program elements

- Requires running numerous times for
complete dependence analysis

7

LIMITATIONS OF ORBS

REMOVE/KEEP LINE
& MOVE ON

MUTATE PROGRAM

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

Program slice

● INTRO / ○MOBS / ○MOAD / ○CPDA

• Costly analysis
- Requires a large number of compilations &

executions

- Takes > 2 hours for a single iteration
(=skimming every line once) for 1.5K NCLOC.

- Be critical to the usability

SCALABILITY

• Partial analysis
- Produce a single program slice

- Does not provide dependence for
other program elements

- Requires running numerous times for
complete dependence analysis

INTERPRETABILITY

• No structural reasoning
- Cannot reason why one depends on another

• Binary dependency
- Cannot explain how much one depends on another

Var a Var b
Why?

7

LIMITATIONS OF ORBS

REMOVE/KEEP LINE
& MOVE ON

MUTATE PROGRAM

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

Program slice

● INTRO / ○MOBS / ○MOAD / ○CPDA

PROBLEM STATEMENT

8

● INTRO / ○MOBS / ○MOAD / ○CPDA

Although an observation-based analysis had been proposed

to overcome the limitation of formal semantics-based dependency analysis,

existing observation-based analysis lacks scalability and interpretability.

THESIS

9

Although an observation-based analysis had been proposed

to overcome the limitation of formal semantics-based dependency analysis,

existing observation-based analysis lacks scalability and interpretability.

● INTRO / ○MOBS / ○MOAD / ○CPDA

Statistically modeling program dependence can improve the scalability and the

interpretability of the observation-based dependence analysis.

10

REMOVE/KEEP LINE
& MOVE ON

MUTATE PROGRAM

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

Program slice

• No structural reasoning

• Binary dependency

COMPREHENSION

SCALABILITY

• Costly observation

• Partial analysis

● INTRO / ○MOBS / ○MOAD / ○CPDA

MOBS

— LEXICAL MODEL

- Approximate the dependence
from the lexical feature

- Efficiently observe the mutation

10

REMOVE/KEEP LINE
& MOVE ON

MUTATE PROGRAM

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

Program slice

• No structural reasoning

• Binary dependency

COMPREHENSION

SCALABILITY

• Costly observation

• Partial analysis

1⃣

● INTRO / ○MOBS / ○MOAD / ○CPDA

- Expand from the slicing method
to the general dependence
approximation method

MOAD

— STATISTICAL MODEL

𝔼 𝔼

MOBS

— LEXICAL MODEL

- Approximate the dependence
from the lexical feature

- Efficiently observe the mutation

10

REMOVE/KEEP LINE
& MOVE ON

MUTATE PROGRAM

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

Program slice

• No structural reasoning

• Binary dependency

COMPREHENSION

SCALABILITY

• Costly observation

• Partial analysis

1⃣ 2⃣

● INTRO / ○MOBS / ○MOAD / ○CPDA

CPDA

— CAUSAL INFERENCE

- Inference the
dependency
structure

0.3

0.2

0.2

0.5

0.3 0.9

0.7

- Approximate the degree of the
program dependence

- Expand from the slicing method
to the general dependence
approximation method

MOAD

— STATISTICAL MODEL

𝔼 𝔼

MOBS

— LEXICAL MODEL

- Approximate the dependence
from the lexical feature

- Efficiently observe the mutation

10

REMOVE/KEEP LINE
& MOVE ON

MUTATE PROGRAM

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

Program slice

• No structural reasoning

• Binary dependency

COMPREHENSION

SCALABILITY

• Costly observation

• Partial analysis

1⃣ 2⃣ 3⃣

● INTRO / ○MOBS / ○MOAD / ○CPDA

GOAL

11

● INTRO / ○MOBS / ○MOAD / ○CPDA

Program
slicing
technique

GOAL

11

● INTRO / ○MOBS / ○MOAD / ○CPDA

Program
slicing
technique

Dependency
analysis
technique

0.3

0.2

0.2

0.5

0.3 0.9

0.7

Enhance

GOAL

11

● INTRO / ○MOBS / ○MOAD / ○CPDA

Program
slicing
technique

Dependency
analysis
technique

0.3

0.2

0.2

0.5

0.3 0.9

0.7

Enhance

Binary library Server/client
interaction

Cross-language
interface

File system

Software with
non-conventional
semantics

DEPENDENCY
ANALYSIS

PUBLICATIONS

Research area Publications

Lexical approximation
(MOBS)

(S. Lee, D. Binkley, N. Gold, S. Islam, J. Krinke, S. Yoo)
• “Evaluating lexical approximation of program dependence,” JSS’20
• [Poster] “MOBS: Multi-Operator Observation-based Slicing using Lexical Approximation of Program Dependence,” ICSE’18
• [Short] “Hyperheuristic Observation Based Slicing of Guava,” International Symposium on Search Based Software Engineering (SSBSE), 2017
• [Technical report] S. Lee, S. You, “Using Source Code Lexical Similarity to Improve Efficiency of Observation Based Slicing”

Statistical modeling
(MOAD)

(S. Lee, D. Binkley, R.Feldt, N. Gold, S. Yoo)
• “Observation-based Approximate Dependency Modeling and its Use for Program Slicing,” JSS’21
• “MOAD: Modeling Observation-based Approximate Dependency,” International Working Conference on Source Code Analysis and Manipulation

(SCAM), 2019

Causal inference
(CPDA)

(S. Lee, D. Binkley, R.Feldt, N. Gold, S. Yoo)
• “Causal Program Dependence Analysis,” to be submitted
• [Short paper] S. Oh, S. Lee, S. Yoo, “Effectively Sampling Higher Order Mutants Using Causal Effect,” International Workshop on Mutation Analysis

(MUTATION), 2021
• [Technical report] “Causal Program Dependence Analysis and Causal Fault Localization”

Others

• [SE Note] W. B. Langdon, W. Weimer, J, Petke, E. Feredericks, S. Lee, E. Winter, M. Basios, M. B. Cohen, A. Blot, M. Wagner, B. R. Bruce, S. Yoo, S.
Gerasimou, O. Karuss, Y. Huang, M. C. Gerten, “Genetic Improvement @ ICSE 2020,” ACM SIGSOFT Software Engineering Notes, 2020

• [Doctoral Symposium] S. Lee, “Scalable and Approximate Program Dependence Analysis,” ICSE’20
• [Industry] S. Lee, S. Hong, J, Yi, T. Kim, C. Kim, S. Yoo, “Classifying False Positive Static Checker Alarms in Continuous Integration Using

Convolutional Neural Networks,” ICST’19
• [Short] G. An, J. Kim, S. Lee, S. Yoo, PyGGI: Python General framework for Genetic Improvement,” Korea Software Congress (KSC), 2017
• [Short] J. Sohn, S. Lee, S. Yoo, “Amortised Deep Parameter Optimisation of GPGPU Work Group Size for OpenCV,” SSBSE’16

● INTRO / ○MOBS / ○MOAD / ○CPDA

12

PUBLICATIONS
● INTRO / ○MOBS / ○MOAD / ○CPDA

Research area Publications

Lexical approximation
(MOBS)

(S. Lee, D. Binkley, N. Gold, S. Islam, J. Krinke, S. Yoo)
• “Evaluating lexical approximation of program dependence,” JSS’20
• [Poster] “MOBS: Multi-Operator Observation-based Slicing using Lexical Approximation of Program Dependence,” ICSE’18
• [Short] “Hyperheuristic Observation Based Slicing of Guava,” International Symposium on Search Based Software Engineering (SSBSE), 2017
• [Technical report] S. Lee, S. You, “Using Source Code Lexical Similarity to Improve Efficiency of Observation Based Slicing”

Statistical modeling
(MOAD)

(S. Lee, D. Binkley, R.Feldt, N. Gold, S. Yoo)
• “Observation-based Approximate Dependency Modeling and its Use for Program Slicing,” JSS’21
• “MOAD: Modeling Observation-based Approximate Dependency,” International Working Conference on Source Code Analysis and Manipulation

(SCAM), 2019

Causal inference
(CPDA)

(S. Lee, D. Binkley, R.Feldt, N. Gold, S. Yoo)
• “Causal Program Dependence Analysis,” to be submitted
• [Short paper] S. Oh, S. Lee, S. Yoo, “Effectively Sampling Higher Order Mutants Using Causal Effect,” International Workshop on Mutation Analysis

(MUTATION), 2021
• [Technical report] “Causal Program Dependence Analysis and Causal Fault Localization”

Others

• [SE Note] W. B. Langdon, W. Weimer, J, Petke, E. Feredericks, S. Lee, E. Winter, M. Basios, M. B. Cohen, A. Blot, M. Wagner, B. R. Bruce, S. Yoo, S.
Gerasimou, O. Karuss, Y. Huang, M. C. Gerten, “Genetic Improvement @ ICSE 2020,” ACM SIGSOFT Software Engineering Notes, 2020

• [Doctoral Symposium] S. Lee, “Scalable and Approximate Program Dependence Analysis,” ICSE’20
• [Industry] S. Lee, S. Hong, J, Yi, T. Kim, C. Kim, S. Yoo, “Classifying False Positive Static Checker Alarms in Continuous Integration Using

Convolutional Neural Networks,” ICST’19
• [Short] G. An, J. Kim, S. Lee, S. Yoo, PyGGI: Python General framework for Genetic Improvement,” Korea Software Congress (KSC), 2017
• [Short] J. Sohn, S. Lee, S. Yoo, “Amortised Deep Parameter Optimisation of GPGPU Work Group Size for OpenCV,” SSBSE’16

12

PUBLICATIONS
● INTRO / ○MOBS / ○MOAD / ○CPDA

Research area Publications

Lexical approximation
(MOBS)

(S. Lee, D. Binkley, N. Gold, S. Islam, J. Krinke, S. Yoo)
• “Evaluating lexical approximation of program dependence,” JSS’20
• [Poster] “MOBS: Multi-Operator Observation-based Slicing using Lexical Approximation of Program Dependence,” ICSE’18
• [Short] “Hyperheuristic Observation Based Slicing of Guava,” International Symposium on Search Based Software Engineering (SSBSE), 2017
• [Technical report] S. Lee, S. You, “Using Source Code Lexical Similarity to Improve Efficiency of Observation Based Slicing”

Statistical modeling
(MOAD)

(S. Lee, D. Binkley, R.Feldt, N. Gold, S. Yoo)
• “Observation-based Approximate Dependency Modeling and its Use for Program Slicing,” JSS’21
• “MOAD: Modeling Observation-based Approximate Dependency,” International Working Conference on Source Code Analysis and Manipulation

(SCAM), 2019

Causal inference
(CPDA)

(S. Lee, D. Binkley, R.Feldt, N. Gold, S. Yoo)
• “Causal Program Dependence Analysis,” to be submitted
• [Short paper] S. Oh, S. Lee, S. Yoo, “Effectively Sampling Higher Order Mutants Using Causal Effect,” International Workshop on Mutation Analysis

(MUTATION), 2021
• [Technical report] “Causal Program Dependence Analysis and Causal Fault Localization”

Others

• [SE Note] W. B. Langdon, W. Weimer, J, Petke, E. Feredericks, S. Lee, E. Winter, M. Basios, M. B. Cohen, A. Blot, M. Wagner, B. R. Bruce, S. Yoo, S.
Gerasimou, O. Karuss, Y. Huang, M. C. Gerten, “Genetic Improvement @ ICSE 2020,” ACM SIGSOFT Software Engineering Notes, 2020

• [Doctoral Symposium] S. Lee, “Scalable and Approximate Program Dependence Analysis,” ICSE’20
• [Industry] S. Lee, S. Hong, J, Yi, T. Kim, C. Kim, S. Yoo, “Classifying False Positive Static Checker Alarms in Continuous Integration Using

Convolutional Neural Networks,” ICST’19
• [Short] G. An, J. Kim, S. Lee, S. Yoo, PyGGI: Python General framework for Genetic Improvement,” Korea Software Congress (KSC), 2017
• [Short] J. Sohn, S. Lee, S. Yoo, “Amortised Deep Parameter Optimisation of GPGPU Work Group Size for OpenCV,” SSBSE’16

12

PUBLICATIONS
● INTRO / ○MOBS / ○MOAD / ○CPDA

Research area Publications

Lexical approximation
(MOBS)

(S. Lee, D. Binkley, N. Gold, S. Islam, J. Krinke, S. Yoo)
• “Evaluating lexical approximation of program dependence,” JSS’20
• [Poster] “MOBS: Multi-Operator Observation-based Slicing using Lexical Approximation of Program Dependence,” ICSE’18
• [Short] “Hyperheuristic Observation Based Slicing of Guava,” International Symposium on Search Based Software Engineering (SSBSE), 2017
• [Technical report] S. Lee, S. You, “Using Source Code Lexical Similarity to Improve Efficiency of Observation Based Slicing”

Statistical modeling
(MOAD)

(S. Lee, D. Binkley, R.Feldt, N. Gold, S. Yoo)
• “Observation-based Approximate Dependency Modeling and its Use for Program Slicing,” JSS’21
• “MOAD: Modeling Observation-based Approximate Dependency,” International Working Conference on Source Code Analysis and Manipulation

(SCAM), 2019

Causal inference
(CPDA)

(S. Lee, D. Binkley, R.Feldt, N. Gold, S. Yoo)
• “Causal Program Dependence Analysis,” to be submitted
• [Short paper] S. Oh, S. Lee, S. Yoo, “Effectively Sampling Higher Order Mutants Using Causal Effect,” International Workshop on Mutation Analysis

(MUTATION), 2021
• [Technical report] “Causal Program Dependence Analysis and Causal Fault Localization”

Others

• [SE Note] W. B. Langdon, W. Weimer, J, Petke, E. Feredericks, S. Lee, E. Winter, M. Basios, M. B. Cohen, A. Blot, M. Wagner, B. R. Bruce, S. Yoo, S.
Gerasimou, O. Karuss, Y. Huang, M. C. Gerten, “Genetic Improvement @ ICSE 2020,” ACM SIGSOFT Software Engineering Notes, 2020

• [Doctoral Symposium] S. Lee, “Scalable and Approximate Program Dependence Analysis,” ICSE’20
• [Industry] S. Lee, S. Hong, J, Yi, T. Kim, C. Kim, S. Yoo, “Classifying False Positive Static Checker Alarms in Continuous Integration Using

Convolutional Neural Networks,” ICST’19
• [Short] G. An, J. Kim, S. Lee, S. Yoo, PyGGI: Python General framework for Genetic Improvement,” Korea Software Congress (KSC), 2017
• [Short] J. Sohn, S. Lee, S. Yoo, “Amortised Deep Parameter Optimisation of GPGPU Work Group Size for OpenCV,” SSBSE’16

12

MOBS

○ INTRO / ●MOBS / ○MOAD / ○CPDA

[]Approximate the dependence utilizing the lexical model
and increase the scalability

13

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

REMOVE/KEEP LINE
& MOVE ON

12

OBSERVATION-BASED SLICING (ORBS)

Run

MUTATE PROGRAM

$ 11

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

…
Multiple iterations

Until there is
no change

RECALL ORBS

14

○ INTRO / ●MOBS / ○MOAD / ○CPDA

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

REMOVE/KEEP LINE
& MOVE ON

12

OBSERVATION-BASED SLICING (ORBS)

Run

MUTATE PROGRAM

$ 11

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

…
Multiple iterations

Until there is
no change

RECALL ORBS

14

○ INTRO / ●MOBS / ○MOAD / ○CPDA

• ORBS takes ~40s to delete one line of
the source code (696 lines / 27,677s).

Scalability
In case of apache commons CSV

(1.5K NCLOC Java program)

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

REMOVE/KEEP LINE
& MOVE ON

12

OBSERVATION-BASED SLICING (ORBS)

Run

MUTATE PROGRAM

$ 11

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

…
Multiple iterations

Until there is
no change

RECALL ORBS

14

○ INTRO / ●MOBS / ○MOAD / ○CPDA

Scalability
In case of apache commons CSV

(1.5K NCLOC Java program)

…
1-minimal slice

Iterations

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

REMOVE/KEEP LINE
& MOVE ON

12

OBSERVATION-BASED SLICING (ORBS)

Run

MUTATE PROGRAM

$ 11

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

…
Multiple iterations

Until there is
no change

RECALL ORBS

14

○ INTRO / ●MOBS / ○MOAD / ○CPDA

Scalability
In case of apache commons CSV

(1.5K NCLOC Java program)

…
1-minimal slice

Iterations

Loose slice

Loose slice

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

REMOVE/KEEP LINE
& MOVE ON

12

OBSERVATION-BASED SLICING (ORBS)

Run

MUTATE PROGRAM

$ 11

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

…
Multiple iterations

Until there is
no change

RECALL ORBS

14

○ INTRO / ●MOBS / ○MOAD / ○CPDA

Scalability
In case of apache commons CSV

(1.5K NCLOC Java program)

…
1-minimal slice

Iterations

Loose slice

Loose slice

• 1st ORBS iteration takes ~9500s

 9500s ∼

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

REMOVE/KEEP LINE
& MOVE ON

12

OBSERVATION-BASED SLICING (ORBS)

Run

MUTATE PROGRAM

$ 11

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

…
Multiple iterations

Until there is
no change

Window deletion operator

• Aims to find structural dependency

• Deletes maximum 1 line per deletion

• Deletes consecutive lines only

RECALL ORBS

14

for window ⇐ 1 to n; do
| succ, P’ ⇐ delete(P, lineno, lineno - 1,
| ..., lineno - window + 1)
| if (succ)
| | P ⇐ P’
| end
end
lineno = lineno - 1

○ INTRO / ●MOBS / ○MOAD / ○CPDA

LEXICAL INFORMATION IN SOURCE CODE

○ INTRO / ●MOBS / ○MOAD / ○CPDA

15

LEXICAL INFORMATION IN SOURCE CODE

• Java

• Python

• Code lines handling the logging function
contain the word ‘log.’

○ INTRO / ●MOBS / ○MOAD / ○CPDA

15

Using the Conceptual Cohesion of Classes for
Fault Prediction in Object-Oriented Systems

Andrian Marcus, Member, IEEE Computer Society,
Denys Poshyvanyk, Student Member, IEEE, and Rudolf Ferenc

Abstract—High cohesion is a desirable property of software as it positively impacts understanding, reuse, and maintenance. Currently
proposed measures for cohesion in Object-Oriented (OO) software reflect particular interpretations of cohesion and capture different

aspects of it. Existing approaches are largely based on using the structural information from the source code, such as attribute
references, in methods to measure cohesion. This paper proposes a new measure for the cohesion of classes in OO software systems

based on the analysis of the unstructured information embedded in the source code, such as comments and identifiers. The measure,
named the Conceptual Cohesion of Classes (C3), is inspired by the mechanisms used to measure textual coherence in cognitive

psychology and computational linguistics. This paper presents the principles and the technology that stand behind the C3 measure. A
large case study on three open source software systems is presented which compares the new measure with an extensive set of

existing metrics and uses them to construct models that predict software faults. The case study shows that the novel measure captures
different aspects of class cohesion compared to any of the existing cohesion measures. In addition, combining C3 with existing

structural cohesion metrics proves to be a better predictor of faulty classes when compared to different combinations of structural
cohesion metrics.

Index Terms—Software cohesion, textual coherence, fault prediction, fault proneness, program comprehension, information retrieval,
Latent Semantic Indexing.

Ç

1 INTRODUCTION

SOFTWARE modularization, Object-Oriented (OO) decom-
position in particular, is an approach for improving the

organization and comprehension of source code. In order to
understand OO software, software engineers need to create
a well-connected representation of the classes that make up
the system. Each class must be understood individually
and, then, relationships among classes as well. One of the
goals of the OO analysis and design is to create a system
where classes have high cohesion and there is low coupling
among them. These class properties facilitate comprehen-
sion, testing, reusability, maintainability, etc.

Software cohesion can be defined as a measure of the
degree to which elements of a module belong together [8].
Cohesion is also regarded from a conceptual point of view.
In this view, a cohesive module is a crisp abstraction of a
concept or feature from the problem domain, usually
described in the requirements or specifications. Such
definitions, although very intuitive, are quite vague and
make cohesion measurement a difficult task, leaving too
much room for interpretation. In OO software systems,
cohesion is usually measured at the class level and many
different OO cohesion metrics have been proposed (see

Section 2 for details) which try capturing different aspects
of cohesion or reflect a particular interpretation of cohesion.

Proposals of measures and metrics for cohesion abound
in the literature (see Section 2) as software cohesion metrics
proved to be useful in different tasks [24], including the
assessment of design quality [5], [13], productivity, design,
and reuse effort [18], prediction of software quality, fault
prediction [30], [39], [69], modularization of software [14],
[54], and identification of reusable of components [32], [50].

Most approaches to cohesion measurement have auto-
mation as one of their goals as it is impractical to manually
measure the cohesion of classes in large systems. The trade-
off is that such measures deal with information that can be
automatically extracted from software and analyzed by
automated tools and ignore less structured but rich
information from the software (for example, textual
information). Cohesion is usually measured on structural
information extracted solely from the source code (for
example, attribute references in methods and method calls)
that captures the degree to which the elements of a class
belong together from a structural point of view. These
measures give information about the way a class is built
and how its instances work together to address the goals of
their design. The principle behind this class of metrics is to
measure the coupling between the methods of a class. Thus,
they give no clues as to whether the class is cohesive from a
conceptual point of view (for example, whether a class
implements one or more domain concepts) nor do they give
an indication about the readability and comprehensibility of
the source code. Although other types of metrics were
proposed by researchers (see Section 2 for details) to
capture different aspects of cohesion, only a few such

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008 287

. A. Marcus and D. Poshyvanyk are with the Department of Computer
Science, Wayne State University, 5143 Cass Avenue, Detroit, MI 48202.
E-mail: {amarcus, denys}@cs.wayne.edu.

. R. Ferenc is with the Department of Software Engineering, University of
Szeged, H-6720 Szeged, Hungary. E-mail: ferenc@inf.u-szeged.hu.

Manuscript received 21 Aug. 2006; revised 22 June 2007; accepted 18 Oct.
2007; published online 1 Nov. 2007.
Recommended for acceptance by H. Ossher.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0200-0806.
Digital Object Identifier no. 10.1109/TSE.2007.70768.

0098-5589/08/$25.00 ! 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on May 01,2021 at 07:54:59 UTC from IEEE Xplore. Restrictions apply.

Increasing diversity: Natural language measures for software fault prediction

David Binkley a, Henry Feild b, Dawn Lawrie a,*, Maurizio Pighin c

a Loyola College Baltimore, MD 21210, USA
b University of Massachusetts, Amherst, MA 01003, USA
c Universitá degli Studi di Udine, Italy

a r t i c l e i n f o

Article history:
Available online 26 June 2009

Keywords:
Information retrieval
Code comprehension
Fault prediction
Linear regression models
Empirical software engineering

a b s t r a c t

While challenging, the ability to predict faulty modules of a program is valuable to a software project
because it can reduce the cost of software development, as well as software maintenance and evolution.
Three language-processing based measures are introduced and applied to the problem of fault prediction.
The first measure is based on the usage of natural language in a program’s identifiers. The second mea-
sure concerns the conciseness and consistency of identifiers. The third measure, referred to as the QALP
score, makes use of techniques from information retrieval to judge software quality. The QALP score has
been shown to correlate with human judgments of software quality.

Two case studies consider the language processing measures applicability to fault prediction using two
programs (one open source, one proprietary). Linear mixed-effects regression models are used to identify
relationships between defects and the measures. Results, while complex, show that language processing
measures improve fault prediction, especially when used in combination. Overall, the models explain
one-third and two-thirds of the faults in the two case studies. Consistent with other uses of language pro-
cessing, the value of the three measures increases with the size of the program module considered.

! 2009 Elsevier Inc. All rights reserved.

1. Introduction

This paper studies the application of natural language process-
ing techniques to the problem of fault prediction. Detecting fault
prone code early, regardless of software life-cycle phase, allows
for the code to be fixed at lower cost; thus, a good fault predictor
helps to lower development and maintenance costs. For example,
cost savings may come from focusing testing-effort on certain parts
of the software, restructuring code, or augmenting documentation.
Further motivation comes from Koru and Tian who observe that
‘‘software products are getting increasingly large and complex,
which makes it infeasible to apply sufficient reviews, inspections,
and testing on all product parts given finite resources” (Koru and
Tian, 2007), highlighting the need for good fault prediction.

A number of studies have found correlations between structural
characteristics of software modules and problems, such as change
or defect proneness (Bell et al., 2006; Fenton and Ohlsson, 2000;
Gyimóthy et al., 2005; Kokol et al., 2001; Koru and Tian, 2007;
Menzies et al., 2007; Munson and Khoshgoftaar, 1992). Example
structural measures include lines of code, operator counts, nesting
depth, message passing, coupling, information flow-based cohe-

sion, depth of inheritance tree, number of parents, number of pre-
vious releases in which the module occurred, and number of faults
detected in the module during the previous release (Bell et al.,
2006; Ferenc et al., 2002). However, it has been observed that there
is need for more sophisticated measures. For example, Nortel Net-
works and IBM engineers observe that the most troublesome mod-
ules are not the ones with the highest structural-measure values
(Koru and Tian, 2007); thus, observing the need for more sophisti-
cated techniques.

In addition to greater sophistication, in recent work with struc-
tural code measures, Menzies et al. argued that the particular set of
measures used in fault prediction is less important than having a
sufficient pool to choose from (Menzies et al., 2007). Diversity in
this pool is important. For example, many existing measures are
strongly correlated with lines of code. One avenue to improve fault
predictors is the search for additional measures not correlated with
those in the existing pool.

Until recently, the semantic information contained in the natu-
ral language of a program (in particular, its identifiers) has gone
underutilized in software engineering (perhaps owing to the origin
of many analyses in the compiler construction field). The measures
considered herein augment those that use structural characteris-
tics by incorporating the semantics of natural language. This com-
plements the structural information used in most measures by
providing an orthogonal view of the source code. One view of these

0164-1212/$ - see front matter ! 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.06.036

* Corresponding author.
E-mail addresses: binkley@cs.loyola.edu (D. Binkley), hfeild@cs.umass.edu (H.

Feild), lawrie@cs.loyola.edu (D. Lawrie), maurizio.pighin@uniud.it (M. Pighin).

The Journal of Systems and Software 82 (2009) 1793–1803

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss

An Information Retrieval Approach for Regression
Test Prioritization Based on Program Changes

Ripon K. Saha⇤ Lingming Zhang† Sarfraz Khurshid⇤ Dewayne E. Perry⇤
⇤Electrical and Computer Engineering, The University of Texas at Austin, USA 78712

Email: ripon@utexas.edu, khurshid@ece.utexas.edu, perry@ece.utexas.edu
† Department of Computer Science, The University of Texas at Dallas, USA 75080

Email: lingming.zhang@utdallas.edu

Abstract—Regression testing is widely used in practice for

validating program changes. However, running large regression

suites can be costly. Researchers have developed several tech-

niques for prioritizing tests such that the higher-priority tests

have a higher likelihood of finding bugs. A vast majority of

these techniques are based on dynamic analysis, which can be

precise but can also have significant overhead (e.g., for program

instrumentation and test-coverage collection). We introduce a

new approach, REPiR, to address the problem of regression test

prioritization by reducing it to a standard Information Retrieval

problem such that the differences between two program versions

form the query and the tests constitute the document collection.

REPiR does not require any dynamic profiling or static program

analysis. As an enabling technology we leverage the open-source

IR toolkit Indri. An empirical evaluation using eight open-source

Java projects shows that REPiR is computationally efficient and

performs better than existing (dynamic or static) techniques for

the majority of subject systems.

Index Terms—Regression Testing, Test Prioritization, Informa-

tion Retrieval

I. INTRODUCTION

Programs commonly evolve due to feature enhancements,
program improvements, or bug fixes. Regression testing is
a widely used methodology for validating program changes.
However, regression testing can be time consuming and ex-
pensive [5], [29]. Executing a single regression suite can take
weeks [46]. Regression testing is even more challenging in
continuous or short-term delivery processes, which are now
common practices in industry [21]. Therefore, early detection
of regression faults is highly desirable.

Regression test prioritization (RTP) is a widely studied
technique that ranks the tests based on their likelihood in
revealing faults and defines a test execution order based
on this ranking so that tests that are more likely to find
(new, unknown) faults are run earlier [15], [39], [58], [61],
[66]. Existing RTP techniques are largely based on dynamic
code coverage where the coverage from the previous program
version is used to order, i.e., rank, the tests for running
against the next version [15], [26], [58], [61]. A few recent
techniques utilize static program analysis in lieu of dynamic
code coverage [39], [66]. RTP techniques (whether dynamic
or static) are broadly classified into two categories, total or
additional, depending on how they calculate the rank [46].
Total techniques do not change values of test cases during
the prioritization process, whereas additional techniques adjust

values of the remaining test cases taking into account the
influence of already prioritized test cases.

Although a number of RTP techniques (specifically
coverage-based ones) have been widely used, they have two
key limitations [39]. First, coverage profiling overhead (in
terms of time and space) can be significant. Second, in the
context of certain program changes (which modify behavior
significantly) the coverage information from the previous ver-
sion can be imprecise to guide test prioritization for the current
version. Although the static techniques [39], [66] address
the coverage profiling overhead, they simulate the coverage
information via static analysis, and thus can be also imprecise.

This paper presents REPiR, an information retrieval (IR)
approach for regression test prioritization based on program
changes. Traditional IR techniques [35] focus on the analysis
of natural language in an effort to find the most relevant
documents in a collection based on a given query. Even though
the original focus of IR techniques was on documents written
in natural language, recent years have seen a growing number
of applications of IR to effectively solve software engineering
problems by extracting useful information from source code
and other software artifacts [9], [31], [33], [38], [42]. The
effectiveness of these solutions relies on the use of meaningful
terms (e.g., identifiers and comments) in software artifacts, and
such use is common in most real world software projects. In
the context of testing and debugging, the application of IR has
been primarily focused on bug localization [42], [48], [67].

Our key insight is that in addition to writing good iden-
tifier names and comments in the code, developers use very
similar terms for test cases, and we can utilize these textual
relationships by reducing the RTP problem to a standard IR
problem such that program changes constitute the query and
the test cases form the document collection. Our tool REPiR
embodies our insight. We build REPiR on top of the state-
of-the-art Indri [53] toolkit, which provides an open-source,
highly optimized platform for building solutions based on IR
principles.

We compare REPiR against ten traditional RTP strate-
gies [14], [16], [39] using a dataset consisting of eight open-
source software projects. The experimental results show that
for the majority of subjects REPiR outperforms all program-
analysis-based and coverage-based strategies at both test-
method and test-class levels. Thus, REPiR provides an ef-

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.47

268

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.47

268

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.47

268

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.47

268

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on May 01,2021 at 08:14:46 UTC from IEEE Xplore. Restrictions apply.

LEXICAL INFORMATION IN SOURCE CODE

• Java

• Python

• Code lines handling the logging function
contain the word ‘log.’

○ INTRO / ●MOBS / ○MOAD / ○CPDA

15

Using the Conceptual Cohesion of Classes for
Fault Prediction in Object-Oriented Systems

Andrian Marcus, Member, IEEE Computer Society,
Denys Poshyvanyk, Student Member, IEEE, and Rudolf Ferenc

Abstract—High cohesion is a desirable property of software as it positively impacts understanding, reuse, and maintenance. Currently
proposed measures for cohesion in Object-Oriented (OO) software reflect particular interpretations of cohesion and capture different

aspects of it. Existing approaches are largely based on using the structural information from the source code, such as attribute
references, in methods to measure cohesion. This paper proposes a new measure for the cohesion of classes in OO software systems

based on the analysis of the unstructured information embedded in the source code, such as comments and identifiers. The measure,
named the Conceptual Cohesion of Classes (C3), is inspired by the mechanisms used to measure textual coherence in cognitive

psychology and computational linguistics. This paper presents the principles and the technology that stand behind the C3 measure. A
large case study on three open source software systems is presented which compares the new measure with an extensive set of

existing metrics and uses them to construct models that predict software faults. The case study shows that the novel measure captures
different aspects of class cohesion compared to any of the existing cohesion measures. In addition, combining C3 with existing

structural cohesion metrics proves to be a better predictor of faulty classes when compared to different combinations of structural
cohesion metrics.

Index Terms—Software cohesion, textual coherence, fault prediction, fault proneness, program comprehension, information retrieval,
Latent Semantic Indexing.

Ç

1 INTRODUCTION

SOFTWARE modularization, Object-Oriented (OO) decom-
position in particular, is an approach for improving the

organization and comprehension of source code. In order to
understand OO software, software engineers need to create
a well-connected representation of the classes that make up
the system. Each class must be understood individually
and, then, relationships among classes as well. One of the
goals of the OO analysis and design is to create a system
where classes have high cohesion and there is low coupling
among them. These class properties facilitate comprehen-
sion, testing, reusability, maintainability, etc.

Software cohesion can be defined as a measure of the
degree to which elements of a module belong together [8].
Cohesion is also regarded from a conceptual point of view.
In this view, a cohesive module is a crisp abstraction of a
concept or feature from the problem domain, usually
described in the requirements or specifications. Such
definitions, although very intuitive, are quite vague and
make cohesion measurement a difficult task, leaving too
much room for interpretation. In OO software systems,
cohesion is usually measured at the class level and many
different OO cohesion metrics have been proposed (see

Section 2 for details) which try capturing different aspects
of cohesion or reflect a particular interpretation of cohesion.

Proposals of measures and metrics for cohesion abound
in the literature (see Section 2) as software cohesion metrics
proved to be useful in different tasks [24], including the
assessment of design quality [5], [13], productivity, design,
and reuse effort [18], prediction of software quality, fault
prediction [30], [39], [69], modularization of software [14],
[54], and identification of reusable of components [32], [50].

Most approaches to cohesion measurement have auto-
mation as one of their goals as it is impractical to manually
measure the cohesion of classes in large systems. The trade-
off is that such measures deal with information that can be
automatically extracted from software and analyzed by
automated tools and ignore less structured but rich
information from the software (for example, textual
information). Cohesion is usually measured on structural
information extracted solely from the source code (for
example, attribute references in methods and method calls)
that captures the degree to which the elements of a class
belong together from a structural point of view. These
measures give information about the way a class is built
and how its instances work together to address the goals of
their design. The principle behind this class of metrics is to
measure the coupling between the methods of a class. Thus,
they give no clues as to whether the class is cohesive from a
conceptual point of view (for example, whether a class
implements one or more domain concepts) nor do they give
an indication about the readability and comprehensibility of
the source code. Although other types of metrics were
proposed by researchers (see Section 2 for details) to
capture different aspects of cohesion, only a few such

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008 287

. A. Marcus and D. Poshyvanyk are with the Department of Computer
Science, Wayne State University, 5143 Cass Avenue, Detroit, MI 48202.
E-mail: {amarcus, denys}@cs.wayne.edu.

. R. Ferenc is with the Department of Software Engineering, University of
Szeged, H-6720 Szeged, Hungary. E-mail: ferenc@inf.u-szeged.hu.

Manuscript received 21 Aug. 2006; revised 22 June 2007; accepted 18 Oct.
2007; published online 1 Nov. 2007.
Recommended for acceptance by H. Ossher.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0200-0806.
Digital Object Identifier no. 10.1109/TSE.2007.70768.

0098-5589/08/$25.00 ! 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on May 01,2021 at 07:54:59 UTC from IEEE Xplore. Restrictions apply.

Increasing diversity: Natural language measures for software fault prediction

David Binkley a, Henry Feild b, Dawn Lawrie a,*, Maurizio Pighin c

a Loyola College Baltimore, MD 21210, USA
b University of Massachusetts, Amherst, MA 01003, USA
c Universitá degli Studi di Udine, Italy

a r t i c l e i n f o

Article history:
Available online 26 June 2009

Keywords:
Information retrieval
Code comprehension
Fault prediction
Linear regression models
Empirical software engineering

a b s t r a c t

While challenging, the ability to predict faulty modules of a program is valuable to a software project
because it can reduce the cost of software development, as well as software maintenance and evolution.
Three language-processing based measures are introduced and applied to the problem of fault prediction.
The first measure is based on the usage of natural language in a program’s identifiers. The second mea-
sure concerns the conciseness and consistency of identifiers. The third measure, referred to as the QALP
score, makes use of techniques from information retrieval to judge software quality. The QALP score has
been shown to correlate with human judgments of software quality.

Two case studies consider the language processing measures applicability to fault prediction using two
programs (one open source, one proprietary). Linear mixed-effects regression models are used to identify
relationships between defects and the measures. Results, while complex, show that language processing
measures improve fault prediction, especially when used in combination. Overall, the models explain
one-third and two-thirds of the faults in the two case studies. Consistent with other uses of language pro-
cessing, the value of the three measures increases with the size of the program module considered.

! 2009 Elsevier Inc. All rights reserved.

1. Introduction

This paper studies the application of natural language process-
ing techniques to the problem of fault prediction. Detecting fault
prone code early, regardless of software life-cycle phase, allows
for the code to be fixed at lower cost; thus, a good fault predictor
helps to lower development and maintenance costs. For example,
cost savings may come from focusing testing-effort on certain parts
of the software, restructuring code, or augmenting documentation.
Further motivation comes from Koru and Tian who observe that
‘‘software products are getting increasingly large and complex,
which makes it infeasible to apply sufficient reviews, inspections,
and testing on all product parts given finite resources” (Koru and
Tian, 2007), highlighting the need for good fault prediction.

A number of studies have found correlations between structural
characteristics of software modules and problems, such as change
or defect proneness (Bell et al., 2006; Fenton and Ohlsson, 2000;
Gyimóthy et al., 2005; Kokol et al., 2001; Koru and Tian, 2007;
Menzies et al., 2007; Munson and Khoshgoftaar, 1992). Example
structural measures include lines of code, operator counts, nesting
depth, message passing, coupling, information flow-based cohe-

sion, depth of inheritance tree, number of parents, number of pre-
vious releases in which the module occurred, and number of faults
detected in the module during the previous release (Bell et al.,
2006; Ferenc et al., 2002). However, it has been observed that there
is need for more sophisticated measures. For example, Nortel Net-
works and IBM engineers observe that the most troublesome mod-
ules are not the ones with the highest structural-measure values
(Koru and Tian, 2007); thus, observing the need for more sophisti-
cated techniques.

In addition to greater sophistication, in recent work with struc-
tural code measures, Menzies et al. argued that the particular set of
measures used in fault prediction is less important than having a
sufficient pool to choose from (Menzies et al., 2007). Diversity in
this pool is important. For example, many existing measures are
strongly correlated with lines of code. One avenue to improve fault
predictors is the search for additional measures not correlated with
those in the existing pool.

Until recently, the semantic information contained in the natu-
ral language of a program (in particular, its identifiers) has gone
underutilized in software engineering (perhaps owing to the origin
of many analyses in the compiler construction field). The measures
considered herein augment those that use structural characteris-
tics by incorporating the semantics of natural language. This com-
plements the structural information used in most measures by
providing an orthogonal view of the source code. One view of these

0164-1212/$ - see front matter ! 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.06.036

* Corresponding author.
E-mail addresses: binkley@cs.loyola.edu (D. Binkley), hfeild@cs.umass.edu (H.

Feild), lawrie@cs.loyola.edu (D. Lawrie), maurizio.pighin@uniud.it (M. Pighin).

The Journal of Systems and Software 82 (2009) 1793–1803

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss

An Information Retrieval Approach for Regression
Test Prioritization Based on Program Changes

Ripon K. Saha⇤ Lingming Zhang† Sarfraz Khurshid⇤ Dewayne E. Perry⇤
⇤Electrical and Computer Engineering, The University of Texas at Austin, USA 78712

Email: ripon@utexas.edu, khurshid@ece.utexas.edu, perry@ece.utexas.edu
† Department of Computer Science, The University of Texas at Dallas, USA 75080

Email: lingming.zhang@utdallas.edu

Abstract—Regression testing is widely used in practice for

validating program changes. However, running large regression

suites can be costly. Researchers have developed several tech-

niques for prioritizing tests such that the higher-priority tests

have a higher likelihood of finding bugs. A vast majority of

these techniques are based on dynamic analysis, which can be

precise but can also have significant overhead (e.g., for program

instrumentation and test-coverage collection). We introduce a

new approach, REPiR, to address the problem of regression test

prioritization by reducing it to a standard Information Retrieval

problem such that the differences between two program versions

form the query and the tests constitute the document collection.

REPiR does not require any dynamic profiling or static program

analysis. As an enabling technology we leverage the open-source

IR toolkit Indri. An empirical evaluation using eight open-source

Java projects shows that REPiR is computationally efficient and

performs better than existing (dynamic or static) techniques for

the majority of subject systems.

Index Terms—Regression Testing, Test Prioritization, Informa-

tion Retrieval

I. INTRODUCTION

Programs commonly evolve due to feature enhancements,
program improvements, or bug fixes. Regression testing is
a widely used methodology for validating program changes.
However, regression testing can be time consuming and ex-
pensive [5], [29]. Executing a single regression suite can take
weeks [46]. Regression testing is even more challenging in
continuous or short-term delivery processes, which are now
common practices in industry [21]. Therefore, early detection
of regression faults is highly desirable.

Regression test prioritization (RTP) is a widely studied
technique that ranks the tests based on their likelihood in
revealing faults and defines a test execution order based
on this ranking so that tests that are more likely to find
(new, unknown) faults are run earlier [15], [39], [58], [61],
[66]. Existing RTP techniques are largely based on dynamic
code coverage where the coverage from the previous program
version is used to order, i.e., rank, the tests for running
against the next version [15], [26], [58], [61]. A few recent
techniques utilize static program analysis in lieu of dynamic
code coverage [39], [66]. RTP techniques (whether dynamic
or static) are broadly classified into two categories, total or
additional, depending on how they calculate the rank [46].
Total techniques do not change values of test cases during
the prioritization process, whereas additional techniques adjust

values of the remaining test cases taking into account the
influence of already prioritized test cases.

Although a number of RTP techniques (specifically
coverage-based ones) have been widely used, they have two
key limitations [39]. First, coverage profiling overhead (in
terms of time and space) can be significant. Second, in the
context of certain program changes (which modify behavior
significantly) the coverage information from the previous ver-
sion can be imprecise to guide test prioritization for the current
version. Although the static techniques [39], [66] address
the coverage profiling overhead, they simulate the coverage
information via static analysis, and thus can be also imprecise.

This paper presents REPiR, an information retrieval (IR)
approach for regression test prioritization based on program
changes. Traditional IR techniques [35] focus on the analysis
of natural language in an effort to find the most relevant
documents in a collection based on a given query. Even though
the original focus of IR techniques was on documents written
in natural language, recent years have seen a growing number
of applications of IR to effectively solve software engineering
problems by extracting useful information from source code
and other software artifacts [9], [31], [33], [38], [42]. The
effectiveness of these solutions relies on the use of meaningful
terms (e.g., identifiers and comments) in software artifacts, and
such use is common in most real world software projects. In
the context of testing and debugging, the application of IR has
been primarily focused on bug localization [42], [48], [67].

Our key insight is that in addition to writing good iden-
tifier names and comments in the code, developers use very
similar terms for test cases, and we can utilize these textual
relationships by reducing the RTP problem to a standard IR
problem such that program changes constitute the query and
the test cases form the document collection. Our tool REPiR
embodies our insight. We build REPiR on top of the state-
of-the-art Indri [53] toolkit, which provides an open-source,
highly optimized platform for building solutions based on IR
principles.

We compare REPiR against ten traditional RTP strate-
gies [14], [16], [39] using a dataset consisting of eight open-
source software projects. The experimental results show that
for the majority of subjects REPiR outperforms all program-
analysis-based and coverage-based strategies at both test-
method and test-class levels. Thus, REPiR provides an ef-

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.47

268

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.47

268

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.47

268

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.47

268

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on May 01,2021 at 08:14:46 UTC from IEEE Xplore. Restrictions apply.

LEXICAL INFORMATION IN SOURCE CODE

• Java

• Python

• Code lines handling the logging function
contain the word ‘log.’

○ INTRO / ●MOBS / ○MOAD / ○CPDA

15

The tokens used in the source code reflect the functionality that the source code implements.

LEXICAL DELETION OPERATOR

Logger logger = Logger.getLogger(…);

logger.log(Level.SEVER, “…”);

logger.log(Level.WARNING, “…”);

...

...

...

...

○ INTRO / ●MOBS / ○MOAD / ○CPDA

16

LEXICAL DELETION OPERATOR

Logger logger = Logger.getLogger(…);

logger.log(Level.SEVER, “…”);

logger.log(Level.WARNING, “…”);

...

...

...

...

0.8

0.85

○ INTRO / ●MOBS / ○MOAD / ○CPDA

16

LEXICAL DELETION OPERATOR

Logger logger = Logger.getLogger(…);

logger.log(Level.SEVER, “…”);

logger.log(Level.WARNING, “…”);

...

...

...

...

0.8

0.85

SHARE THE
FUNCTIONALITY

○ INTRO / ●MOBS / ○MOAD / ○CPDA

16

LEXICAL DELETION OPERATOR

Logger logger = Logger.getLogger(…);

logger.log(Level.SEVER, “…”);

logger.log(Level.WARNING, “…”);

...

...

...

...

0.8

0.85

SHARE THE
FUNCTIONALITY

Two language models

1. Vector Space Model (VSM)

2. Latent Dirichlet Allocation (LDA)

○ INTRO / ●MOBS / ○MOAD / ○CPDA

16

RECALL ORBS

17

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

REMOVE/KEEP LINE
& MOVE ON

12

OBSERVATION-BASED SLICING (ORBS)

Run

MUTATE PROGRAM

$ 11

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

…
Multiple iterations

Until there is
no change

Lexical deletion operator

• Aims to find lexical dependency

• Can delete

• arbitrary number of similar lines

• non-consecutive lines

similar_lines = Lex_model(curr_line, threshold)
succ, P’ ⇐ delete(P, curr_line, similar_lines)
if (succ)
| P ⇐ P’
end
lineno = lineno - 1

○ INTRO / ●MOBS / ○MOAD / ○CPDA

LEXICAL SIMILARITY-BASED ORBS (LS-ORBS)

18

REMOVE/KEEP LINE
& MOVE ON

MUTATE PROGRAM

Slicing criterion

PROCESS
OBSERVATION

OBSERVE
IMPACT ON
OTHERS

Program

Program sliceLEXICAL DELETION

○ INTRO / ●MOBS / ○MOAD / ○CPDA

LEXICAL SIMILARITY-BASED ORBS (LS-ORBS)

18

REMOVE/KEEP LINE
& MOVE ON

MUTATE PROGRAM

Slicing criterion

PROCESS
OBSERVATION

OBSERVE
IMPACT ON
OTHERS

Program

Program sliceLEXICAL DELETION

○ INTRO / ●MOBS / ○MOAD / ○CPDA

• Benchmarks: 18 slicing criteria from Java and C programs

• Java: apache commons CSV, CLI, and guava library

• C: Siemens suite

ORBS VS. LS-ORBS

LS-ORBS achieves, or uses

👍 55% # of compilations / del,

👍 70% # of executions / del,

👍 57% time taken / del,

👎 38% # of deleted lines

compared to ORBS

○ INTRO / ●MOBS / ○MOAD / ○CPDA

0 %

12.5 %

25 %

37.5 %

50 %

COMP EXEC TIME DELETE

VSM LDA

64 %
70 %

63 %

51 %

69 %

48 %

64 %
70 %

63 %

51 %

69 %

48 %
VSM

LDA

Ratio of

LS-ORBS

ORBS

19

• Benchmarks: 18 slicing criteria from Java and C programs

• Java: apache commons CSV, CLI, and guava library

• C: Siemens suite

ORBS VS. LS-ORBS

LS-ORBS achieves, or uses

👍 55% # of compilations / del,

👍 70% # of executions / del,

👍 57% time taken / del,

👎 38% # of deleted lines

compared to ORBS

○ INTRO / ●MOBS / ○MOAD / ○CPDA

0 %

12.5 %

25 %

37.5 %

50 %

COMP EXEC TIME DELETE

VSM LDA

64 %
70 %

63 %

51 %

69 %

48 %

64 %
70 %

63 %

51 %

69 %

48 %
VSM

LDA

Ratio of

LS-ORBS

ORBS

per deletion

19

Non-stop words in deleted lines

 Lexical deletion operators are effective
in statements with non-stop words.

0

1.5

3

4.5

6

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

LS-ORBS

0

1.5

3

4.5

6

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

ORBS

0

1.5

3

4.5

6

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

no

n-
st

o
p

 w
o

rd
 /

 d
el

 li
ne

0

25

50

75

100

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

ORBS

0

25

50

75

100

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

LS-ORBS

Multi-line statements Declarations

 Syntactic structures in source code is challenging
to the lexical deletion operators

0

175

350

525

700

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

ORBS

0

175

350

525

700

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

LS-ORBS

d

el
et

ed
 li

ne
s

WHEN ARE LEXICAL DELETION OPERATORS
EFFECTIVE / INEFFECTIVE?

20

○ INTRO / ●MOBS / ○MOAD / ○CPDA

Stop words: if, while, class, def, etc.

Non-stop words in deleted lines

 Lexical deletion operators are effective
in statements with non-stop words.

0

1.5

3

4.5

6

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

LS-ORBS

0

1.5

3

4.5

6

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

ORBS

0

1.5

3

4.5

6

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

no

n-
st

o
p

 w
o

rd
 /

 d
el

 li
ne

0

25

50

75

100

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

ORBS

0

25

50

75

100

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

LS-ORBS

Multi-line statements Declarations

 Syntactic structures in source code is challenging
to the lexical deletion operators

0

175

350

525

700

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

ORBS

0

175

350

525

700

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

LS-ORBS

d

el
et

ed
 li

ne
s

WHEN ARE LEXICAL DELETION OPERATORS
EFFECTIVE / INEFFECTIVE?

20

○ INTRO / ●MOBS / ○MOAD / ○CPDA

Stop words: if, while, class, def, etc.

0

25

50

75

100

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

ORBS

0

25

50

75

100

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

LS-ORBS

Multi-line statements Declarations

 Syntactic structures in source code is challenging
to the lexical deletion operators

0

175

350

525

700

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

ORBS

0

175

350

525

700

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

LS-ORBS

d

el
et

ed
 li

ne
s

WHEN ARE LEXICAL DELETION OPERATORS
EFFECTIVE / INEFFECTIVE?

20

○ INTRO / ●MOBS / ○MOAD / ○CPDA

Non-stop words in deleted lines

 Lexical deletion operators are effective
in statements with non-stop words.

0

1.5

3

4.5

6

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

LS-ORBS

0

1.5

3

4.5

6

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

ORBS

0

1.5

3

4.5

6

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

no

n-
st

o
p

 w
o

rd
 /

 d
el

 li
ne

Stop words: if, while, class, def, etc.

0

25

50

75

100

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

ORBS

0

25

50

75

100

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

LS-ORBS

Multi-line statements Declarations

 Syntactic structures in source code is challenging
to the lexical deletion operators

0

175

350

525

700

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

ORBS

0

175

350

525

700

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

LS-ORBS

d

el
et

ed
 li

ne
s

WHEN ARE LEXICAL DELETION OPERATORS
EFFECTIVE / INEFFECTIVE?

20

There is a complementary relation between window deletion and lexical deletion.

○ INTRO / ●MOBS / ○MOAD / ○CPDA

Non-stop words in deleted lines

 Lexical deletion operators are effective
in statements with non-stop words.

0

1.5

3

4.5

6

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

LS-ORBS

0

1.5

3

4.5

6

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

ORBS

0

1.5

3

4.5

6

CLI-
1

CLI-
2

CLI-
3

CLI-
4

CLI-
5

CSV
-1

CSV
-2

CSV
-3

ES
C-1

ES
C-2

ES
C-3

ES
C-4

ES
C-5

NET
-1

NET
-2

NET
-3

NET
-4

NET
-5

PR
NT2

PR
NT

RE
P

SC
HD2

SC
HD

TO
T

no

n-
st

o
p

 w
o

rd
 /

 d
el

 li
ne

Stop words: if, while, class, def, etc.

MOBS: MULTI-OPERATOR ORBS

○ INTRO / ●MOBS / ○MOAD / ○CPDA

21

W1 W2 W3 VSM LDA

DELETION OPERATORS

MOBS: MULTI-OPERATOR ORBS

○ INTRO / ●MOBS / ○MOAD / ○CPDA

21

W1 W2 W3 VSM LDA

DELETION OPERATORS

MOBS: MULTI-OPERATOR ORBS

○ INTRO / ●MOBS / ○MOAD / ○CPDA

21

W1 W2 W3 VSM LDA

DELETION OPERATORS

MOBS: MULTI-OPERATOR ORBS

○ INTRO / ●MOBS / ○MOAD / ○CPDA

21

MOBS: MULTI-OPERATOR ORBS

OPERATOR SELECTION USING PROBABILITY DISTRIBUTION

○ INTRO / ●MOBS / ○MOAD / ○CPDA

22

MOBS: MULTI-OPERATOR ORBS

OPERATOR SELECTION USING PROBABILITY DISTRIBUTION

UNIFORM

○ INTRO / ●MOBS / ○MOAD / ○CPDA

22

MOBS: MULTI-OPERATOR ORBS

OPERATOR SELECTION USING PROBABILITY DISTRIBUTION

UNIFORM FIXED
(APPLICABILITY / EFFECT)

○ INTRO / ●MOBS / ○MOAD / ○CPDA

22

MOBS: MULTI-OPERATOR ORBS

OPERATOR SELECTION USING PROBABILITY DISTRIBUTION

UNIFORM FIXED
(APPLICABILITY / EFFECT)

○ INTRO / ●MOBS / ○MOAD / ○CPDA

ADAPTIVE

22

MOBS RESULT

MOBS runs / achieves

‣ 2.9X faster,

‣ 69% # of deleted lines

compared to ORBS.

○ INTRO / ●MOBS / ○MOAD / ○CPDA

1X

1.75X

2.5X

3.25X

4X

40 % 55 % 70 % 85 % 100 %

ADAPTIVE
UNIFORM
FIX-APP
FIX-EFF

Speed-Up

Deleted lines

ORBS

Inverse
trade-off

23

MOBS RESULT

24

.5h 1h 1.5h 2h 2.5h 3h 3.5h 4h 4.5h 5h 5.5h 6h 6.5h 7h 7.5h 8h

ORBS i
te

r 1

M
OBS

ite
r 1

M
OBS

ite
r 2

M
OBS

ite
r 3

M
OBS

ite
r 4

M
OBS

ite
r 5

ORBS i
te

r 2

ORBS i
te

r 3

ORBS i
te

r 4

ORBS i
te

r 5

• For apache commons CSV,

○ INTRO / ●MOBS / ○MOAD / ○CPDA

MOBS RESULT

24

.5h 1h 1.5h 2h 2.5h 3h 3.5h 4h 4.5h 5h 5.5h 6h 6.5h 7h 7.5h 8h

ORBS i
te

r 1

M
OBS

ite
r 1

M
OBS

ite
r 2

M
OBS

ite
r 3

M
OBS

ite
r 4

M
OBS

ite
r 5

ORBS i
te

r 2

ORBS i
te

r 3

ORBS i
te

r 4

ORBS i
te

r 5

• For apache commons CSV,

○ INTRO / ●MOBS / ○MOAD / ○CPDA

• Misaka (http://misaka.61924.nl)

• A Python binding for Hoedown,
a markdown parsing C library.

• Programming language:
C, Python

EXAMPLE. MULTI-LINGUAL DELETION

┌ callbacks.py (125) > result = renderer.blockhtml(text)

└ hoedown/html.c (635) > renderer->blockhtml = NULL;

• Both LDA and VSM Deletion operator

┌ callbacks.py (97) > elif align_bit == TABLE_ALIGN_LEFT:

| callbacks.py (98) > align = ‘left'

└ hoedown/html.c (393) > case HOEDOWN_TABLE_ALIGN_LEFT:

• VSM Deletion operator

┌ api.py (29) > lib.hoedown_buffer_puts(ib, text.encode('utf-8'))

| hoedown/document.c (2490) > hoedown_buffer_free(text);

└ hoedown/html_smartypants.c (195) > hoedown_buffer_putc(ob, text[0]);

• LDA Deletion operator

NCLOC FILES TC

 C 4,360 10

 Python 473 5

 Total 4,833 15 92

○ INTRO / ●MOBS / ○MOAD / ○CPDA

25

http://misaka.61924.nl/

○ INTRO / ○MOBS / ●MOAD / ○CPDA

MOAD

[]Approximating the general program dependence model by
applying statistical models on the observation data

26

𝔼 𝔼

LIMITATION OF ORBS

27

 Requires a large number of compilations & executions

REMOVE/KEEP LINE
& MOVE ON

MUTATE
PROGRAM

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Recursive / cumulative mutation

○ INTRO / ○MOBS / ●MOAD / ○CPDA

LIMITATION OF ORBS

27

ecrit.{e1,e2}𝔼 ∋

 Requires a large number of compilations & executions

ALL
PROGRAM
ELEMENT

REMOVE/KEEP LINE
& MOVE ON

MUTATE
PROGRAM

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Recursive / cumulative mutation

○ INTRO / ○MOBS / ●MOAD / ○CPDA

LIMITATION OF ORBS

27

e4𝔼 ?
Another element

ecrit.{e1,e2}𝔼 ∋

 Requires a large number of compilations & executions

ALL
PROGRAM
ELEMENT

REMOVE/KEEP LINE
& MOVE ON

MUTATE
PROGRAM

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Recursive / cumulative mutation

○ INTRO / ○MOBS / ●MOAD / ○CPDA

LIMITATION OF ORBS

27

Provides partial dependency information

e4𝔼 ?
Another element

𝔼ecrit.
?

Forward dependency

ecrit.{e1,e2}𝔼 ∋

 Requires a large number of compilations & executions

ALL
PROGRAM
ELEMENT

REMOVE/KEEP LINE
& MOVE ON

MUTATE
PROGRAM

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Recursive / cumulative mutation

○ INTRO / ○MOBS / ●MOAD / ○CPDA

𝔼 𝔼

STATIC ANALYSIS

ec𝔼

ORBS

28

General
dependence

Observation-based
approach

○ INTRO / ○MOBS / ●MOAD / ○CPDA

𝔼 𝔼

STATIC ANALYSIS

ec𝔼

ORBS

Observation-based analysis

28

General
dependence

Observation-based
approach

○ INTRO / ○MOBS / ●MOAD / ○CPDA

𝔼 𝔼

𝔼 𝔼

STATIC ANALYSIS

ec𝔼

ORBS

Observation-based analysis

Modeling dependency

28

General
dependence

Observation-based
approach

○ INTRO / ○MOBS / ●MOAD / ○CPDA

MODELING
OBSERVATION-BASED
APPROXIMATE
DEPENDENCY

𝔼 𝔼

𝔼 𝔼

STATIC ANALYSIS

ec𝔼

ORBS

28

General
dependence

Observation-based
approach

○ INTRO / ○MOBS / ●MOAD / ○CPDA

MOAD

ece1

29

Delete!

○ INTRO / ○MOBS / ●MOAD / ○CPDA

= 42

MOAD

ece1
Compile & Execute

29

Trajectory preserved

Independent!
Delete!

○ INTRO / ○MOBS / ●MOAD / ○CPDA

MOAD

e1

e2

e3

e4

en

…

29

○ INTRO / ○MOBS / ●MOAD / ○CPDA

= 3.141592

MOAD

e1

= 42
Compile & Execute

e2

e3

e4

en

…

= “foo”

= bar()
29

○ INTRO / ○MOBS / ●MOAD / ○CPDA

e1: foo = Foo()

ec: answer = 42

MOAD

ece1

30

○ INTRO / ○MOBS / ●MOAD / ○CPDA

Traj(answer) = 42

e1: foo = Foo()

ec: answer = 42

MOAD

ece1

30

Preserved!

○ INTRO / ○MOBS / ●MOAD / ○CPDA

MOAD

e2

ece1

30

e1: foo = Foo()

e2: foo.bar = 2

ec: answer = 42

○ INTRO / ○MOBS / ●MOAD / ○CPDA

Traj(answer) = ∅

MOAD

e2

ec

Compilation Error!

e1

30

e1: foo = Foo()

e2: foo.bar = 2

ec: answer = 42

Changed!!

○ INTRO / ○MOBS / ●MOAD / ○CPDA

MOAD

ece1

e2

30

e1: foo = Foo()

e2: foo.bar = 2

ec: answer = 42

○ INTRO / ○MOBS / ●MOAD / ○CPDA

MOAD

ece1

e2 Compile & Execute

30

Traj(answer) = 42

e1: foo = Foo()

e2: foo.bar = 2

ec: answer = 42

Preserved!

○ INTRO / ○MOBS / ●MOAD / ○CPDA

OBSERVATION PHASE

e1,e3e1,e2
e1

e3e1,e2,e4

e4

e2

e2,e4

e5

31

○ INTRO / ○MOBS / ●MOAD / ○CPDA

OBSERVATION PHASE

e1,e3e1,e2
e1

e3e1,e2,e4

e4

e2

e2,e4

e5

31

○ INTRO / ○MOBS / ●MOAD / ○CPDA

OBSERVATION PHASE

e1,e3e1,e2
e1

e3e1,e2,e4

e4

e2

e2,e4

e5

e2

e3

e4

en

…
31

○ INTRO / ○MOBS / ●MOAD / ○CPDA

OBSERVATION PHASE

e1,e3e1,e2
e1

e3e1,e2,e4

e4

e2

e2,e4

e5

= 3.141592

= 42
Compile & Execute

e2

e3

e4

en

…

= “foo”

= bar()
31

○ INTRO / ○MOBS / ●MOAD / ○CPDA

INFERENCE PHASE

e1,e3e1,e2
e1

e3e1,e2,e4

e4

e2

e2,e4

e5

= 3.141592

= 42
Compile & Execute

e2

e3

e4

en

…

= “foo”

= bar()

𝔹𝕆
𝕃

31

○ INTRO / ○MOBS / ●MOAD / ○CPDA

MOAD

𝔼 𝔼

31

○ INTRO / ○MOBS / ●MOAD / ○CPDA

MOAD

31

𝔼 𝔼

e1,e3e1,e2
e1

e1,e2,e4 e3

e4

e2

e2,e4

e5

○ INTRO / ○MOBS / ●MOAD / ○CPDA

MOAD

31

e3

e4

e2

e2,e4

e5

e1,e3e1,e2
e1

e1,e2,e4 𝔼 𝔼
APPROXIMATE

○ INTRO / ○MOBS / ●MOAD / ○CPDA

ADVANTAGE OF MOAD VS. ORBS

32

○ INTRO / ○MOBS / ●MOAD / ○CPDA

ADVANTAGE OF MOAD VS. ORBS

32

ece1

Compile & Execute

○ INTRO / ○MOBS / ●MOAD / ○CPDA

ADVANTAGE OF MOAD VS. ORBS

32

e1

Compile & Execute e2

e3

e4

en

○ INTRO / ○MOBS / ●MOAD / ○CPDA

ADVANTAGE OF MOAD VS. ORBS

32

e1

Compile & Execute e2

e3

e4

en

1. EFFICIENCY

○ INTRO / ○MOBS / ●MOAD / ○CPDA

ADVANTAGE OF MOAD VS. ORBS

32

e1

Compile & Execute e2

e3

e4

en

1. EFFICIENCY

e3𝔼 ?
Backward dependency

𝔼e3
?

Forward dependency

2. COMPLETENESS

○ INTRO / ○MOBS / ●MOAD / ○CPDA

DELETION GENERATION SCHEME

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

u1

u2

u3

u4

u5

u6

u7

• Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

33

○ INTRO / ○MOBS / ●MOAD / ○CPDA

DELETION GENERATION SCHEME

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

u1

u2

u3

u4

u5

u6

u7

• Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

u1 u2 u3 u4 u5 u6 u7

1 0 0 1 … 1 0 deletion

33

0: remains, 1: deleted

○ INTRO / ○MOBS / ●MOAD / ○CPDA

DELETION GENERATION SCHEME

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

u1

u2

u3

u4

u5

u6

u7

• Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

u1 u2 u3 u4 u5 u6 u7

1 0 0 1 … 1 0 deletion

33

0: remains, 1: deleted

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

○ INTRO / ○MOBS / ●MOAD / ○CPDA

• Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

• 0: remains, 1: deleted

DELETION GENERATION SCHEME

u1 u2 u3 u4 … ui-1 ui

0 0 0 0 … 0 0

1 0 0 0 … 0 0

0 1 0 0 … 0 0

… … … … … … …

0 0 0 0 … 0 1

1-HOT : every single statement

u1 u2 u3 u4 … ui-1 ui

… … … … … … …

1 1 0 0 … 0 0

1 0 1 0 … 0 0

… … … … … … …

0 0 0 0 … 1 1

2-HOT : 1-HOT + every pair of statements

+original
(no deletion)

34

○ INTRO / ○MOBS / ●MOAD / ○CPDA

• Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

• 0: remains, 1: deleted

• Run the programs, check whether the trajectory changed (0) or not (1) for each variable.

OBSERVATION PHASE

u1 u2 u3 u4 … ui-1 ui Observe v1 v2 v3 … vj

0 0 0 0 … 0 0 1 1 1 … 1

1 0 0 0 … 0 0 0 0 0 … 1

0 1 0 0 … 0 0 1 0 1 … 0

… … … … … … … … … … … …

0 0 0 0 … 1 1 0 0 1 … 0

→

35

○ INTRO / ○MOBS / ●MOAD / ○CPDA

u1 u2 u3 u4 … ui-1 ui Observe v1 v2 v3 … vj

0 0 0 0 … 0 0 1 1 1 … 1

1 0 0 0 … 0 0 0 0 0 … 1

0 1 0 0 … 0 0 1 0 1 … 0

… … … … … … … … … … … …

0 0 0 0 … 1 1 0 0 1 … 0

→

u1 u2 u3 u4 … ui-1 ui v1

0 0 1 0 … 0 1 ?
→M :

STATISTICAL MODEL

35

○ INTRO / ○MOBS / ●MOAD / ○CPDA

• Main hypothesis:

STATISTICAL MODEL → INFER DEPENDENCY

36

A variable is more likely to be independent of a statement if
more observations show that preserves its behavior when is deleted.

vk ui
vk ui

○ INTRO / ○MOBS / ●MOAD / ○CPDA

1. Once success ()𝕆

INFERENCE MODEL

If the behavior of is preserved at least once when is deleted,
then is independent from .

vk ui
vk ui

ui vk

1 1 vkuiIf , then

Deleted
Behavior preserved

37

○ INTRO / ○MOBS / ●MOAD / ○CPDA

1. Once success ()𝕆

INFERENCE MODEL

If the behavior of is preserved at least once when is deleted,
then is independent from .

vk ui
vk ui

ui vk

1 1 vkuiIf , then

Deleted
Behavior preserved

37

○ INTRO / ○MOBS / ●MOAD / ○CPDA

dict[“a”] = set()

...

dict[“a”].add(3)
Good!

1. Once success ()𝕆

INFERENCE MODEL

If the behavior of is preserved at least once when is deleted,
then is independent from .

vk ui
vk ui

ui vk

1 1 vkuiIf , then

Deleted
Behavior preserved

37

○ INTRO / ○MOBS / ●MOAD / ○CPDA

dict[“a”] = set()

...

if “a” not in dict: dict[“a”] = set()

dict[“a”].add(3)

dict[“a”] = set()

...

if “a” not in dict: dict[“a”] = set()

dict[“a”].add(3)

dict[“a”] = set()

...

if “a” not in dict: dict[“a”] = set()

dict[“a”].add(3)

Case 1. Okay!

Case 2. Okay!

Case 3. Nope!!

INFERENCE MODEL

2. Logistic ()𝕃 3. Bayesian ()𝔹

38

○ INTRO / ○MOBS / ●MOAD / ○CPDA

log
vk

1 − vk

= β0 + β1u1 + β2u2 + ⋯ + βiui

u1 u2 … ui vk
1 0 … 0 0

0 1 … 0 1

… … … … …

1 0 … 0 0

INFERENCE MODEL

2. Logistic ()𝕃 3. Bayesian ()𝔹

38

○ INTRO / ○MOBS / ●MOAD / ○CPDA

log
vk

1 − vk

= β0 + β1u1 + β2u2 + ⋯ + βiui

u1 u2 … ui vk
1 0 … 0 0

0 1 … 0 1

… … … … …

1 0 … 0 0

INFERENCE MODEL

2. Logistic ()𝕃 3. Bayesian ()𝔹

Coefficients represent the
relative impact on dependence

38

○ INTRO / ○MOBS / ●MOAD / ○CPDA

log
vk

1 − vk

= β0 + β1u1 + β2u2 + ⋯ + βiui

u1 u2 … ui vk
1 0 … 0 0

0 1 … 0 1

… … … … …

1 0 … 0 0

INFERENCE MODEL

2. Logistic ()𝕃 3. Bayesian ()𝔹

Coefficients represent the
relative impact on dependence

If , the coefficient for of the logistic regression for , is larger than 0,
then is independent from .

βi ui vk
vk ui

38

βi > 0 vkuiIf , then

βi ≤ 0 vkuiIf , then

○ INTRO / ○MOBS / ●MOAD / ○CPDA

log
vk

1 − vk

= β0 + β1u1 + β2u2 + ⋯ + βiui

u1 u2 … ui vk
1 0 … 0 0

0 1 … 0 1

… … … … …

1 0 … 0 0

INFERENCE MODEL

2. Logistic ()𝕃 3. Bayesian ()𝔹

Coefficients represent the
relative impact on dependence

If , the coefficient for of the logistic regression for , is larger than 0,
then is independent from .

βi ui vk
vk ui

38

βi > 0 vkuiIf , then

βi ≤ 0 vkuiIf , then

 : how much does affects when changedDep ui → vk uk vk

∼ P(ui = 1 ∣ vk = 0) =
P(vk = 0 ∣ ui = 1)P(ui = 1)

P(vk = 0)
≈ P(vk = 0 ∣ ui = 1) := P(vk ∣ ui)

u1 vk
1 0

0 1

1 1

P(vk ∣ ui) = 1/2

○ INTRO / ○MOBS / ●MOAD / ○CPDA

log
vk

1 − vk

= β0 + β1u1 + β2u2 + ⋯ + βiui

u1 u2 … ui vk
1 0 … 0 0

0 1 … 0 1

… … … … …

1 0 … 0 0

INFERENCE MODEL

If the behaves the same | has been deleted is larger than the mean,
then Is independent from .

P(vk ui)
vk ui

2. Logistic ()𝕃 3. Bayesian ()𝔹

Coefficients represent the
relative impact on dependence

If , the coefficient for of the logistic regression for , is larger than 0,
then is independent from .

βi ui vk
vk ui

38

βi > 0 vkuiIf , then

βi ≤ 0 vkuiIf , then

 : how much does affects when changedDep ui → vk uk vk

∼ P(ui = 1 ∣ vk = 0) =
P(vk = 0 ∣ ui = 1)P(ui = 1)

P(vk = 0)
≈ P(vk = 0 ∣ ui = 1) := P(vk ∣ ui)

u1 vk
1 0

0 1

1 1

P(vk ∣ ui) = 1/2

: average of the probability over unitsμ
̂P(vk ∣ ui) > μ

̂P(vk ∣ ui) ≤ μ

vkuiIf , then

vkuiIf , then

○ INTRO / ○MOBS / ●MOAD / ○CPDA

EVALUATION

39

○ INTRO / ○MOBS / ●MOAD / ○CPDA

in terms of program slicing

EVALUATION

39

1-HOT

2-HOT

𝕆 𝕃 𝔹

RQ1. MOAD vs. ORBS

VS ei𝔼
ORBS

• Efficiency: number of observation needed

• Effectiveness: size of the resulting slice

○ INTRO / ○MOBS / ●MOAD / ○CPDA

in terms of program slicing

EVALUATION

39

1-HOT

2-HOT

𝕆 𝕃 𝔹

RQ1. MOAD vs. ORBS

VS ei𝔼
ORBS

• Efficiency: number of observation needed

• Effectiveness: size of the resulting slice

RQ2. MOAD vs. Static slicing

e4𝔼
Backward element

𝔼e3
Forward dependency

• Difference between slices

○ INTRO / ○MOBS / ●MOAD / ○CPDA

in terms of program slicing

• Subject

EVALUATION

Subject SLoC # of statements # of numeric variables

 mbe * 64 45 16

 mug * 61 44 13

 wc * 46 33 17

 print_tokens 410 388 98

 print_tokens2 387 364 75

 replace 508 465 253

 schedule 283 252 75

 schedule2 276 248 81

 tot_info 314 227 210

 tcas 152 110 62

* "ORBS and the limits of static slicing”, Binkley et al., SCAM’1540

Well-known examples
where static analysis fails
to identify dependency

○ INTRO / ○MOBS / ●MOAD / ○CPDA

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

ORBS 1-HOT 2-HOT

RQ1: MOAD VS. ORBS

MOAD with 1-HOT used

‣ 0.37% of the # of observations

MOAD with 2-HOT used

‣ 18.6% of the # of observations

compared to ORBS.

EFFICIENCY

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

REP SCHD SCHE2 TOT TCAS

106

105

104

103

102

101

100

107

106

105

104

103

102

101

100

o

b
se

rv
at

io
ns

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

MBE MUG WC PRNT PRNT2

41

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

○ INTRO / ○MOBS / ●MOAD / ○CPDA

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

ORBS 1-HOT 2-HOT

RQ1: MOAD VS. ORBS

MOAD with 1-HOT used

‣ 0.37% of the # of observations

MOAD with 2-HOT used

‣ 18.6% of the # of observations

compared to ORBS.

EFFICIENCY

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

REP SCHD SCHE2 TOT TCAS

106

105

104

103

102

101

100

107

106

105

104

103

102

101

100

o

b
se

rv
at

io
ns

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

MBE MUG WC PRNT PRNT2

41

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

○ INTRO / ○MOBS / ●MOAD / ○CPDA

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

ORBS 1-HOT 2-HOT

RQ1: MOAD VS. ORBS

MOAD with 1-HOT used

‣ 0.37% of the # of observations

MOAD with 2-HOT used

‣ 18.6% of the # of observations

compared to ORBS.

EFFICIENCY

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

REP SCHD SCHE2 TOT TCAS

106

105

104

103

102

101

100

107

106

105

104

103

102

101

100

o

b
se

rv
at

io
ns

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

MBE MUG WC PRNT PRNT2

41

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

○ INTRO / ○MOBS / ●MOAD / ○CPDA

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

RQ1: MOAD VS. ORBS

EFFECTIVENESS

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

REP SCHD SCHE2 TOT TCAS

Sl
ic

e
si

ze

2-HOT
1-HOT

𝕆 𝕃 𝔹

42

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

MBE MUG WC PRNT PRNT2
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

○ INTRO / ○MOBS / ●MOAD / ○CPDA

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

RQ1: MOAD VS. ORBS

EFFECTIVENESS

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

REP SCHD SCHE2 TOT TCAS

Sl
ic

e
si

ze

2-HOT
1-HOT

𝕆 𝕃 𝔹

42

For deletion generation scheme,

‣ 2-HOT < 1-HOT.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

MBE MUG WC PRNT PRNT2
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

○ INTRO / ○MOBS / ●MOAD / ○CPDA

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

For inference model,

‣ < , 𝕆 𝕃 𝔹

RQ1: MOAD VS. ORBS

EFFECTIVENESS

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

REP SCHD SCHE2 TOT TCAS

Sl
ic

e
si

ze

2-HOT
1-HOT

𝕆 𝕃 𝔹

42

For deletion generation scheme,

‣ 2-HOT < 1-HOT.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

MBE MUG WC PRNT PRNT2
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

○ INTRO / ○MOBS / ●MOAD / ○CPDA

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

For inference model,

‣ < , 𝕆 𝕃 𝔹

RQ1: MOAD VS. ORBS

EFFECTIVENESS

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

REP SCHD SCHE2 TOT TCAS

Sl
ic

e
si

ze

2-HOT
1-HOT

𝕆 𝕃 𝔹

42

For deletion generation scheme,

‣ 2-HOT < 1-HOT.

MOAD with 2-HOT, generate

‣ 12% larger slices

compared to ORBS.

𝕆

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

MBE MUG WC PRNT PRNT2
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

○ INTRO / ○MOBS / ●MOAD / ○CPDA

For inference model,

‣ < , 𝕆 𝕃 𝔹

EFFECTIVENESS

For deletion generation scheme,

‣ 2-HOT < 1-HOT.

MOAD with 2-HOT, generate

‣ 12% larger slices

compared to ORBS.

𝕆

RQ1: MOAD VS. ORBS

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

REP SCHD SCHE2 TOT TCAS

Sl
ic

e
si

ze 0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

MBE MUG WC PRNT PRNT2

2-HOT
1-HOT

𝕆 𝕃 𝔹

 USING (2-HOT, ONCE SUCCESS), MOAD REQUIRES 20% OBSERVATIONS THAN ORBS.
AT THE SAME TIME, THE SLICE IS ONLY 12% LARGER THAN ORBS.

<

43

○ INTRO / ○MOBS / ●MOAD / ○CPDA

of Lines
(min-max)

Miss Excess

3 small Siemens 3 small Siemens

Backward 0–3 8–24 0–1 9–79

Forward 0–0 0–6 0–1 7–37

• Static analysis tool: CodeSurfer from Grammatech

• Miss: # of lines only in the MOAD SLICE

• Excess: # of lines only in the STATIC SLICE

RQ2: MOAD VS. STATIC SLICER

○ INTRO / ○MOBS / ●MOAD / ○CPDA

44

of Lines
(min-max)

Miss Excess

3 small Siemens 3 small Siemens

Backward 0–3 8–24 0–1 9–79

Forward 0–0 0–6 0–1 7–37

• Static analysis tool: CodeSurfer from Grammatech

• Miss: # of lines only in the MOAD SLICE

• Excess: # of lines only in the STATIC SLICE

RQ2: MOAD VS. STATIC SLICER

○ INTRO / ○MOBS / ●MOAD / ○CPDA

44

Keeping Declaration

Compilable Slice

Segmentation Fault

Missing Initialization

Missing Return

Limit of Static Analysis

○ INTRO / ○MOBS / ○MOAD / ●CPDA

0.3

0.2

0.2

0.5

0.3 0.9

0.7

CPDA

[]Causal inference on the observation data could estimates
the degree of dependence between program elements

45

MOTIVATION

46

Other
13 %

Editing
5 %

Navigation
24 %

Comprehension
58 %

Program comprehension takes more than half of the time
during software development and maintenance1

[1] “Measuring Program Comprehension: A Large-Scale Field Study with Professionals,” Xia et al., TSE’18

○ INTRO / ○MOBS / ○MOAD / ●CPDA

MOTIVATION

46

Other
13 %

Editing
5 %

Navigation
24 %

Comprehension
58 %

Program comprehension takes more than half of the time
during software development and maintenance1

[1] “Measuring Program Comprehension: A Large-Scale Field Study with Professionals,” Xia et al., TSE’18

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Programmers who used the systematic strategy gathered knowledge
about the causal interaction of the program’s functional components.2

There is a strong relationship between using the systematic
approach and modifying the program successfully.2

…

…

…

[2] “Program understanding: Challenge for the 1990s,” T. A. Corbi, IBM Systems Journal, 1989

MOTIVATION

○ INTRO / ○MOBS / ○MOAD / ●CPDA

47

Static
analysis

YES OR NO?

Var i Var j

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2a
6: d = c - 1
7: e = 3

MOTIVATION

○ INTRO / ○MOBS / ○MOAD / ●CPDA

47

Static
analysis

YES OR NO?

Var i Var j

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2a
6: d = c - 1
7: e = 3

MOTIVATION

○ INTRO / ○MOBS / ○MOAD / ●CPDA

47

Static
analysis

YES OR NO?

Var i Var j

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2a
6: d = c - 1
7: e = 3

Dep(a → b) > Dep(b → c)

MOTIVATION

○ INTRO / ○MOBS / ○MOAD / ●CPDA

47

Static
analysis

YES OR NO?

Var i Var j

Program dependence graph (PDG)

😫

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2a
6: d = c - 1
7: e = 3

Dep(a → b) > Dep(b → c)

MOTIVATION

○ INTRO / ○MOBS / ○MOAD / ●CPDA

47

Static
analysis

YES OR NO?

Var i Var j

Program dependence graph (PDG)

😫

&
ORBS1: a = 42

2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2a
6: d = c - 1
7: e = 3

Dep(a → b) > Dep(b → c)

MOTIVATION

MOAD

• P(b | “S1: a = 42”) = 1.0

• P(c | “S3: b = a + 1”) = 0.5

• P(d | “S5: c = 2a”) = 1.0

○ INTRO / ○MOBS / ○MOAD / ●CPDA

• P(b | “S1: a = 42”) = 1.0

• P(c | “S3: b = a + 1”) = 0.5

• P(d | “S5: c = 2a”) = 1.0

48

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2a
6: d = c - 1
7: e = 3

MOTIVATION

MOAD

• P(b | “S1: a = 42”) = 1.0

• P(c | “S3: b = a + 1”) = 0.5

• P(d | “S5: c = 2a”) = 1.0

○ INTRO / ○MOBS / ○MOAD / ●CPDA

varkstmti

𝔼𝔼

Domain Co-domain≠

• P(b | “S1: a = 42”) = 1.0

• P(c | “S3: b = a + 1”) = 0.5

• P(d | “S5: c = 2a”) = 1.0

48

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2a
6: d = c - 1
7: e = 3

MOTIVATION

MOAD

○ INTRO / ○MOBS / ○MOAD / ●CPDA

varkstmti

𝔼𝔼

Domain Co-domain≠

• P(b | “S1: a = 42”) = 1.0

• P(c | “S3: b = a + 1”) = 0.5

• P(d | “S5: c = 2a”) = 1.0

But, also

• P(d | “S3: b = a + 1”) = 0.5

b
c

d

No structural reasoning

48

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2a
6: d = c - 1
7: e = 3

GOAL: QUANTIFIABLE DEPENDENCE

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2a
6: d = c - 1
7: e = 3

49

○ INTRO / ○MOBS / ○MOAD / ●CPDA

We represent the dependence structure with the degree of dependencies,

which can aid the understanding/usefulness of the program dependence.

a

c

d

b

e

pred
1.0

0.5

1.0

0.5

0.5

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Mutated a b c … e

a ≠ ≠ ≠ … =
b = ≠ ≠ … =
… … … … … …

e = = = … ≠

Observation data
a

c

d

b

e

pred
1.0

0.5

1.0

0.5

0.5

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Mutated a b c … e

a ≠ ≠ ≠ … =
b = ≠ ≠ … =
… … … … … …

e = = = … ≠

Observation data

- Causal analysis -

a

c

d

b

e

pred
1.0

0.5

1.0

0.5

0.5

CAUSAL ANALYSIS

Association data of events

Index Event a Event b Event c … Event z

1 o o o … -
2 - o o … -
… … … … … …

N - - - … o

○ INTRO / ○MOBS / ○MOAD / ●CPDA

CAUSAL ANALYSIS

Association data of events

Index Event a Event b Event c … Event z

1 o o o … -
2 - o o … -
… … … … … …

N - - - … o

Structure discovery1⃣

Identify directly affecting relations

E.a

E.c

E.d

E.b

E.z

E.f

○ INTRO / ○MOBS / ○MOAD / ●CPDA

CAUSAL ANALYSIS

Association data of events

Index Event a Event b Event c … Event z

1 o o o … -
2 - o o … -
… … … … … …

N - - - … o

Structure discovery1⃣

Identify directly affecting relations

E.a

E.c

E.d

E.b

E.z

E.f

Causal inference2⃣

Estimate degree of causations

E.a

E.c

E.d

E.b

E.z

E.f
1.0

0.5

1.0

0.5

0.5

○ INTRO / ○MOBS / ○MOAD / ●CPDA

CAUSAL ANALYSIS

Structure discovery1⃣

Identify directly affecting relations

E.a

E.c

E.d

E.b

E.z

E.f

Causal inference2⃣

Estimate degree of causations

E.a

E.c

E.d

E.b

E.z

E.f
1.0

0.5

1.0

0.5

0.5

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Event := program element’s
behavior change

Mutated a b c … f

a ≠ ≠ ≠ … =
b = ≠ ≠ … =
… … … … … …

f = = = … ≠

CAUSAL ANALYSIS

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Event := program element’s
behavior change

Mutated a b c … f

a ≠ ≠ ≠ … =
b = ≠ ≠ … =
… … … … … …

f = = = … ≠

Structure discovery1⃣

Identify directly affecting relations

a

c

d

b

e

pred

Causal inference2⃣

Estimate degree of causations

a

c

d

b

e

pred
1.0

0.5

1.0

0.5

0.5

 Program Dependence Graph (PDG)≈

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Event := program element’s
behavior change

Mutated a b c … f

a ≠ ≠ ≠ … =
b = ≠ ≠ … =
… … … … … …

f = = = … ≠

Structure discovery1⃣

Identify directly affecting relations

a

c

d

b

e

pred

Causal inference2⃣

Estimate degree of causations

a

c

d

b

e

pred
1.0

0.5

1.0

0.5

0.5

 Program Dependence Graph (PDG)≈

CAUSAL PROGRAM DEPENDENCE ANALYSIS (CPDA)

FINDING DEPENDENCE STRUCTURE

52

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

Value mutation

Observation data

No mutation case →

○ INTRO / ○MOBS / ○MOAD / ●CPDA

When “pred” True (1) / False (0)

Behavior is the same Behavior changed

FINDING DEPENDENCE STRUCTURE

52

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

Value mutation

Observation data

No mutation case →

○ INTRO / ○MOBS / ○MOAD / ●CPDA

When “pred” True (1) / False (0)

Behavior is the same Behavior changed

FINDING DEPENDENCE STRUCTURE

52

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

Value mutation

Observation data

No mutation case →

○ INTRO / ○MOBS / ○MOAD / ●CPDA

When “pred” True (1) / False (0)

Behavior is the same Behavior changed

FINDING DEPENDENCE STRUCTURE

53

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

○ INTRO / ○MOBS / ○MOAD / ●CPDA

FINDING DEPENDENCE STRUCTURE

53

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

 a: {}
pred: {}
 b: {a}
 c: {a, pred, b}
 d: {a, pred, b, c}
 e: {}

- MOAD -

a

c

d

b

e

pred

○ INTRO / ○MOBS / ○MOAD / ●CPDA

FINDING DEPENDENCE STRUCTURE

53

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

 a: {}
pred: {}
 b: {a}
 c: {a, pred, b}
 d: {a, pred, b, c}
 e: {}

- MOAD -

a

c

d

b

e

pred

○ INTRO / ○MOBS / ○MOAD / ●CPDA

FINDING DEPENDENCE STRUCTURE

53

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

 a: {}
pred: {}
 b: {a}
 c: {a, pred, b}
 d: {a, pred, b, c}
 e: {}

- MOAD -

a

c

d

b

e

pred

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Not directly

STRUCTURE DISCOVERY

54

WHICH ONE DIRECTLY AFFECTS ANOTHER?

○ INTRO / ○MOBS / ○MOAD / ●CPDA

• Principle: directly affects , if there is a unique effect of on .

• Direct predecessors (parents) of , denoted as , is a minimal set of predecessors sufficient to describe the

state of .

Y X Y X

X PAX

X

STRUCTURE DISCOVERY

54

P(X ∣ all predecessors of X) = P(X ∣ PAX)

WHICH ONE DIRECTLY AFFECTS ANOTHER?

○ INTRO / ○MOBS / ○MOAD / ●CPDA

• Principle: directly affects , if there is a unique effect of on .

• Direct predecessors (parents) of , denoted as , is a minimal set of predecessors sufficient to describe the

state of .

Y X Y X

X PAX

X

STRUCTURE DISCOVERY

54

P(X ∣ all predecessors of X) = P(X ∣ PAX)

WHICH ONE DIRECTLY AFFECTS ANOTHER?

○ INTRO / ○MOBS / ○MOAD / ●CPDA

P(X |Z, other preds. of X) = P(X |other preds. of X) ⇒ Z ∉ PAX

• If the effect of on is masked by other predecessors of , is not a parent of .Z X X Z X

STRUCTURE DISCOVERY

55

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

[Predecessors]

b: {a}, c: {a, pred, b}, d: {a, pred, b, c}

[]

• a: when ’=’, ’≠’,

 ’≠’ ’≠’ , and

 ’≠’

 a is not a parent of c

PAc

pred : b :

P(c : ∣ a :) = 0.5

P(c :) = 0.5

⇒

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

🚫

“:” means the state of the variable,
not the value

○ INTRO / ○MOBS / ○MOAD / ●CPDA

STRUCTURE DISCOVERY

55

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

[Predecessors]

b: {a}, c: {a, pred, b}, d: {a, pred, b, c}

[]

• a: when ’=’, ’≠’,

 ’≠’ ’≠’ , and

 ’≠’

 a is not a parent of c

PAc

pred : b :

P(c : ∣ a :) = 0.5

P(c :) = 0.5

⇒

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

🚫

“:” means the state of the variable,
not the value

○ INTRO / ○MOBS / ○MOAD / ●CPDA

STRUCTURE DISCOVERY

55

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

[Predecessors]

b: {a}, c: {a, pred, b}, d: {a, pred, b, c}

[]

• a: when ’=’, ’≠’,

 ’≠’ ’≠’ , and

 ’≠’

 a is not a parent of c

PAc

pred : b :

P(c : ∣ a :) = 0.5

P(c :) = 0.5

⇒

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

🚫

“:” means the state of the variable,
not the value

○ INTRO / ○MOBS / ○MOAD / ●CPDA

STRUCTURE DISCOVERY

55

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

[Predecessors]

b: {a}, c: {a, pred, b}, d: {a, pred, b, c}

[]

• a: when ’=’, ’≠’,

 ’≠’ ’≠’ , and

 ’≠’

 a is not a parent of c

PAc

pred : b :

P(c : ∣ a :) = 0.5

P(c :) = 0.5

⇒

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

🚫

“:” means the state of the variable,
not the value

○ INTRO / ○MOBS / ○MOAD / ●CPDA

STRUCTURE DISCOVERY

56

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

[Predecessors]

b: {a}, c: {a, pred, b}, d: {a, pred, b, c}

[]

• pred: when ’=’,

 ’≠’ ’≠’ , and

 ’≠’

 pred is a parent of c

PAc

b :

P(c : ∣ pred :) = 1.0

P(c :) = 0.5

⇒

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

○ INTRO / ○MOBS / ○MOAD / ●CPDA

STRUCTURE DISCOVERY

57

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

[Predecessors]

b: {a}, c: {a, pred, b}, d: {a, pred, b, c}

[]

• b: when ’=’,

 ’≠’ ’≠’ , and

 ’≠’

 b is a parent of c

PAc

pred :

P(c : ∣ b :) = 0.5

P(c :) = 0.25

⇒

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

○ INTRO / ○MOBS / ○MOAD / ●CPDA

STRUCTURE DISCOVERY

58

[Predecessors]

b: {a}, c: {a, pred, b}, d: {a, pred, b, c}

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

○ INTRO / ○MOBS / ○MOAD / ●CPDA

STRUCTURE DISCOVERY

58

[Predecessors]

b: {a}, c: {a, pred, b}, d: {a, pred, b, c}

Mut a pred b c d e

∅ = = = = = =
a ≠ = ≠ ≠/= ≠/= =

pred = ≠ = ≠ ≠ =
b = = ≠ ≠/= ≠/= =
c = = = ≠ ≠ =
d = = = = ≠ =
e = = = = = ≠

○ INTRO / ○MOBS / ○MOAD / ●CPDA

a

c

d

b

e

pred

Program elements & their parents
:= Causal Structure

QUANTIFYING DEPENDENCY

59

• Quantifying program dependency:

MEASURE: HOW OFTEN ONE'S CHANGE CAUSES ANOTHER TO CHANGE?

○ INTRO / ○MOBS / ○MOAD / ●CPDA

QUANTIFYING DEPENDENCY

59

• Quantifying program dependency:

MEASURE: HOW OFTEN ONE'S CHANGE CAUSES ANOTHER TO CHANGE?

○ INTRO / ○MOBS / ○MOAD / ●CPDA

• Naive method: Directly compute the relative frequency of change from mutation attempts.

- Problem: may affect occasionally, and it could be costly to mutate multiple times for a confident result.

Dep(X → Y) = P(Y is changed ∣ X is mutated)

X Y X

QUANTIFYING DEPENDENCY

59

• Quantifying program dependency:

MEASURE: HOW OFTEN ONE'S CHANGE CAUSES ANOTHER TO CHANGE?

○ INTRO / ○MOBS / ○MOAD / ●CPDA

• Naive method: Directly compute the relative frequency of change from mutation attempts.

- Problem: may affect occasionally, and it could be costly to mutate multiple times for a confident result.

Dep(X → Y) = P(Y is changed ∣ X is mutated)

X Y X

• Instead, we employ causal inference to estimate causation from observation data,
so that, we can leverage observations of cases when “X is changed.”

• #(X is changed) ≫ #(X is mutated)

WHY CAUSAL INFERENCE IS NEEDED?

60

○ INTRO / ○MOBS / ○MOAD / ●CPDA

WHY CAUSAL INFERENCE IS NEEDED?

60

Association ≠ Causation

○ INTRO / ○MOBS / ○MOAD / ●CPDA

WHY CAUSAL INFERENCE IS NEEDED?

60

Association ≠ Causation

()

Dep(X → Y)
≈ P(Y is changed ∣ X is mutated)

≠P(Y is changed ∣ X is changed)

○ INTRO / ○MOBS / ○MOAD / ●CPDA

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

WHY: ASSOCIATION IS NOT CAUSATION

61

1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g() ≪

Joint probability distribution of observations

x y

○ INTRO / ○MOBS / ○MOAD / ●CPDA

62

ϵ 2

WHY: ASSOCIATION IS NOT CAUSATION

• If we let ’≠’ ’≠’ , (association)Dep(X → Y) = P(Y : ∣ X :)
1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

≪

’≠’ ’≠’ P(y = ∣ x =) =
0.01 + 0.99

0.01 + 0.99 + 0.09 + ϵ2
≈ 0.92

○ INTRO / ○MOBS / ○MOAD / ●CPDA

62

ϵ 2

WHY: ASSOCIATION IS NOT CAUSATION

• If we let ’≠’ ’≠’ , (association)Dep(X → Y) = P(Y : ∣ X :)

 x highly affects y?⇒

1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

≪

’≠’ ’≠’ P(y = ∣ x =) =
0.01 + 0.99

0.01 + 0.99 + 0.09 + ϵ2
≈ 0.92

○ INTRO / ○MOBS / ○MOAD / ●CPDA

62

ϵ 2

WHY: ASSOCIATION IS NOT CAUSATION
1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

≪

’≠’ ’≠’ P(y = ∣ x =) =
0.01 + 0.99

0.01 + 0.99 + 0.09 + ϵ2
≈ 0.92

○ INTRO / ○MOBS / ○MOAD / ●CPDA

• ’≠’ ’≠’ , (association)Dep(X → Y) = P(Y : ∣ X :)

62

ϵ 2

WHY: ASSOCIATION IS NOT CAUSATION
1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

≪

’≠’ ’≠’ P(y = ∣ x =) =
0.01 + 0.99

0.01 + 0.99 + 0.09 + ϵ2
≈ 0.92

○ INTRO / ○MOBS / ○MOAD / ●CPDA

• ’≠’ ’≠’ , (association)Dep(X → Y) = P(Y : ∣ X :)

pred

x y

confounder This is because, when pred changes,
both x and y change.

62

ϵ 2

WHY: ASSOCIATION IS NOT CAUSATION
1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

≪

’≠’ ’≠’ P(y = ∣ x =) =
0.01 + 0.99

0.01 + 0.99 + 0.09 + ϵ2
≈ 0.92

○ INTRO / ○MOBS / ○MOAD / ●CPDA

• ’≠’ ’≠’ , (association)Dep(X → Y) = P(Y : ∣ X :)

Solution to get causation: control the confounder

pred

x y

confounder This is because, when pred changes,
both x and y change.

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

CAUSAL INFERENCE

63

≪

1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()• Compute using causal inference.Dep(X → Y)

’≠’ ’≠’ P(y = ∣ x =) =
0.01

0.01 + 0.09
= 0.1

Case 1. pred: ’=’

○ INTRO / ○MOBS / ○MOAD / ●CPDA

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

CAUSAL INFERENCE

63

≪

1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()• Compute using causal inference.Dep(X → Y)

’≠’ ’≠’ P(y = ∣ x =) =
0.01

0.01 + 0.09
= 0.1

Case 1. pred: ’=’

○ INTRO / ○MOBS / ○MOAD / ●CPDA

’≠’ ’≠’ P(y = ∣ x =) =
0.99

0.99 + ϵ2
≈ 1.0

Case 2. pred: ’≠’

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

CAUSAL INFERENCE

63

≪

1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()• Compute using causal inference.Dep(X → Y)

’≠’ ’≠’ P(y = ∣ x =) =
0.01

0.01 + 0.09
= 0.1

Case 1. pred: ’=’

○ INTRO / ○MOBS / ○MOAD / ●CPDA

’≠’ ’≠’ P(y = ∣ x =) =
0.99

0.99 + ϵ2
≈ 1.0

Case 2. pred: ’≠’

Weighted sum ≈ 0.1 × 0.5 + 1.0 × 0.5 = 0.55

(pred: ’=’)P() = 0.5

(pred: ’≠’)P() = 0.5

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

CAUSAL INFERENCE

63

≪

1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()• Compute using causal inference.Dep(X → Y)

’≠’ ’≠’ P(y = ∣ x =) =
0.01

0.01 + 0.09
= 0.1

Case 1. pred: ’=’

○ INTRO / ○MOBS / ○MOAD / ●CPDA

’≠’ ’≠’ P(y = ∣ x =) =
0.99

0.99 + ϵ2
≈ 1.0

Case 2. pred: ’≠’

Weighted sum ≈ 0.1 × 0.5 + 1.0 × 0.5 = 0.55

(pred: ’=’)P() = 0.5

(pred: ’≠’)P() = 0.5

’≠’ ’≠’:= P(y = ∣ do(x =)) Probability of y:’≠’ when x is forcefully set to ’≠’.

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

CAUSAL INFERENCE

63

≪

1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()• Compute using causal inference.Dep(X → Y)

’≠’ ’≠’ P(y = ∣ x =) =
0.01

0.01 + 0.09
= 0.1

Case 1. pred: ’=’

○ INTRO / ○MOBS / ○MOAD / ●CPDA

’≠’ ’≠’ P(y = ∣ x =) =
0.99

0.99 + ϵ2
≈ 1.0

Case 2. pred: ’≠’

Weighted sum ≈ 0.1 × 0.5 + 1.0 × 0.5 = 0.55

(pred: ’=’)P() = 0.5

(pred: ’≠’)P() = 0.5

’≠’ ’≠’:= P(y = ∣ do(x =)) Probability of y:’≠’ when x is forcefully set to ’≠’.

’≠’P(y =) ≈ 0.55
≈

Prob. is almost the same
because x does not affect y.

CAUSAL INFERENCE

64

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

≪

1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()

’≠’ ’≠’P(y = ∣ do(x =)) ≈ 0.55

• Compute using causal inference.Dep(X → Y)

○ INTRO / ○MOBS / ○MOAD / ●CPDA

CAUSAL INFERENCE

64

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

≪

1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()

’≠’ ’≠’P(y = ∣ do(x =)) ≈ 0.55

’≠’ ’=’P(y = ∣ do(x =)) ≈ 0.55
=

0.09
0.09 + 0.81

× 0.5 +
ϵ1

ϵ1 + ϵ3
× 0.5 ≈ (0.1 + 1.0) × 0.5 = 0.55

• Compute using causal inference.Dep(X → Y)

○ INTRO / ○MOBS / ○MOAD / ●CPDA

CAUSAL INFERENCE

64

ϵ1

ϵ 2 ϵ 2 ϵ2 ϵ3

ϵ 2

pred: ’=’ pred: ’≠’

x: ’≠’ x: ’=’ x: ’≠’ x: ’=’

y: ’≠’ 0.01 0.09 0.99

Y: ’=’ 0.09 0.81

Sum 1.00 1.00

≪

1: pred = input() // 0 or 1
2: if (pred):
3: x = f()
4: y = g()

’≠’ ’≠’P(y = ∣ do(x =)) ≈ 0.55

’≠’ ’=’P(y = ∣ do(x =)) ≈ 0.55
=

0.09
0.09 + 0.81

× 0.5 +
ϵ1

ϵ1 + ϵ3
× 0.5 ≈ (0.1 + 1.0) × 0.5 = 0.55

’≠’ ’≠’
 ’≠’ ’=’
CD(x → y) = P(y = ∣ do(x =))

−P(y = ∣ do(x =)) ≈ 0.00

Causal dependence : calculates how often the value of y get affected by the change of x’s state (mutating x)≈

• Compute using causal inference.Dep(X → Y)

○ INTRO / ○MOBS / ○MOAD / ●CPDA

 ’≠’ ’≠’ ’≠’ ’=’DD(X → W) = ∑
y,z

[P (W : ∣ do(X : , y, z)) − P (W : ∣ do(X : , y, z))]

CAUSAL INFERENCE

65

Direct dependence : computes the direct effect of one element to another

W

X Y Z

’=’× P (y, z ∣ do(X :))

Effect when ’≠’
 Effect when ’=’

X :
− X :

○ INTRO / ○MOBS / ○MOAD / ●CPDA

 ’≠’ ’≠’ ’≠’ ’=’DD(X → W) = ∑
y,z

[P (W : ∣ do(X : , y, z)) − P (W : ∣ do(X : , y, z))]

CAUSAL INFERENCE

65

Direct dependence : computes the direct effect of one element to another

W

X Y Z

’=’× P (y, z ∣ do(X :))

Effect when ’≠’
 Effect when ’=’

X :
− X :

Only this edge

Only this edge

Not this

○ INTRO / ○MOBS / ○MOAD / ●CPDA

 ’≠’ ’≠’ ’≠’ ’=’DD(X → W) = ∑
y,z

[P (W : ∣ do(X : , y, z)) − P (W : ∣ do(X : , y, z))]

CAUSAL INFERENCE

65

Direct dependence : computes the direct effect of one element to another

W

X Y Z

’=’× P (y, z ∣ do(X :))

Fix state
Effect when ’≠’
 Effect when ’=’

X :
− X :

Only this edge

Only this edge

Not this

○ INTRO / ○MOBS / ○MOAD / ●CPDA

CAUSAL PROGRAM DEPENDENCE MODEL (CPDM)

66

a

c

d

b

e

pred

0.5

1.0

0.5

0.5

○ INTRO / ○MOBS / ○MOAD / ●CPDA

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

CAUSAL PROGRAM DEPENDENCE MODEL (CPDM)

66

a

c

d

b

e

pred

0.5

1.0

0.5

0.5

CAUSAL STRUCTURE

○ INTRO / ○MOBS / ○MOAD / ●CPDA

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

CAUSAL PROGRAM DEPENDENCE MODEL (CPDM)

66

a

c

d

b

e

pred

0.5

1.0

0.5

0.5

DIRECT DEPENDENCE

CAUSAL STRUCTURE

○ INTRO / ○MOBS / ○MOAD / ●CPDA

1: a = 42
2: pred = input() // 0 or 1
3: b = a + 1
4: if (pred):
5: c = 2b
6: d = c - 1
7: e = 3

• Three program comprehension scenarios:

1. How this quantified dependence can help understanding the program semantics?

2. How does CPDM discriminate the semantics of the same program but different execution?

3. How quantified dependence can be employed when debugging?

EVALUATION

67

VS. program dependence graph (PDG)

Execution awareness of
dynamic analysis

Maintenance application study

○ INTRO / ○MOBS / ○MOAD / ●CPDA

EVALUATION
573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lee, et al.

1 def main() {

2 <1>characters = 0

3 <2>lines = 0

4 <3>words = 0

5 <4>inword = 0

6 <5>_pred1 = getChar(<6>c)

7 while (_pred1) {

8 <7>characters = characters + 1

9 <8>_pred2 = c == �\n�

10 if (_pred2)

11 <9>lines = lines + 1

12 <10>_pred3 = isLetter(c)

13 if (_pred3) {

14 <11>_pred4 = inword == 0

15 if (_pred4) {

16 <12>words = words + 1

17 }

18 <13>inword = 1

19 }

20 else

21 <14>inword = 0

22 <15>_pred1 = getChar(<16>c)

23 }

24 }

25 def isLetter (<17>c) {

26 <18>_pred5 = ((c >= �A� && c <= �Z�)

27 || (c >= �a� && c <= �z�))

28 if (_pred5)

29 <19>_ret = True

30 else

31 <20>_ret = False

32 return _ret

33 }

Fig. 2. Pseudo-code of the word count program

behavior, or segmentation faults, as they produce either inconsistent, or no coverage information. Finally, we exclude
any fault whose root cause falls outside the scope of CPDA (for example, if the fault is calling a wrong function without
storing the return value, we cannot represent the fault as a node in CPDA).

For evaluation, we use the widely adopted 022@= metric, which counts the number of faults whose root causes are
ranked within the top = places. If there are multiple faulty elements, we compute 022@= using the most highly ranked
element. Since SBFL techniques tend to produce a lot of ties, we report rankings obtained by multiple tiebreakers. The
average tiebreaker computes the average rank of the tied candidates. Min and max tiebreakers rank all tied elements
at the highest, and the lowest, place, respectively. Finally, line order tiebreaker breaks ties independently from score
distributions using line numbers, facilitating fair comparison between rankings theoretically [43].

Manuscript submitted to ACM

• Subjects: triangle, word count, Bill&Ted’s

• Word count

• Get a text input, count the number of

• characters,

• lines,

• and words in the input.

○ INTRO / ○MOBS / ○MOAD / ●CPDA

68

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Node index

SCENARIO1. CPDM VS PDG
573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lee, et al.

1 def main() {

2 <1>characters = 0

3 <2>lines = 0

4 <3>words = 0

5 <4>inword = 0

6 <5>_pred1 = getChar(<6>c)

7 while (_pred1) {

8 <7>characters = characters + 1

9 <8>_pred2 = c == �\n�

10 if (_pred2)

11 <9>lines = lines + 1

12 <10>_pred3 = isLetter(c)

13 if (_pred3) {

14 <11>_pred4 = inword == 0

15 if (_pred4) {

16 <12>words = words + 1

17 }

18 <13>inword = 1

19 }

20 else

21 <14>inword = 0

22 <15>_pred1 = getChar(<16>c)

23 }

24 }

25 def isLetter (<17>c) {

26 <18>_pred5 = ((c >= �A� && c <= �Z�)

27 || (c >= �a� && c <= �z�))

28 if (_pred5)

29 <19>_ret = True

30 else

31 <20>_ret = False

32 return _ret

33 }

Fig. 2. Pseudo-code of the word count program

behavior, or segmentation faults, as they produce either inconsistent, or no coverage information. Finally, we exclude
any fault whose root cause falls outside the scope of CPDA (for example, if the fault is calling a wrong function without
storing the return value, we cannot represent the fault as a node in CPDA).

For evaluation, we use the widely adopted 022@= metric, which counts the number of faults whose root causes are
ranked within the top = places. If there are multiple faulty elements, we compute 022@= using the most highly ranked
element. Since SBFL techniques tend to produce a lot of ties, we report rankings obtained by multiple tiebreakers. The
average tiebreaker computes the average rank of the tied candidates. Min and max tiebreakers rank all tied elements
at the highest, and the lowest, place, respectively. Finally, line order tiebreaker breaks ties independently from score
distributions using line numbers, facilitating fair comparison between rankings theoretically [43].

Manuscript submitted to ACM

○ INTRO / ○MOBS / ○MOAD / ●CPDA

main

isletter

1

7

2

9

3

12

4

11

6

17

5

15

16

8

10

1314

18

19 20

main

isletter

1

7

2

9

3

12

4

11

6

16

8

17

5

15

10

18

1314

19 20

PDG (34 edges) CPDM (21 edges)

69

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Node index

SCENARIO1. CPDM VS PDG
573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lee, et al.

1 def main() {

2 <1>characters = 0

3 <2>lines = 0

4 <3>words = 0

5 <4>inword = 0

6 <5>_pred1 = getChar(<6>c)

7 while (_pred1) {

8 <7>characters = characters + 1

9 <8>_pred2 = c == �\n�

10 if (_pred2)

11 <9>lines = lines + 1

12 <10>_pred3 = isLetter(c)

13 if (_pred3) {

14 <11>_pred4 = inword == 0

15 if (_pred4) {

16 <12>words = words + 1

17 }

18 <13>inword = 1

19 }

20 else

21 <14>inword = 0

22 <15>_pred1 = getChar(<16>c)

23 }

24 }

25 def isLetter (<17>c) {

26 <18>_pred5 = ((c >= �A� && c <= �Z�)

27 || (c >= �a� && c <= �z�))

28 if (_pred5)

29 <19>_ret = True

30 else

31 <20>_ret = False

32 return _ret

33 }

Fig. 2. Pseudo-code of the word count program

behavior, or segmentation faults, as they produce either inconsistent, or no coverage information. Finally, we exclude
any fault whose root cause falls outside the scope of CPDA (for example, if the fault is calling a wrong function without
storing the return value, we cannot represent the fault as a node in CPDA).

For evaluation, we use the widely adopted 022@= metric, which counts the number of faults whose root causes are
ranked within the top = places. If there are multiple faulty elements, we compute 022@= using the most highly ranked
element. Since SBFL techniques tend to produce a lot of ties, we report rankings obtained by multiple tiebreakers. The
average tiebreaker computes the average rank of the tied candidates. Min and max tiebreakers rank all tied elements
at the highest, and the lowest, place, respectively. Finally, line order tiebreaker breaks ties independently from score
distributions using line numbers, facilitating fair comparison between rankings theoretically [43].

Manuscript submitted to ACM

○ INTRO / ○MOBS / ○MOAD / ●CPDA

main

isletter

1

7

2

9

3

12

4

11

6

17

5

15

16

8

10

1314

18

19 20

main

isletter

1

7

2

9

3

12

4

11

6

16

8

17

5

15

10

18

1314

19 20

PDG (34 edges) CPDM (21 edges)

69

CPDM presents edges a smaller number of edges than PDG

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Node index

main

isletter

1

7

2

9

3

12

4

11

6

17

5

15

16

8

10

1314

18

19 20

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lee, et al.

1 def main() {

2 <1>characters = 0

3 <2>lines = 0

4 <3>words = 0

5 <4>inword = 0

6 <5>_pred1 = getChar(<6>c)

7 while (_pred1) {

8 <7>characters = characters + 1

9 <8>_pred2 = c == �\n�

10 if (_pred2)

11 <9>lines = lines + 1

12 <10>_pred3 = isLetter(c)

13 if (_pred3) {

14 <11>_pred4 = inword == 0

15 if (_pred4) {

16 <12>words = words + 1

17 }

18 <13>inword = 1

19 }

20 else

21 <14>inword = 0

22 <15>_pred1 = getChar(<16>c)

23 }

24 }

25 def isLetter (<17>c) {

26 <18>_pred5 = ((c >= �A� && c <= �Z�)

27 || (c >= �a� && c <= �z�))

28 if (_pred5)

29 <19>_ret = True

30 else

31 <20>_ret = False

32 return _ret

33 }

Fig. 2. Pseudo-code of the word count program

behavior, or segmentation faults, as they produce either inconsistent, or no coverage information. Finally, we exclude
any fault whose root cause falls outside the scope of CPDA (for example, if the fault is calling a wrong function without
storing the return value, we cannot represent the fault as a node in CPDA).

For evaluation, we use the widely adopted 022@= metric, which counts the number of faults whose root causes are
ranked within the top = places. If there are multiple faulty elements, we compute 022@= using the most highly ranked
element. Since SBFL techniques tend to produce a lot of ties, we report rankings obtained by multiple tiebreakers. The
average tiebreaker computes the average rank of the tied candidates. Min and max tiebreakers rank all tied elements
at the highest, and the lowest, place, respectively. Finally, line order tiebreaker breaks ties independently from score
distributions using line numbers, facilitating fair comparison between rankings theoretically [43].

Manuscript submitted to ACM

CPDM

○ INTRO / ○MOBS / ○MOAD / ●CPDA

70

SCENARIO1. CPDM VS PDGNode index

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lee, et al.

1 def main() {

2 <1>characters = 0

3 <2>lines = 0

4 <3>words = 0

5 <4>inword = 0

6 <5>_pred1 = getChar(<6>c)

7 while (_pred1) {

8 <7>characters = characters + 1

9 <8>_pred2 = c == �\n�

10 if (_pred2)

11 <9>lines = lines + 1

12 <10>_pred3 = isLetter(c)

13 if (_pred3) {

14 <11>_pred4 = inword == 0

15 if (_pred4) {

16 <12>words = words + 1

17 }

18 <13>inword = 1

19 }

20 else

21 <14>inword = 0

22 <15>_pred1 = getChar(<16>c)

23 }

24 }

25 def isLetter (<17>c) {

26 <18>_pred5 = ((c >= �A� && c <= �Z�)

27 || (c >= �a� && c <= �z�))

28 if (_pred5)

29 <19>_ret = True

30 else

31 <20>_ret = False

32 return _ret

33 }

Fig. 2. Pseudo-code of the word count program

behavior, or segmentation faults, as they produce either inconsistent, or no coverage information. Finally, we exclude
any fault whose root cause falls outside the scope of CPDA (for example, if the fault is calling a wrong function without
storing the return value, we cannot represent the fault as a node in CPDA).

For evaluation, we use the widely adopted 022@= metric, which counts the number of faults whose root causes are
ranked within the top = places. If there are multiple faulty elements, we compute 022@= using the most highly ranked
element. Since SBFL techniques tend to produce a lot of ties, we report rankings obtained by multiple tiebreakers. The
average tiebreaker computes the average rank of the tied candidates. Min and max tiebreakers rank all tied elements
at the highest, and the lowest, place, respectively. Finally, line order tiebreaker breaks ties independently from score
distributions using line numbers, facilitating fair comparison between rankings theoretically [43].

Manuscript submitted to ACM

CPDM ()DD ≥ 0.8

main

isletter

1

7

2

9

3

12

4

11

65

15

16

8

10

1314 17

18

19 20

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Count characters
Check part of word

Count lines

Check alphabet

Dependence always happens

71

SCENARIO1. CPDM VS PDGNode index

CPDM ()0.2 ≤ DD < 0.8

Some tests have a single line,

while some have multiple lines

Some tests have a one word,

while some have multiple words

Dependence occasionally happens

main

isletter

1

7

2

9

3

12

4

11

6

17

5

15

16

8

10

1314

18

19 20

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lee, et al.

1 def main() {

2 <1>characters = 0

3 <2>lines = 0

4 <3>words = 0

5 <4>inword = 0

6 <5>_pred1 = getChar(<6>c)

7 while (_pred1) {

8 <7>characters = characters + 1

9 <8>_pred2 = c == �\n�

10 if (_pred2)

11 <9>lines = lines + 1

12 <10>_pred3 = isLetter(c)

13 if (_pred3) {

14 <11>_pred4 = inword == 0

15 if (_pred4) {

16 <12>words = words + 1

17 }

18 <13>inword = 1

19 }

20 else

21 <14>inword = 0

22 <15>_pred1 = getChar(<16>c)

23 }

24 }

25 def isLetter (<17>c) {

26 <18>_pred5 = ((c >= �A� && c <= �Z�)

27 || (c >= �a� && c <= �z�))

28 if (_pred5)

29 <19>_ret = True

30 else

31 <20>_ret = False

32 return _ret

33 }

Fig. 2. Pseudo-code of the word count program

behavior, or segmentation faults, as they produce either inconsistent, or no coverage information. Finally, we exclude
any fault whose root cause falls outside the scope of CPDA (for example, if the fault is calling a wrong function without
storing the return value, we cannot represent the fault as a node in CPDA).

For evaluation, we use the widely adopted 022@= metric, which counts the number of faults whose root causes are
ranked within the top = places. If there are multiple faulty elements, we compute 022@= using the most highly ranked
element. Since SBFL techniques tend to produce a lot of ties, we report rankings obtained by multiple tiebreakers. The
average tiebreaker computes the average rank of the tied candidates. Min and max tiebreakers rank all tied elements
at the highest, and the lowest, place, respectively. Finally, line order tiebreaker breaks ties independently from score
distributions using line numbers, facilitating fair comparison between rankings theoretically [43].

Manuscript submitted to ACM

72

SCENARIO1. CPDM VS PDGNode index

○ INTRO / ○MOBS / ○MOAD / ●CPDA

CPDM ()0.2 ≤ DD < 0.8

Some tests have a single line,

while some have multiple lines

Some tests have a one word,

while some have multiple words

Dependence occasionally happens

main

isletter

1

7

2

9

3

12

4

11

6

17

5

15

16

8

10

1314

18

19 20

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lee, et al.

1 def main() {

2 <1>characters = 0

3 <2>lines = 0

4 <3>words = 0

5 <4>inword = 0

6 <5>_pred1 = getChar(<6>c)

7 while (_pred1) {

8 <7>characters = characters + 1

9 <8>_pred2 = c == �\n�

10 if (_pred2)

11 <9>lines = lines + 1

12 <10>_pred3 = isLetter(c)

13 if (_pred3) {

14 <11>_pred4 = inword == 0

15 if (_pred4) {

16 <12>words = words + 1

17 }

18 <13>inword = 1

19 }

20 else

21 <14>inword = 0

22 <15>_pred1 = getChar(<16>c)

23 }

24 }

25 def isLetter (<17>c) {

26 <18>_pred5 = ((c >= �A� && c <= �Z�)

27 || (c >= �a� && c <= �z�))

28 if (_pred5)

29 <19>_ret = True

30 else

31 <20>_ret = False

32 return _ret

33 }

Fig. 2. Pseudo-code of the word count program

behavior, or segmentation faults, as they produce either inconsistent, or no coverage information. Finally, we exclude
any fault whose root cause falls outside the scope of CPDA (for example, if the fault is calling a wrong function without
storing the return value, we cannot represent the fault as a node in CPDA).

For evaluation, we use the widely adopted 022@= metric, which counts the number of faults whose root causes are
ranked within the top = places. If there are multiple faulty elements, we compute 022@= using the most highly ranked
element. Since SBFL techniques tend to produce a lot of ties, we report rankings obtained by multiple tiebreakers. The
average tiebreaker computes the average rank of the tied candidates. Min and max tiebreakers rank all tied elements
at the highest, and the lowest, place, respectively. Finally, line order tiebreaker breaks ties independently from score
distributions using line numbers, facilitating fair comparison between rankings theoretically [43].

Manuscript submitted to ACM

72

SCENARIO1. CPDM VS PDGNode index

BY LOOKING AT THE DIFFERENT THRESHOLDS OF THE DEGREE OF DEPENDENCE,
CPDM CAN AID IN GROUPING THE PROGRAM'S FUNCTIONALITY.

○ INTRO / ○MOBS / ○MOAD / ●CPDA

SCENARIO 2: DIFFERENT EXECUTIONS

main

isletter

1

7

2

9

3

12

4

11

6

16

17

5

15

8

10

1314

18

19 20

main

isletter

1

7

2

9

3

12

4

11

6

17

5

15

16

8

10

1314

18

19 20

main

isletter

1

7

2

9

3

12

4

11

6

17

5

15

16

8

10

1314

18

19 20

One char TS → Multiple chars TS One word TS → Multiple words TS One line TS → Multiple line TS

○ INTRO / ○MOBS / ○MOAD / ●CPDA

[15], [16], and [13] affects others only if
the input contains multiple characters.

[20] → [10] → [14] → [11] checks
if current character is a non-alphabet.

[2], [8], [9], [16] composes a logic
calculating the number of lines.

73

: Disappear

: New

SCENARIO 3: DEBUGGING

74

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Improving Comprehension of Programs using Causal Inference ICPC 2022, May 21–22, 2022, Pi�sburgh, PA, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

equilateral, so it has the smallest DD value. In contrast, if the tri-
angle is isosceles, hS2i is always one of two sides of equal length,
consequently, has the highest DD among the three sides. Notice
that reaching-dependence based methods, such as the PPDG and
BNPDG, cannot distinguish between the e�ect of each side.
To summarize, the CPDM di�erentiates the dependence pattern

from di�erent executions. Such information can highlight a part
of a program related to a particular execution. Also, the CPDM
can be an indicator to identify di�erent dependence structures and
their corresponding test cases. Leveraging this, applying CPDA to
appropriate test subsets can make the CPDM distinctive, CPDA
can guide test clustering and may even expose shortcomings in the
current test suite.

4.3 Debugging
In the �nal scenario, we consider the challenge of debugging. It il-
lustrates how CPDA, which gives �ner dependence information and
di�erentiates it by execution, can aid an engineer while debugging
faulty code.

1 bool Non_Crossing_Biased_Climb () {
2 upward_preferred = Inhibit_Biased_Climb () > Down_Separation;
3 if (upward_preferred)
4 result = !(Own_Below_Threat ()) || ((Own_Below_Threat ())
5 && (!(Down_Separation > ALIM()))); // bug: > should be >=
6 else ...
7 return result;
8 } ...

Figure 9: Faulty code in TCAS buggy version 1 (TCAS-1)

Figure 9 shows TCAS buggy Version 1, TCAS-1. The fault is on
Line 5, in which the boolean operator ‘>’ should be ‘>=’ Assume that
we aim to �nd the location of this defect given a set of passing tests
and the failing test. In the failing test the defect must propagate to an
output; consequently, an orthodox approach, which aims to reduce
the search space for the faulty program element, is to compute a
dynamic slice using a failing test [1]. However, as mentioned in
Section 1, the use of a dynamic slice may yield a signi�cant number
of fault candidates. The dynamic slice of TCAS-1 (colored nodes
in Figure 10) is a typical example. Dicing [2] reduces the large
candidate set by �ltering out program elements in the dynamic
slice of a passing execution. Yet, the defect may exist in both slices,
as it does in TCAS-1. Consequently, dicing will miss such defects.

Where a binary decision is often too coarse, CPDA can quantify
the (total) e�ect of a program element on an output (element). In
Figure 10 the output has a causal dependence (CD) on the colored
nodes where the darker the color, the stronger the dependence. Red
is used for the CD based on the failing test, while blue is used for
passing tests. Assuming that the defect strongly a�ects the failing
output, we can reduce the number of candidates using the strength
of the CD. In the case of TCAS-1, only 15 nodes (double-colored
in Figure 10) among 37 nodes in the dynamic slices have more
than 0.5 CD (41% reduction). While the search space has decreased
considerably, we can further locate the defect by employing a similar
tactic to dicing and assume that the defect has less e�ect on passing
tests. The (darkness of) blue color on the right side of the double-
colored nodes in Figure 10 presents the degree of CD of 15 defect
candidates to the passing output. Among the them, h¢i has the

Figure 10: Illustration of the causal dependence (CD) found
for TCAS-1. The darker the color, the stronger the CD.

smallest e�ect on the passing output and is the faulty node (result)
in TCAS-1.

The debugging scenario for TCAS-1 shows how e�ective causal
inference’s quanti�ed dependence can be at reducing debugging
e�ort. In contrast, because the passing and failing tests follow al-
most identical control-�ow, frequency based techniques such as
the PPDG and BNPDG are ine�ective at the same task: in PPDG,
the probability of the reaching de�nition of the defect is high in
the passing executions, while all the program elements have the
same probability given the state of erroneous output in BNPDG.

To summarize, CPDA provides a �ner granularity of dependence
information than existing dependence analyses, which is an asset
to the debugging process.

5 THREATS TO VALIDITY
Using a limited set of program inputs and approximating depen-
dence is an internal threat to any dynamic analysis, and thus also to
CPDA. However, CPDA is less vulnerable to the limited number of
inputs than dynamic slicing techniques as its intervention relies not
only on inputs but also on various mutations. However, the mutant
sampling for CPDA poses another threat to internal validity. To
mitigate this, we use a su�ciently large number of samples based
on the result of a preliminary experiment regarding the e�ect of
#<?= (see Section 3.4 for details).

We use three example programs and a bug from the Siemens
suite, which may pose a threat to external validity. Our aim is not
to claim generalization, but to provide an exhaustive qualitative
analysis for an illustrative example based on a subject that is widely
studied for testing and debugging.

6 RELATEDWORK
There have been a few proposals to quantify dependencies, two of
which we consider in our study: the PPDG [3] and the BNPDG [45].
Both rely on frequency-of-execution to quantify dependence while
avoiding any confounding bias by only considering the de�nitions
that reach each variable during execution, ensuring that the quan-
ti�ed dependence re�ects causation. However, they pay the cost of
exact data�ow analysis. In contrast, CPDA is not tied to the PDG,
freeing us from having to solve hard data-�ow problems, such as

9

Faulty code in TCAS buggy version 1

○ INTRO / ○MOBS / ○MOAD / ●CPDA

SCENARIO 3: DEBUGGING

75

○ INTRO / ○MOBS / ○MOAD / ●CPDA

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

DYNAMIC SLICE OF THE WRONG OUTCOME

Conventional binary dependency analysis (dynamic slicing) shows,

SCENARIO 3: DEBUGGING

75

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

○ INTRO / ○MOBS / ○MOAD / ●CPDA

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

 (darkness ef fect size)CD(⋅ → WRONG OUTCOME) ∼

SCENARIO 3: DEBUGGING

75

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

○ INTRO / ○MOBS / ○MOAD / ●CPDA

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

ONLY CD(⋅ → WRONG OUTCOME) > 0.5

37 cand.

15 cand.

SCENARIO 3: DEBUGGING

75

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

○ INTRO / ○MOBS / ○MOAD / ●CPDA

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

(darkness ef fect size)

CD(⋅ → CORRECT OUTCOME)
∼

SCENARIO 3: DEBUGGING

75

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

initialize

main

ALIM Inhibit_Biased_Climb

Non_Crossing_Biased_Climb

alt_sep_test

Own_Above_Threat

Non_Crossing_Biased_Descend

Own_Below_Threat

1

5

31

2 34 38 394340 3537 32 3336

16

4234 41

18

★ 911 12

6

710

14 13

19

20 21

15

44

1722

2324

26 25

2728

29

○ INTRO / ○MOBS / ○MOAD / ●CPDA

SCENARIO 3: DEBUGGING

76

Suspiciousness: IN FAILING TESTCD IN PASSING TESTCD

• Causal Dependence based Fault Localization

○ INTRO / ○MOBS / ○MOAD / ●CPDA

SCENARIO 3: DEBUGGING

76

Suspiciousness: IN FAILING TESTCD IN PASSING TESTCD

• Causal Dependence based Fault Localization

Acc@n CDFL SBFL Dynamic slicing Dicing

n = 1~ 13~ 3~ 0~ 3~

3~ 26~ 11~ 0~ 7~

5~ 30~ 17~ 0~ 7~

10~ 42~ 31~ 2~ 7~

• Result: (Siemens suite, 92 faults)

○ INTRO / ○MOBS / ○MOAD / ●CPDA

SCENARIO 3: DEBUGGING

76

Suspiciousness: IN FAILING TESTCD IN PASSING TESTCD

• Causal Dependence based Fault Localization

Acc@n CDFL SBFL Dynamic slicing Dicing

n = 1~ 13~ 3~ 0~ 3~

3~ 26~ 11~ 0~ 7~

5~ 30~ 17~ 0~ 7~

10~ 42~ 31~ 2~ 7~

• Result: (Siemens suite, 92 faults)

○ INTRO / ○MOBS / ○MOAD / ●CPDA

THE FINER GRANULARITY OF DEPENDENCE INFORMATION FROM CPDA CAN
AID THE DEBUGGING PROCESS MORE THAN THE EXISTING BINARY DEPENDENCE INFORMATION.

Existing observation-based analysis lacks scalability and interpretability.
Problem statement:

REMOVE/KEEP LINE
& MOVE ON

MUTATE
PROGRAM

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

Program slice • No structural reason

• Binary dependency

COMPREHENSION

SCALABILITY

• Costly observation

• Partial analysis

Thesis statement: Statistically modeling program dependence can improve the
scalability and the interpretability of the observation-based analysis.

M
O

B
S

M
O

A
D

C
P

D
A

Existing observation-based analysis lacks scalability and interpretability.
Problem statement:

REMOVE/KEEP LINE
& MOVE ON

MUTATE
PROGRAM

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

Program slice • No structural reason

• Binary dependency

COMPREHENSION

SCALABILITY

• Costly observation

• Partial analysis

GOAL

78

● INTRO / ○MOBS / ○MOAD / ○CPDA

Program
slicing
technique

Dependency
analysis
technique

0.3

0.2

0.2

0.5

0.3 0.9

0.7

Enhance

Binary library Server/client
interaction

Cross-language
interface

File system

Software with
non-conventional
semantics

DEPENDENCY
ANALYSIS

Thesis statement: Statistically modeling program dependence can improve the
scalability and the interpretability of the observation-based analysis.

M
O

B
S

M
O

A
D

C
P

D
A

Existing observation-based analysis lacks scalability and interpretability.
Problem statement:

REMOVE/KEEP LINE
& MOVE ON

MUTATE
PROGRAM

Slicing criterion

PROCESS
OBSERVATION

WINDOW DELETION

OBSERVE
IMPACT ON
OTHERS

Program

Program slice • No structural reason

• Binary dependency

COMPREHENSION

SCALABILITY

• Costly observation

• Partial analysis

80

'

'

— Robert Burton

 IDLENESS IS AN APPENDIX TO
NOBILITY.

81

A. OUTPUT OF ORBS AND MOAD

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

Dependence

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MOADORBS

○ INTRO / ○MOBS / ●MOAD / ○CPDA

- Program slice - - Dependence model -

82

B. OBSERVATION PHASE

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

u1

u2

u3

u4

⋮

ui-1

ui

○ INTRO / ○MOBS / ●MOAD / ○CPDA

• Identify a set of deletable units

• e.g. all statements

83

• Identify a set of deletable units

• e.g. all statements

• Generate a set of deletion (deleted program) to observe by deletion generation schemes

• 0: remains, 1: deleted

B. OBSERVATION PHASE

u1 u2 u3 u4 … ui-1 ui

0 0 0 0 … 0 0

1 0 0 0 … 0 0

0 1 0 0 … 0 0

… … … … … … …

0 0 0 0 … 0 1

1-hot:

u1 u2 u3 u4 … ui-1 ui

… … … … … … …

1 1 0 0 … 0 0

1 0 1 0 … 0 0

… … … … … … …

0 0 0 0 … 1 1

2-hot:

+original

○ INTRO / ○MOBS / ●MOAD / ○CPDA

84

• Identify a set of deletable units

• e.g. all statements

• Generate a set of deletion (deleted program) to observe by deletion generation schemes

• 0: remains, 1: deleted

• Run the program, check whether the trajectory changed (0) or not (1) for each variable.

B. OBSERVATION PHASE

u1 u2 u3 u4 … ui-1 ui v1 v2 v3 … vj

0 0 0 0 … 0 0 1 1 1 … 1

1 0 0 0 … 0 0 0 0 0 … 1

0 1 0 0 … 0 0 1 0 1 … 0

… … … … … … … … … … … …

0 0 0 0 … 1 1 0 0 1 … 0

→

○ INTRO / ○MOBS / ●MOAD / ○CPDA

85

1. Once success ()

2. Logistic ()

𝕆

𝕃

C. INFERENCE MODEL

If , the coefficient for of the logistic regression for , is larger than 0, then
 is independent from .
βi ui vk

vk ui

log
vk

1 − vk
= β0 + β1u1 + β2u2 + ⋯ + βiui

u1 u2 … ui vk
1 0 … 0 0
0 1 … 0 1
… … … … …
1 0 … 0 0

Coefficients represent the
relative impact on dependence

vkuiIf , thenβi ≤ 0

βi > 0

○ INTRO / ○MOBS / ●MOAD / ○CPDA

86

1. Once success ()

2. Logistic ()

3. Bayesian ()

𝕆

𝕃

𝔹

C. INFERENCE MODEL

If the behaves the same | has been deleted is larger than the mean,
then Is independent from .

P(vk ui)
vk ui

P (vk |ui) = P (vk behaves the same |ui has been deleted)
= P(vk = 1 |ui = 1)

=
P(vk = 1, ui = 1)

P(ui = 1)

vkuiIf , then
̂P (vk |ui) ≤ μ
̂P (vk |ui) > μ

: average of the probability over unitsμ

Estimate with the frequency of
behavior preservation

○ INTRO / ○MOBS / ●MOAD / ○CPDA

87

O: Once-success L : Logistic B : Bayesian

Miss
The number of statements

MOAD fails to delete

Excess
The number of statements
MOAD excessively deletes

R
at

io
 (%

)

D.

88

E. RESULT: MOAD VS. STATIC SLICER

MISS

Keeping Declaration

MOAD often could not delete ‘variable declaration statements.’

Compilable Slice

MOAD keeps the statements that are needed to be compilable.

EXCESS

Missing Initialization

Dummy values sometimes preserve the behavior.

Missing Return

A value in rax register preserves the behavior.

Limit of Static Analysis

The motivation of observation-based analysis.

89

• Limit of Static Analysis

E. RESULT: MOAD VS. STATIC SLICER

143 ...

144 case 24:

145 case 25:

146 case 32:

147 token_ptr ->token_id = special(next_st);

148 token_ptr ->token_string [0] = ’\0’;

149 return (token_ptr);

150 case 27:

151 case 29:

152 token_ptr ->token_id = constant(next_st ,

token_str , token_ind);

153 get_actual_token(token_str , token_ind);

154 strcpy(token_ptr ->token_string , token_str);

155 return (token_ptr);

156 case 30:

157 ...

Listing 4: Snippets from prttok

175 ...

176 if (check_delimiter(ch) != TRUE) {

177 ...

178 unget_char(ch, tstream_ptr ->ch_stream);

179 token_ind --;

180 get_actual_token(token_str , token_ind);

181 strcpy(token_ptr ->token_string , token_str);

182 return (token_ptr);

183 }

184 token_ptr ->token_id = NUMERIC;

185 unget_char(ch, tstream_ptr ->ch_stream);

186 token_ind --;

187 get_actual_token(token_str , token_ind);

188 strcpy(token_ptr ->token_string , token_str);

189 return (token_ptr);

190 }

191 ...

Listing 5: Snippets from prttok

129 ...

130 token get_token(tp)

131 token_stream tp;

132 {

133 ...

134 if (id == 1) {

135 i++;

136 buffer[i] = ch;

137 return (buffer);

138 }...

139 }

140 ...

Listing 6: A snippet from prttok2

258 ...

259 int get_process(prio , ratio , job)

260 {

261 ...

262 index = ratio * length;

263 index = index >= length ? length -1 : index;

264 for (next = &prio_queue[prio].head; index && *next;

index --) {

265 next = &(* next)->next;

266 }...

267 }

268 ...

Listing 7: A snippet from sched2

Figure 11: Snippets of the source codes of Siemens suite.

than for the mbe, mug, and wc (7-16%). The main cause for this greater reduction is
that MOAD can determine false positive dependencies existing in the static analysis by
directly observing the program execution. Figure 10 shows the distribution of the ratio
of the number of lines in each CodeSurfer slice only to the size of the CodeSurfer slice for
the programs in the Siemens suite. The plot omits the three benchmarks because they
lack su�cient slices to be meaningfully represented in a boxplot.

The dots near 100% of the ratio in Figure 10 show the case for which MOAD eliminates
almost every line in the CodeSurfer forward slice from its slice. We investigate what kind
of criteria make that happens and present some of the cases of them here.

The first snippet of Listing 4 shows the snippet of the source of prttok. The value of
token id in struct token ptr determines whether the main loop of the program termi-
nates or not. Therefore, CodeSurfer includes most of the line in the program to its forward
slice of Line 147, which assigns a value to token id that makes the main loop to con-
tinue. However, when both Line 147 and Line 149 are deleted, fall-through happens, which
assigns another value to token id in Line 152, keeping the main loop to continue. It is
important to note that the test suite we used contains not only the test cases handling the
strings with special characters, but also ones without them. From such the observation,
MOAD learns that, except those actually related to the handling of special characters,
lines in CodeSurfer’s forward slice of Line 147 are not a↵ected by Line 147 if the main
loop doesn’t stop. Deleting all lines that are not related to the handling of special charac-
ters from Line 147’s forward slice by MOAD illustrates its success at inferring accurate
dynamic dependence analysis.

A similar pattern is observed in Line 178 of Listing 5. CodeSurfer includes most of the
lines in prttok in its forward slice of Line 178, because tstream ptr is the bu↵er containing

32

To answer RQ4, we configure MOAD to use the 2-hot deletion generation scheme
and the Once Success inference algorithm because the results from RQ2 show that this
configuration is the most e↵ective and accurate configuration. As described in Section 4.5,
we convert the resulting slices to the line-level.

Table 7 shows the miss and excess values comparing the line-level backward slices
from MOAD and CodeSurfer averaged over the set of criteria. |L| shows the size of the
number of lines in comparison. Note that |L| is not the same with SLoC in Table 1 since
candidate lines are the lines that correspond to non-containing statements. µ (MSc) and
µ (CSc), in this case, use |L| as a denominator of the ratio. From the table, when slicing
mbe there is no line that MOAD fails to delete that CodeSurfer deletes and thus miss is
zero. On average, 2 and 3 lines are missed by MOAD in mug and wc and 8-24 lines are
missed by MOAD for the programs in Siemens suite. In terms of excess lines, on average
only 0 to 1 lines are errantly deleted by MOAD in the backward slices of mbe, mug, and
wc when compared with slices generated by CodeSurfer. For the Siemens suite, MOAD
excessively deletes 9-79 lines, which is a notable higher percentage. In the big picture
there is a larger proportion of missed lines with the bigger programs because they include
more opportunities for static analysis false-positives. We consider this issue in greater
detail during the discussion of RQ6.

1 #include <stdio.h>

2 #include <stdlib.h>

3 int p(int j);

4 int q(int k);

5 int f1(int k);

6 int f2(int k);

7 int f3(int j);

8 int main(int argc , char *argv [])

9 {

10 int j;

11 int k;

12 j = (int) strtol(argv[1], NULL , 10);

13 k = (int) strtol(argv[2], NULL , 10);

14

15 while (p(j))

16 {

17 if (q(k))

18 {

19 k = f1(k);

20 }

21 else

22 {

23 k = f2(k);

24 j = f3(j);

25 }

26 }

27 printf("%d\n", j);

28 }

Listing 1: mbe

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <stdbool.h>

4 bool p(int i);

5 bool q(int c);

6 int h(int i);

7 int f();

8 int g();

9 int main(int argc , char *argv [])

10 {

11 int i;

12 int c;

13 int x;

14 i = atoi(argv [1]);

15 c = atoi(argv [2]);

16 x = atoi(argv [3]);

17 while (p(i))

18 {

19 if (q(c))

20 {

21 x = f();

22 c = g();

23 }

24 i = h(i);

25 }

26 printf("%d\n", x);

27 }

Listing 2: mug

1 #include <stdio.h>

2 int isletter(char c);

3 int main(int argc , char *argv [])

4 {

5 int characters;

6 int lines;

7 int inword;

8 int words;

9 char c;

10 characters = 0;

11 inword = 0;

12 words = 0;

13 while (scanf("%c", &c) == 1)

14 {

15 characters = characters + 1;

16 if (c == ’\n’)

17 {

18 lines = lines + 1;

19 }

20 if (isletter(c))

21 {

22 if (inword == 0)

23 {

24 words = words + 1;

25 inword = 1;

26 }

27 }

28 else

29 {

30 inword = 0;

31 }

32 }

33 }

34 int isletter(char c)

35 {

36 printf("%c ", c);

37 if (((c >= ’A’) && (c <= ’Z’))

38 || ((c >= ’a’) && (c <= ’z’)))

39 {

40 return 1;

41 }

42 else

43 {

44 return 0;

45 }

46 }

Listing 3: wc

Figure 3: mbe, mug, and wc source code

23

• Backward • Forward

k:23 does not affect j:27 token_id:147 relatively have less effect to
non special token related codes

○ INTRO / ○MOBS / ●MOAD / ○CPDA

90

F. CAUSAL PROGRAM DEPENDENCE ANALYSIS (CPDA)

0.3

0.5

0.7

0.2
0.3 0.9

CAUSAL DISCOVERY

Causal structure

DIRECT EFFECT Causal
Program
Dependence
Model: input

: output

OBSERVATION

ORACLE GEN.

Observation data

INSTRUMENTING

Program Instrumented program

Test suite Oracle

○ INTRO / ○MOBS / ○MOAD / ●CPDA

91

G. RESULT: CPDM VS PDG
573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lee, et al.

1 def main() {

2 <1>characters = 0

3 <2>lines = 0

4 <3>words = 0

5 <4>inword = 0

6 <5>_pred1 = getChar(<6>c)

7 while (_pred1) {

8 <7>characters = characters + 1

9 <8>_pred2 = c == �\n�

10 if (_pred2)

11 <9>lines = lines + 1

12 <10>_pred3 = isLetter(c)

13 if (_pred3) {

14 <11>_pred4 = inword == 0

15 if (_pred4) {

16 <12>words = words + 1

17 }

18 <13>inword = 1

19 }

20 else

21 <14>inword = 0

22 <15>_pred1 = getChar(<16>c)

23 }

24 }

25 def isLetter (<17>c) {

26 <18>_pred5 = ((c >= �A� && c <= �Z�)

27 || (c >= �a� && c <= �z�))

28 if (_pred5)

29 <19>_ret = True

30 else

31 <20>_ret = False

32 return _ret

33 }

Fig. 2. Pseudo-code of the word count program

behavior, or segmentation faults, as they produce either inconsistent, or no coverage information. Finally, we exclude
any fault whose root cause falls outside the scope of CPDA (for example, if the fault is calling a wrong function without
storing the return value, we cannot represent the fault as a node in CPDA).

For evaluation, we use the widely adopted 022@= metric, which counts the number of faults whose root causes are
ranked within the top = places. If there are multiple faulty elements, we compute 022@= using the most highly ranked
element. Since SBFL techniques tend to produce a lot of ties, we report rankings obtained by multiple tiebreakers. The
average tiebreaker computes the average rank of the tied candidates. Min and max tiebreakers rank all tied elements
at the highest, and the lowest, place, respectively. Finally, line order tiebreaker breaks ties independently from score
distributions using line numbers, facilitating fair comparison between rankings theoretically [43].

Manuscript submitted to ACM

○ INTRO / ○MOBS / ○MOAD / ●CPDA

main

isletter

1

7

2

9

3

12

4

11

6

17

5

15

16

8

10

1314

18

19 20

main

isletter

1

7

2

9

3

12

4

11

6

16

8

17

5

15

10

18

1314

19 20

PDG (34 edges) CPDM (21 edges)

5 15

7

16

92

G. RESULT: CPDM

CPDM ()CD ≥ 0.8

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Count characters

Count lines

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lee, et al.

1 def main() {

2 <1>characters = 0

3 <2>lines = 0

4 <3>words = 0

5 <4>inword = 0

6 <5>_pred1 = getChar(<6>c)

7 while (_pred1) {

8 <7>characters = characters + 1

9 <8>_pred2 = c == �\n�

10 if (_pred2)

11 <9>lines = lines + 1

12 <10>_pred3 = isLetter(c)

13 if (_pred3) {

14 <11>_pred4 = inword == 0

15 if (_pred4) {

16 <12>words = words + 1

17 }

18 <13>inword = 1

19 }

20 else

21 <14>inword = 0

22 <15>_pred1 = getChar(<16>c)

23 }

24 }

25 def isLetter (<17>c) {

26 <18>_pred5 = ((c >= �A� && c <= �Z�)

27 || (c >= �a� && c <= �z�))

28 if (_pred5)

29 <19>_ret = True

30 else

31 <20>_ret = False

32 return _ret

33 }

Fig. 2. Pseudo-code of the word count program

behavior, or segmentation faults, as they produce either inconsistent, or no coverage information. Finally, we exclude
any fault whose root cause falls outside the scope of CPDA (for example, if the fault is calling a wrong function without
storing the return value, we cannot represent the fault as a node in CPDA).

For evaluation, we use the widely adopted 022@= metric, which counts the number of faults whose root causes are
ranked within the top = places. If there are multiple faulty elements, we compute 022@= using the most highly ranked
element. Since SBFL techniques tend to produce a lot of ties, we report rankings obtained by multiple tiebreakers. The
average tiebreaker computes the average rank of the tied candidates. Min and max tiebreakers rank all tied elements
at the highest, and the lowest, place, respectively. Finally, line order tiebreaker breaks ties independently from score
distributions using line numbers, facilitating fair comparison between rankings theoretically [43].

Manuscript submitted to ACM

main

isletter

1

7

2

9

3

12

4

11

65

15

16

8

10

1314 17

18

19 20

Dependence always happens

93

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lee, et al.

1 def main() {

2 <1>characters = 0

3 <2>lines = 0

4 <3>words = 0

5 <4>inword = 0

6 <5>_pred1 = getChar(<6>c)

7 while (_pred1) {

8 <7>characters = characters + 1

9 <8>_pred2 = c == �\n�

10 if (_pred2)

11 <9>lines = lines + 1

12 <10>_pred3 = isLetter(c)

13 if (_pred3) {

14 <11>_pred4 = inword == 0

15 if (_pred4) {

16 <12>words = words + 1

17 }

18 <13>inword = 1

19 }

20 else

21 <14>inword = 0

22 <15>_pred1 = getChar(<16>c)

23 }

24 }

25 def isLetter (<17>c) {

26 <18>_pred5 = ((c >= �A� && c <= �Z�)

27 || (c >= �a� && c <= �z�))

28 if (_pred5)

29 <19>_ret = True

30 else

31 <20>_ret = False

32 return _ret

33 }

Fig. 2. Pseudo-code of the word count program

behavior, or segmentation faults, as they produce either inconsistent, or no coverage information. Finally, we exclude
any fault whose root cause falls outside the scope of CPDA (for example, if the fault is calling a wrong function without
storing the return value, we cannot represent the fault as a node in CPDA).

For evaluation, we use the widely adopted 022@= metric, which counts the number of faults whose root causes are
ranked within the top = places. If there are multiple faulty elements, we compute 022@= using the most highly ranked
element. Since SBFL techniques tend to produce a lot of ties, we report rankings obtained by multiple tiebreakers. The
average tiebreaker computes the average rank of the tied candidates. Min and max tiebreakers rank all tied elements
at the highest, and the lowest, place, respectively. Finally, line order tiebreaker breaks ties independently from score
distributions using line numbers, facilitating fair comparison between rankings theoretically [43].

Manuscript submitted to ACM

CPDM ()CD ≥ 0.8

main

isletter

1

7

2

9

3

12

4

11

65

15

16

8

10

1314 17

18

19 20

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Count characters
Check part of word

Count lines

Check alphabet

Dependence always happens

G. RESULT: CPDM

94

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lee, et al.

1 def main() {

2 <1>characters = 0

3 <2>lines = 0

4 <3>words = 0

5 <4>inword = 0

6 <5>_pred1 = getChar(<6>c)

7 while (_pred1) {

8 <7>characters = characters + 1

9 <8>_pred2 = c == �\n�

10 if (_pred2)

11 <9>lines = lines + 1

12 <10>_pred3 = isLetter(c)

13 if (_pred3) {

14 <11>_pred4 = inword == 0

15 if (_pred4) {

16 <12>words = words + 1

17 }

18 <13>inword = 1

19 }

20 else

21 <14>inword = 0

22 <15>_pred1 = getChar(<16>c)

23 }

24 }

25 def isLetter (<17>c) {

26 <18>_pred5 = ((c >= �A� && c <= �Z�)

27 || (c >= �a� && c <= �z�))

28 if (_pred5)

29 <19>_ret = True

30 else

31 <20>_ret = False

32 return _ret

33 }

Fig. 2. Pseudo-code of the word count program

behavior, or segmentation faults, as they produce either inconsistent, or no coverage information. Finally, we exclude
any fault whose root cause falls outside the scope of CPDA (for example, if the fault is calling a wrong function without
storing the return value, we cannot represent the fault as a node in CPDA).

For evaluation, we use the widely adopted 022@= metric, which counts the number of faults whose root causes are
ranked within the top = places. If there are multiple faulty elements, we compute 022@= using the most highly ranked
element. Since SBFL techniques tend to produce a lot of ties, we report rankings obtained by multiple tiebreakers. The
average tiebreaker computes the average rank of the tied candidates. Min and max tiebreakers rank all tied elements
at the highest, and the lowest, place, respectively. Finally, line order tiebreaker breaks ties independently from score
distributions using line numbers, facilitating fair comparison between rankings theoretically [43].

Manuscript submitted to ACM

CPDM ()CD ≥ 0.8

main

isletter

1

7

2

9

3

12

4

11

65

15

16

8

10

1314 17

18

19 20

○ INTRO / ○MOBS / ○MOAD / ●CPDA

Main loop reading input char.

Dependence always happens

G. RESULT: CPDM

95

○ INTRO / ○MOBS / ○MOAD / ●CPDA

CPDM ()0.2 ≤ CD < 0.8

Some tests have a single line,

while some have multiple lines

Some tests have a one word,

while some have multiple words

Dependence occasionally happens

main

isletter

1

7

2

9

3

12

4

11

6

17

5

15

16

8

10

1314

18

19 20

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lee, et al.

1 def main() {

2 <1>characters = 0

3 <2>lines = 0

4 <3>words = 0

5 <4>inword = 0

6 <5>_pred1 = getChar(<6>c)

7 while (_pred1) {

8 <7>characters = characters + 1

9 <8>_pred2 = c == �\n�

10 if (_pred2)

11 <9>lines = lines + 1

12 <10>_pred3 = isLetter(c)

13 if (_pred3) {

14 <11>_pred4 = inword == 0

15 if (_pred4) {

16 <12>words = words + 1

17 }

18 <13>inword = 1

19 }

20 else

21 <14>inword = 0

22 <15>_pred1 = getChar(<16>c)

23 }

24 }

25 def isLetter (<17>c) {

26 <18>_pred5 = ((c >= �A� && c <= �Z�)

27 || (c >= �a� && c <= �z�))

28 if (_pred5)

29 <19>_ret = True

30 else

31 <20>_ret = False

32 return _ret

33 }

Fig. 2. Pseudo-code of the word count program

behavior, or segmentation faults, as they produce either inconsistent, or no coverage information. Finally, we exclude
any fault whose root cause falls outside the scope of CPDA (for example, if the fault is calling a wrong function without
storing the return value, we cannot represent the fault as a node in CPDA).

For evaluation, we use the widely adopted 022@= metric, which counts the number of faults whose root causes are
ranked within the top = places. If there are multiple faulty elements, we compute 022@= using the most highly ranked
element. Since SBFL techniques tend to produce a lot of ties, we report rankings obtained by multiple tiebreakers. The
average tiebreaker computes the average rank of the tied candidates. Min and max tiebreakers rank all tied elements
at the highest, and the lowest, place, respectively. Finally, line order tiebreaker breaks ties independently from score
distributions using line numbers, facilitating fair comparison between rankings theoretically [43].

Manuscript submitted to ACM

G. RESULT: CPDM

96

H. ADVANTAGE OF QUANTIFIABLE DEPENDENCE

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Lee, et al.

where �5 08; and �?0BB denote a set of failing and passing test inputs, respectively. Note that the value of (>DC represents
the change of outcome, and not pass or fail.

Table 1. Example comparing CDFL to SBFL

Code RankSBFL RankCDFL
a = 3 1 2
b = 4 1 3
c = a % 3 + 1 1 1
return c - -

2.7.1 Advantages over SBFL. Table 1 contains a motivating example showing the advantages of CDFL over SBFL: the
fault is typeset in red. SBFL assigns suspiciousness scores to program elements based on the coverage and outcomes of
test executions [42]. Consequently, its performance depends signi�cantly on the di�erences in control �ow between
passing and failing executions: it fails to distinguish the failing execution in Table 1, which can be only characterized in
data �ow. Moreover, all statements in the same program block are assigned with the same suspiciousness score, as can
be seen in the example. CDFL, however, can correctly analyze that the faulty return value is caused by the assignment
to variable c.

Table 2. Example comparing CDFL to Dynamic Slicing and Dicing. ‘�’ denotes the whitespace.

Code Coverage DS Dice SuspCDFL“a” “a�” “�a�”

s = input() 1 1 1 1 0 1.0 - 1.0 = 0.0
pred = isEndSpace(s) 0 1 1 1 0 1.0 - 0.5 = 0.5
if (pred) p = p.rstrip() p.strip() 0 1 1 1 0 1.0 - 0.5 = 0.5
return p - - - - - -

Test Results P P F

2.7.2 Advantages over Dynamic Slicing and Dicing. Table 2 contains a motivating example showing the advantages of
CDFL over DS, a dynamic backward slice of the returned variable p, and a dice [3], which essentially returns the set
di�erence between dynamic slices computed using failing test inputs and passing test inputs. Intuitively, if there is a
dependence relationship that is only exercised in failing executions, dicing reports it as the likely root cause of the
failure. The original code in Table 2 intends to only remove trailing whitespaces (denoted as ‘�’), but the faulty version
strips all whitespaces. Because one of the passing inputs, “a�”, and the failing input, “�a�”, execute all lines of the code,
dynamic slicing reports all lines to be equally faulty, while dicing concludes that none of them are faulty. However,
CDFL reports that the faulty line is more suspicious, based on the quantitative dependence.

3 EXPERIMENTAL SETUP

This section presents our research questions and the set-up of our empirical evaluation.
Manuscript submitted to ACM

CDFL vs SBFL

CDFL considers the value in the variable
breaking ties in the same basic block.

○ INTRO / ○MOBS / ○MOAD / ●CPDA

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Lee, et al.

where �5 08; and �?0BB denote a set of failing and passing test inputs, respectively. Note that the value of (>DC represents
the change of outcome, and not pass or fail.

Table 1. Example comparing CDFL to SBFL

Code RankSBFL RankCDFL
a = 3 1 2
b = 4 1 3
c = a % 3 + 1 1 1
return c - -

2.7.1 Advantages over SBFL. Table 1 contains a motivating example showing the advantages of CDFL over SBFL: the
fault is typeset in red. SBFL assigns suspiciousness scores to program elements based on the coverage and outcomes of
test executions [42]. Consequently, its performance depends signi�cantly on the di�erences in control �ow between
passing and failing executions: it fails to distinguish the failing execution in Table 1, which can be only characterized in
data �ow. Moreover, all statements in the same program block are assigned with the same suspiciousness score, as can
be seen in the example. CDFL, however, can correctly analyze that the faulty return value is caused by the assignment
to variable c.

Table 2. Example comparing CDFL to Dynamic Slicing and Dicing. ‘�’ denotes the whitespace.

Code Coverage DS Dice SuspCDFL“a” “a�” “�a�”

s = input() 1 1 1 1 0 1.0 - 1.0 = 0.0
pred = isEndSpace(s) 0 1 1 1 0 1.0 - 0.5 = 0.5
if (pred) p = p.rstrip() p.strip() 0 1 1 1 0 1.0 - 0.5 = 0.5
return p - - - - - -

Test Results P P F

2.7.2 Advantages over Dynamic Slicing and Dicing. Table 2 contains a motivating example showing the advantages of
CDFL over DS, a dynamic backward slice of the returned variable p, and a dice [3], which essentially returns the set
di�erence between dynamic slices computed using failing test inputs and passing test inputs. Intuitively, if there is a
dependence relationship that is only exercised in failing executions, dicing reports it as the likely root cause of the
failure. The original code in Table 2 intends to only remove trailing whitespaces (denoted as ‘�’), but the faulty version
strips all whitespaces. Because one of the passing inputs, “a�”, and the failing input, “�a�”, execute all lines of the code,
dynamic slicing reports all lines to be equally faulty, while dicing concludes that none of them are faulty. However,
CDFL reports that the faulty line is more suspicious, based on the quantitative dependence.

3 EXPERIMENTAL SETUP

This section presents our research questions and the set-up of our empirical evaluation.
Manuscript submitted to ACM

CDFL vs Dicing, Dynamic slice

Faulty element may affect in both
passing / failing execution.

97

I. EFFICIENT CPDA

Traj(P, Var i) ≠ Traj(P′ , Var i)

Mutated program → Overhead

• Instead comparing with mutation, compare between different test cases.

• Considering we only mutate on the input value

Traj(P(c1), Var i) ≠ Traj(P(c2), Var i)

Compare between different execution

98

I. EFFICIENT CPDA

99

Table 4.5: Acc@n for CDFL (Nmpn = 20, mean) and SBFL (avg. tie breaker) for each subject program

Program (# bugs) FL method
Acc@n

n=1 3 5 10

tcas (34)
CDFL 4 14 16 21

SBFL 0 3 7 10

sched (4)
CDFL 0 1 1 4

SBFL 0 0 1 1

sched2 (3)
CDFL 1 1 1 1

SBFL 0 0 0 0

totinfo (18)
CDFL 0 1 1 1

SBFL 0 0 0 3

prttok (3)
CDFL 1 1 1 2

SBFL 0 0 1 1

prttok2 (6)
CDFL 2 2 2 2

SBFL 1 2 2 3

replace (24)
CDFL 6 8 9 10

SBFL 2 6 6 13

to 20 times. While it has the same Nmpn as CPDAm, CPDA20

i
is much e�cient than CPDAm since

there are fewer mutation candidates. CPDAmax

i
, on the other hand, expresses how accurate CPDAi

could be; CPDAmax

i
uses su�cient Nmpn so that the number of observations reaches similar to CPDAm.

For CPDAe, we use the same test suite (a statement coverage adequate test suite) used in CPDAm

for comparison. During experiments, an extensive mutation on the input of the program raises a non-

deterministic behavior on prttok. We manually investigate the root cause of the circumstances and

discovers that the program can access the memory beyond initialized space while traversing the array

defining the state of the current character for certain input stream. Thus, we exclude prttok for the rest

of the experiments.

Speed

Table 4.6: Average number of observations used for analysis. Percentages in the parenthesis show the

average ratio of observations used relative to CPDAm.

Program CPDAm CPDAmax

i
CPDA20

i
CPDAe

tcas 2,206.4 (100%) 2,088.8 (94.6%) 744.8 (33.7%) 13.0 (0.58%)

sched 9,363.4 (100%) 9,382.8 (100.2%) 814.8 (8.7%) 32.0 (0.33%)

sched2 15,347.8 (100%) 15,013.4 (97.7%) 745.4 (4.8%) 33.0 (0.19%)

totinfo 17,120.2 (100%) 16,292.6 (95.1%) 219.0 (1.2%) 61.0 (0.34%)

prttok2 14,855.6 (100%) 14,981.2 (100.8%) 419.0 (2.8%) 16.2 (0.10%)

replace 72,225.4 (100%) 70,614.2 (97.7%) 1,548.4 (2.1%) 167.6 (0.23%)

Avg. ratio 100% 97.7% 8.9% 0.30%

105

Figure 4.15: Mean total wall clock time spent by each variant. Each red, yellow, green, blue bar

represents the time taken for observation, structure discovery, causal dependence calculation without

and with DPS, respectively.

Table 4.6 shows the number of observations used for CPDAm, CPDAmax

i
, CPDA20

i
, and CPDAe on

an average of 5 trials. The number in the parenthesis shows the ratio in comparison to the number of

observations used for CPDAm. As designed, CPDAmax

i
uses a similar number of observations, shown in

the third column of the table, like CPDAm. Conversely, using the same Nmpn makes CPDA20

i
observe

significantly less than CPDAm; on average, CPDA20

i
uses 8.9% of the number of observations used by

CPDAm. Since the size of the statement coverage adequate test suite is compact, CPDAe uses the

smallest number of observations among the variants of CPDA.

Such trend is preserved in the total time taken by each variant. Figure 4.15 shows the mean total

wall clock time spent by each variant. Each color in the figure divides the total time to the analysis

step: red for oracle generation and observation, yellow for causal discovery, and green and blue for causal

dependence calculation without and with DPS. CPDAmax

i
takes 93% of the time of CPDAm, on average.

Notice that CPDAmax

i
takes significantly less time to calculate the dependence while structure discovering

time is comparable to CPDAm. An increase in discovering time by CPDAmax

i
is because CPDAmax

i

needs more computation in discovery as CPDAmax

i
’s parent candidates for each node, which are nodes

appearing before, are a superset of intervention parents, CPDAm’s parent candidate. Nonetheless, fewer

dependencies are discovered in CPDAmax

i
(and also for CPDA20

i
and CPDAe) compared to CPDAm;

thus, CPDAm takes more time to calculate the causal dependence than other variants. The reason for

discovering fewer dependencies is further discussed in Section 4.5.3. CPDA20

i
takes significantly less time

(15% on average and 6% without tcas) than CPDAm since it uses a much smaller number of observations

in its analysis. The time di↵erence is even bigger for CPDAe (9% on average and 3% without tcas) as

CPDAe uses the smallest observations.

Accuracy of Causal Structure

CPDA identifies the markovian parent of a particular child node in the structure discovery algorithm

by checking whether each markovian parent has a unique e↵ect on the child node. Therefore, su�cient

observations distinguishing the di↵erent e↵ects of a↵ecting nodes are needed to identify a correct depen-

dence relation.

Figure 4.16 shows the accuracy of the discovered causal structure of CPDA variants setting CPDAm

causal structure as a baseline. Except for tcas, the recall of all variants is less than 0.1, showing that

mutating only the input nodes misses a large portion of the dependencies found in CPDAm. Interestingly,

the di↵erence in the accuracy of CPDAmax

i
and CPDA20

i
is small despite the large di↵erence in the

106

I. EFFICIENT CPDA

100

Figure 4.16: Mean accuracy of the discovered causal structure of CPDA variants setting CPDAm causal

structure as a baseline.

number of observations between the two. Such a result suggests that, in terms of a single value mutation

like CPDA, the dependency information gained by applying more mutation is less significant after a

certain number (around 20) of observations; it is also consistent with the result of Section 4.5.2. We keep

checking this trend for the remaining experiments.

We further investigate the characteristics of the discovered causal structure by mutating only the

inputs to figure out the root cause of the small recall. We use wc, tri, and B&T for analysis. While we

explain the characteristics in terms of CPDAi, CPDAe also shares those characteristics.

Figure 4.17: Cyclic structure

Cyclic dependence. When there is a cycle in the program, mutating only inputs is troubled to identify

the correct dependency. If a particular input a↵ects the nodes in cyclic dependency, the mutation on

the input often changes all of the involved nodes in the cyclic dependency. In those observations, CPDA

could not distinguish the individual e↵ect from each node to others, losing most of the cyclic and its

surrounding dependency structure. Figure 4.17 shows the discovered causal structure of the wc program

by CPDAi. The infeasibility of identifying the cyclic dependency of CPDAi is the primary cause of losing

the dependence compared to CPDAm.

Definition of Markovian parents. Figure 4.18 shows the causal structure of CPDAm and CPDAi

for the tri program, where CPDAm identifies hNoti as a parent of hReti while CPDAi doesn’t. tri gets

the length of three sides and distinguish the class of the triangle (or not a triangle). The execution

control flow takes one of hNoti, hEqui, hIsoi, or hScei and assigns to hReti; consequently, hReti depends
on hNoti. If the input is perturbed and the control flow changes, precisely two of hNoti, hEqui, hIsoi,
and hScei, change their behavior: each one executed before and after the perturbation. Therefore, we

could determine hReti’s behavior change only with hEqui, hIsoi, and hScei (or any other three of them),

which is why CPDAi excludes hNoti from the parent of hReti. As this situation often appears in many

107

J. ADAPTIVE MOBS PROBABILITY CHANGE

101

K. CPDA COMPREHENSION RESULT: TRIANGLE

1 def main(args) {

2 <1>car_type = args [0]

3 <2>_pred1 = car_type == "SENIOR_CITIZEN"

4 if (_pred1) <3>fee = 0.0

5 else {

6 <4>_pred2 = !(car_type == "CAR" || car_type == "TRUCK")

7 if (_pred2) <5>fee = -2.0 // INVALID

8 else {

9 <6>day , <7>duration = args[1], args [2]

10 <8>_pred3 = car_type == "CAR"

11 if (_pred3) <9>cost = compute_car_fee(duration)

12 else <10>cost = compute_truck_fee(duration)

13 <11>_pred4 = cost == -1.0 // EXCEED MAX DURATION

14 if (_pred4) <12>fee = -1.0

15 else {

16 <13>_pred5 = day == "THURSDAY"

17 if (_pred5) <14>cost = cost * THURSDAY_DISCOUNT

18 else {

19 <15> _pred6 = day == "SATURDAY"

20 if (_pred6) <16>cost = cost * SATURDAY_SURCHARGE

21 }

22 <17>fee = cost

23 ...}}}} // END of main

Figure 4.7: Pseudo-code of the B&T

correspond to the variable inword. Because h4i a↵ects h11i whenever there is at least one alphabetic

character, {h4i} ! {h11i} has the highest direct dependence, while h13i and h14i only a↵ect h11i if

the input includes more than one alphabetic character, which is true of fewer test cases. Furthermore,

because there are test cases that do not include non-alphabetic characters, h13i a↵ects h11i more than

h14i does.

Iso? Equ? Tri?

S1

0.35 0.13 0.51

S2

0.51

S3

0.51

Figure 4.8: Partial graph from CPDM of tri

Figure 4.8 shows the partial graph from the CPDM of tri where Nodes hS1i, hS2i, hS3i represent

inputs of the three sides, and hTri?i, hEqu?i, hIso?i represent predicates checking whether the input is

not-a-triangle, equilateral, or isosceles, respectively. In the CPDM, we observe the following:

• {hS1i} ! {hTri?i} = {hS2i} ! {hTri?i} = {hS3i} ! {hTri?i}: The equivalence of these three weights

in the CPDM is indicative of the symmetry in the use of the three side lengths for judging whether

they form a triangle. While not shown in Figure 4.8, the CPDA also assigns indistinguishable weights

to dependencies on hIso?i and hEqu?i. These examples show how the CPDM reveals the semantic

symmetry beyond simple depends-on relations.

91

Di↵erence in the required functionality

Figure 4.9 shows di↵erences in the resulting CPDMs for wc when using the four test suites introduced

in Section 4.3.1. These test suites incrementally require additional functionality. The structure of CPDM

changes accordingly. In Figure 4.9 for the label A�B, solid red edges are found only in A, dashed blue

edges are found only in B, and gray edges are found in both A and B. We consider the three comparisons

shown in the figure in greater detail.

• One character vs. multiple characters (Figure 4.9a): h15i, h16i, and h13i a↵ect others only when there

is more than one character in the input. Therefore, there are outgoing edges from these in the CPDM

of oneword but not for onechar. Instead, the direct predecessor nodes of h15i, h16i, and h13i (h5i, h6i,
and h10i) are linked to the nodes a↵ected by h15i, h16i, and h13i in onechar. Unexpected shortcut

dependencies that ‘skip’ specific nodes are indicative of an insu�cient test suite.

• One word vs. multiple words (Figure 4.9b): In the CPDM for oneline the sequence of edges h18i !
h20i ! h10i ! {h14i} ! {h11i} reflects the information flow from reading a non-alphabet character

to the increment of the word counter. Note that, unlike in Figure 4.6b, the degree of DD of {h19i} !
{h10i} and {h20i} ! {h10i} are the same. This is because every test in oneline contains both alphabet

and non-alphabet characters. Thus by varying the test suite, an engineer can uncover di↵erent flow

patterns in the code.

• One line vs. multiple lines (Figure 4.9c): With a newline character in the input, {h15i} ! {h8i}
disappears, while {h16i} ! {h8i}, {h8i} ! {h9i}, and {h2i} ! {h9i} appear: the new edges represent

counting of lines. Using two di↵erent test suites that di↵er only in some key feature can help an

engineer understand the connections in the program between the elements supporting that feature.

Di↵erence in the input distribution

Test suite hTri?i hEqu?i hIso?i

Total 0.51 0.13 0.35

Valid 0.97 0.13 0.35

(a) {hS1i} ! {hpredicate nodei}

Ordered hS1i hS2i hS3i

hEqu?i 0.29 0.18 0.24

hIso?i 0.21 0.46 0.33

(b) {hS*i} ! {hEqu?i,hIso?i}

Figure 4.10: (a) Select DD values involving hS1i (the values for hS2i and hS3i are essentially the same)

from tri using all tests (Total) and those satisfying the triangle inequality Valid . (b) Select values

obtained using the Ordered test suite.

Figure 4.10 shows select DD values for tri using three di↵erent test suites: Total , which contains

all 125 tests, Valid, which contains the inputs that satisfy the triangle inequality, and Ordered, which

contains the inputs where S1 S2 S3. The following two examples consider the impact the di↵erences

in their distribution.

• In Table 4.10a the value of {hS1i} ! {hTri?i} is considerably larger in Valid (0.97) than in Total

(0.51), while it is almost identical for {hS1i} ! {hEqu?i} and {hS1i} ! {hIso?i}. The di↵erence

clearly demonstrates the ease of violating the triangle inequality.

93

Not? = S1 + S2 <= S3 || S1 + S3 <= S2 || S2 + S3 <= S1;
if (Not?)
 type = NOTATRINGLE;
else {
 Equ? = S1 == S2 && S2 == S3;
 if (Equ?)
 type = EQUILATERAL;
 else {
 Iso? = S1 == S2 || S1 == S3 || S2 == S3;
 if (Iso?)
 type = ISOSCELES;
 else
 type = SCALENE;
 }
}
ret = type;

L. CPDA COMPREHENSION RESULT: BILL&TED

1 def main(args) {

2 <1>car_type = args [0]

3 <2>_pred1 = car_type == "SENIOR_CITIZEN"

4 if (_pred1) <3>fee = 0.0

5 else {

6 <4>_pred2 = !(car_type == "CAR" || car_type == "TRUCK")

7 if (_pred2) <5>fee = -2.0 // INVALID

8 else {

9 <6>day , <7>duration = args[1], args [2]

10 <8>_pred3 = car_type == "CAR"

11 if (_pred3) <9>cost = compute_car_fee(duration)

12 else <10>cost = compute_truck_fee(duration)

13 <11>_pred4 = cost == -1.0 // EXCEED MAX DURATION

14 if (_pred4) <12>fee = -1.0

15 else {

16 <13>_pred5 = day == "THURSDAY"

17 if (_pred5) <14>cost = cost * THURSDAY_DISCOUNT

18 else {

19 <15> _pred6 = day == "SATURDAY"

20 if (_pred6) <16>cost = cost * SATURDAY_SURCHARGE

21 }

22 <17>fee = cost

23 ...}}}} // END of main

Figure 4.7: Pseudo-code of the B&T

correspond to the variable inword. Because h4i a↵ects h11i whenever there is at least one alphabetic

character, {h4i} ! {h11i} has the highest direct dependence, while h13i and h14i only a↵ect h11i if

the input includes more than one alphabetic character, which is true of fewer test cases. Furthermore,

because there are test cases that do not include non-alphabetic characters, h13i a↵ects h11i more than

h14i does.

Figure 4.8: Partial graph from CPDM of tri

Figure 4.8 shows the partial graph from the CPDM of tri where Nodes hS1i, hS2i, hS3i represent

inputs of the three sides, and hTri?i, hEqu?i, hIso?i represent predicates checking whether the input is

not-a-triangle, equilateral, or isosceles, respectively. In the CPDM, we observe the following:

• {hS1i} ! {hTri?i} = {hS2i} ! {hTri?i} = {hS3i} ! {hTri?i}: The equivalence of these three weights

in the CPDM is indicative of the symmetry in the use of the three side lengths for judging whether

they form a triangle. While not shown in Figure 4.8, the CPDA also assigns indistinguishable weights

to dependencies on hIso?i and hEqu?i. These examples show how the CPDM reveals the semantic

symmetry beyond simple depends-on relations.

91

(a) PDG of wc
(b) CPDM of wc, (black : DD = 1.0, grey: DD > 0.0)

compute
car fee

compute
truck_fee

1
2

4

8
3 5

6

7

11 13
15

9

14

16 17

10

12

(c) CPDM of B&T, (black : DD > 0.7, grey: DD > 0.2)

Figure 4.6: (a) wc’s PDG, (b) CPDM and (c) B&T’s CPDM where thicker edges reflect larger direct

dependence.

(Figure 4.6c) due to small DD (Direct Dependence). Instead, the CPDM includes (grey) edges from

the return nodes of the two functions to h11i. Those two return nodes are the ones that return -1.0,

indicating that the vehicle exceeds the time limit, which h11i checks. While a change at h9i (or h10i)
may or may not change the behavior of h11i, the nodes returning -1.0 always a↵ect h11i; consequently,
they are parents of h11i in the CPDM.

Such examples show that a DD-based dependence structure can capture the aspects of program semantics

more concisely than PDG-based structures.

Per element inspection

We further look into the CPDM, focusing on each element and its connected dependences. The

di↵erence in the direct dependence expresses the detailed semantics around the element that conventional

dependence analysis misses.

From CPDA of wc, we can observe the following (values in the parentheses are the degree of DD):

• {h19i} ! {h10i} (1.00) > {h20i} ! {h10i} (0.57): In function isLetter, h19i and h20i are the nodes

that express whether the character is an alphabetic character or not. Since half of the tests lack

non-alphabet characters, the e↵ect on h10i of h19i is stronger than that of h20i.

• {h4i} ! {h11i} (1.00) > {h13i} ! {h11i} (0.86) > {h14i} ! {h11i} (0.57): h4i, h13i, and h14i all

90

M. ALTERNATIVE CAUSAL DEPENDENCE

104

occurs together with a headache (denoted as Y) the next morning when there was heavy drinking last

night (denoted as U), i.e., having a headache when someone slept with shoes has a higher chance than

the chance of normally having a headache (P (Y | X) & P (Y)). However, since sleeping with shoes is not

the cause of the headache, putting shoes on a sleeping person, i.e., do(X), will not increase the chance

of a headache a lot or at all (P (Y | do(X)) ⇡ P (Y)).

By having a causal structure, we can estimate the causal e↵ect by controlling the confounding bias.

A confounding bias is a distortion representing the event that is associated but not causally related to

the observation induced by the common cause (U in the previous example), which appears through the

so-called backdoor path (in the case of Figure 4.4, X U! Y) in the causal DAG [102]. By ignoring the

incoming e↵ect of X, we can remove the e↵ect through the backdoor path to X, subsequently eliminating

the confounding bias from the association between X and another node Y . Note that backdoor paths in

CPDM are based on the inferred causal structure, unlike existing work [9], which assumes the existence

of the program’s PDG from which it inherits structure.

Based on Pearl et al. [102], the causal e↵ect P (·|do(x)) is formally defined as follows:

Definition 4.7 (Causal E↵ect) Let G = (V,E) be a causal structure. Given two disjoint sets of nodes,

X,Y ⇢ V , the causal e↵ect of X on Y , denoted as P (y | do(x)), is a function from X to the space of

probability distributions on Y . For each observed value x of X, P (y | do(x)) gives the probability that

Y = y is induced by deleting from the causal structure of all the edges to the nodes in X and substituting

X = x. The causal e↵ect P (y | do(x)) is calculated as follows:

P (y | do(x)) =
X

mpX

P (y | x,mpX)P (mpX) ,

where MPX is the set of Markovian parents of X.

In Figure 4.4, while the conditional probability of having a headache (Y) when sleeping with shoes on

(X), P (Y | X), is high, showing heavy association due to the drinking (U), based on the computation of

Definition 4.7, the causal e↵ect of sleeping with shoes to having a headache, P (Y | do(X)), is the same as

the probability of having a headache. In our example, there is thus no causal e↵ect from sleeping with

shoes on to having a headache, as one would expect.

Causal Dependence

In causal program dependence analysis, the overall dependence of a variable of Sj on a variable of

Si is how much changing the behavior of Si a↵ects the behavior of Sj . We can capture the magnitude

of the impact as the di↵erence in the causal e↵ect on Sj between when Si = 1 and Si = 0. We refer to

the magnitude of the dependence as the causal dependence. We compute the causal dependence in two

ways: first using subtraction and then using multiplication.

Definition 4.8 (Subtraction form of Causal Dependence) Given a set of observations O and two

nodes Si and Sj, the subtraction form of causal dependence from Si to Sj, CD
s

O
(Si, Sj), is defined as

follows:

CDs

O
(Si, Sj) = PO(Sj = 1 | do(Si = 1))� PO(Sj = 1 | do(Si = 0)) .

Definition 4.9 (Multiplication form of Causal Dependence) Given a set of observations O and

two nodes Si and Sj, the multiplication form of causal dependence from Si to Sj, CD
m

O
(Si, Sj), is defined

84

as follows:

CDm

O
(Si, Sj) = PO(Sj = 1 | do(Si = 1))⇥ (1� PO(Sj = 1 | do(Si = 0)))

= PO(Sj = 1 | do(Si = 1))⇥ PO(Sj = 0 | do(Si = 0)) .

The causal e↵ect is a weighted sum of the conditional probability, P (y | x,mpX), considering

each of the observed states of the parent node, mpX . Consequently, while the positive causal e↵ect,

PO(Sj = 1 | do(Si = 1)), and the negative causal e↵ect, PO(Sj = 1 | do(Si = 0)), are computed

separately in Definition 4.8 and 4.9, what it actually does is calculating the di↵erence of the conditional

probability for each mpSi . However, for some mpSi , either P (Si = 0,mpSi) or P (Si = 1,mpSi) may

become 0, making the conditional probability P (Sj = 1 | Si = 0,mpSi) or P (Sj = 1 | Si = 1,mpSi)

undefined, respectively. We call this issue as Unobservable State Combination (USC) problem. In

the USC situation, considering either one of computable conditional probability may introduce a bias

to the calculation. Thus, in our implementation, we first compute P (Sj = 1 | Si = 0,mpSi) and

P (Sj = 1 | Si = 1,mpSi) for each of the mpSi . If both conditional probability terms are computable, we

then add their di↵erence (subtraction or multiplication) weighted by P (mpSi).

Direct Dependence

Direct dependence quantifies the portion of the e↵ect that is not mediated by any other nodes. More

formally, it measures the sensitivity of Y to changes in X 2 {Markovian parents of Y } while all other

Markovian parents of Y are held fixed. Based on Pearl et al. [102], a generic definition that fits such

sensitivity is the natural direct e↵ect.

Definition 4.10 (Natural Direct E↵ect) The natural direct e↵ect, denoted as NDEX:x!x0(Y) is the

expected change in Y induced by changing X from x to x
0 while keeping all mediating factors constant

at whatever value they would have had under do(x). NDEX:x!x0(Y) is calculated as follows:
X

z

[E (Y | do(x0
, z))� E (Y | do(x, z))]P (z | do(x)) ,

where Z represents all parents of Y excluding X.

Similar to causal dependence, in the context of CPDA, we estimate how much e↵ect a parent Si has

on a child Sj when Si is altered from “unchanged” to “changed”, regardless of all the other parents of

Sj . Based on the definition of the natural direct e↵ect, we define the direct dependence as follows.

Definition 4.11 (Direct Dependence) The direct dependence from Si to Sj, denoted as DDI(Si, Sj),

is the average of the natural direct e↵ect from Si to Sj over all inputs I:

DDI(Si, Sj) =
1

|I|
X

t2I
NDEOt,Si:0!1(Sj) ,

where NDEOt,Si:0!1(Sj) denotes the natural direct e↵ect using the observations Ot, the observations

from input t.

Causal Program Dependence Model

Given the definition of the direct dependence, CPDM is a weighted dependence graph for the

program. Its structure is the causal structure where each edge weight denotes the direct dependence

between the nodes. CPDM is thus a novel graph representation that explains program dependence in a

continuous, gradual way.

85

N. TWO SUSPICIOUSNESS FORMULAE

105

causing the faulty output; thus if an element is faulty but it is not causing this particular fault we are

not (currently) looking for it. The ability to compare the strength of di↵erent dependence relationships

means that we can rank program elements according to their e↵ect on the faulty output. This is not

possible in fault localization techniques based on binary program dependence, such as dicing [4].

Given an output node Sout that witnesses a test failure, we compute the suspiciousness score for

each node in the program. In this study, we propose two formulas for the suspiciousness score. The first

formula, called ‘mean-sub’, calculates the suspiciousness by subtracting the average causal dependence

on the failing test to the average causal dependence on the passing test. Given a node Sk in the faulty

program, the mean-sub suspiciousness score of Sk, denoted by suspavg(Sk) is computed as follows:

suspavg(Sk) =
1

|Ifail |
X

tci2Ifail

CDOtci
(Sk, Sout)�

1

|Ipass |
X

tcj2Ipass

CDOtcj
(Sk, Sout),

where CD is either CD
s or CD

m, and Ifail and Ipass denote the sets of failing and passing test inputs,

respectively. Note that the value of Sout represents the change of outcome, and not pass or fail.

In our second suspiciousness formula, we approximate P (fault in Sk | tci fails), the conditional

probability that Node Sk is faulty when a test tci fails, with causal dependence using Bayes’ theorem.

P (fault in Sk | tci fails) =
P (tci fails | fault in Sk)⇥ P (fault in Sk)

P (tci fails)

⇠ P (tci fails | fault in Sk) (assume the prior of being faulty is the same for all Sk)

⇡ CDOtci
(Sk, Sout).

where, again, CD is either one of CD
s or CD

m. Similarly,

P (fault in Sk | tcj passes) ⇠ P (tcj passes | fault in Sk) = 1�P (tcj fails | fault in Sk) ⇡ 1�CDOtcj
(Sk, Sout).

Consequently, given a set of failing and passing tests, the suspiciousness score could be computed by

multiplying causal dependences (or, 1� {causal dependences}), the approximations of the conditional

probabilities. We call this suspiciousness formula a ‘log-add’, denoted as susplog(Sk), as we convert

multiplications to additions on a logarithmic scale.

susplog(Sk) =
Y

tci2Ifail

P (fault in Sk | tci fails)⇥
Y

tcj2Ipass

P (fault in Sk | tcj passes)

⇠
Y

tci2Ifail

P (tci fails | fault in Sk)⇥
Y

tcj2Ipass

P (tcj passes | fault in Sk)

=
Y

tci2Ifail

P (tci fails | fault in Sk)⇥
Y

tcj2Ipass

[1� P (tcj fails | fault in Sk)]

⇡
Y

tci2Ifail

CDOtci
(Sk, Sout)⇥

Y

tcj2Ipass

h
1� CDOtcj

(Sk, Sout)
i

⇠
X

tci2Ifail

log
�
CDOtci

(Sk, Sout)
�
+

X

tcj2Ipass

log
⇣
1� CDOtcj

(Sk, Sout)
⌘

(apply logarithmic scale).

Notice that, since the subtraction form of causal dependence could have a negative value, which is invalid

as a probability, we set the lower bound of causal dependence to zero.

4.4.2 Advantages over SBFL

Table 4.1 shows a motivating example highlighting the advantages of CDFL over SBFL (Spectrum

based Fault Localization). SBFL assigns a suspiciousness score to program elements, including the

96

causing the faulty output; thus if an element is faulty but it is not causing this particular fault we are

not (currently) looking for it. The ability to compare the strength of di↵erent dependence relationships

means that we can rank program elements according to their e↵ect on the faulty output. This is not

possible in fault localization techniques based on binary program dependence, such as dicing [4].

Given an output node Sout that witnesses a test failure, we compute the suspiciousness score for

each node in the program. In this study, we propose two formulas for the suspiciousness score. The first

formula, called ‘mean-sub’, calculates the suspiciousness by subtracting the average causal dependence

on the failing test to the average causal dependence on the passing test. Given a node Sk in the faulty

program, the mean-sub suspiciousness score of Sk, denoted by suspavg(Sk) is computed as follows:

suspavg(Sk) =
1

|Ifail |
X

tci2Ifail

CDOtci
(Sk, Sout)�

1

|Ipass |
X

tcj2Ipass

CDOtcj
(Sk, Sout),

where CD is either CD
s or CD

m, and Ifail and Ipass denote the sets of failing and passing test inputs,

respectively. Note that the value of Sout represents the change of outcome, and not pass or fail.

In our second suspiciousness formula, we approximate P (fault in Sk | tci fails), the conditional

probability that Node Sk is faulty when a test tci fails, with causal dependence using Bayes’ theorem.

P (fault in Sk | tci fails) =
P (tci fails | fault in Sk)⇥ P (fault in Sk)

P (tci fails)

⇠ P (tci fails | fault in Sk) (assume the prior of being faulty is the same for all Sk)

⇡ CDOtci
(Sk, Sout).

where, again, CD is either one of CD
s or CD

m. Similarly,

P (fault in Sk | tcj passes) ⇠ P (tcj passes | fault in Sk) = 1�P (tcj fails | fault in Sk) ⇡ 1�CDOtcj
(Sk, Sout).

Consequently, given a set of failing and passing tests, the suspiciousness score could be computed by

multiplying causal dependences (or, 1� {causal dependences}), the approximations of the conditional

probabilities. We call this suspiciousness formula a ‘log-add’, denoted as susplog(Sk), as we convert

multiplications to additions on a logarithmic scale.

susplog(Sk) =
Y

tci2Ifail

P (fault in Sk | tci fails)⇥
Y

tcj2Ipass

P (fault in Sk | tcj passes)

⇠
Y

tci2Ifail

P (tci fails | fault in Sk)⇥
Y

tcj2Ipass

P (tcj passes | fault in Sk)

=
Y

tci2Ifail

P (tci fails | fault in Sk)⇥
Y

tcj2Ipass

[1� P (tcj fails | fault in Sk)]

⇡
Y

tci2Ifail

CDOtci
(Sk, Sout)⇥

Y

tcj2Ipass

h
1� CDOtcj

(Sk, Sout)
i

⇠
X

tci2Ifail

log
�
CDOtci

(Sk, Sout)
�
+

X

tcj2Ipass

log
⇣
1� CDOtcj

(Sk, Sout)
⌘

(apply logarithmic scale).

Notice that, since the subtraction form of causal dependence could have a negative value, which is invalid

as a probability, we set the lower bound of causal dependence to zero.

4.4.2 Advantages over SBFL

Table 4.1 shows a motivating example highlighting the advantages of CDFL over SBFL (Spectrum

based Fault Localization). SBFL assigns a suspiciousness score to program elements, including the

96

O. CDFL FOR TWO CD AND TWO SUSP

106

Figure 4.13: Bar plots showing Acc@n for CDFL (Nmpn = 20) with two forms of causal dependences

(subtraction (CDs) and multiplication (CDm)) and two suspiciousness formulas (mean-sub and log-add)

and SBFL. Black lines on the bar plots of CDFL draw the confidence intervals (standard deviation) of

20 trials.

Qualitative analysis on CDFL

We further investigate in which cases CDFL performs well compared to SBFL qualitatively. We

start with checking the performance of CDFL per subject program. Table 4.5 presents the pre-subject

breakdown of acc@n for CDFL and SBFL. Similar to Table 4.4, Table 4.5 shows the average acc@n for

20 trials of CDFL. According to the result, CDFL found the faulty element at least equal or larger than

SBFL for n = 1, 3, and 5. CDFL produces significantly higher acc@n for tcas for all n, while performing

slightly worse than SBFL for replace and totinfo for n = 10. For other subjects, both techniques perform

similarly.

We posit that CDFL performs better for tcas due to its simpler control-flow structure. tcas is an

aircraft collision avoidance system that calculates the altitude separation between two aircraft [70]. The

whole program is a sequence of formulas for the calculation of a single value, and thus the code contains

minimal branching. Consequently, many lines have identical spectra, which leads to many ties in the

ranking, presenting a challenge for SBFL. For example, the average number of tied lines with the faulty

line in SBFL ranking is 18.3 in tcas. In comparison, CDFL considers both control and data dependency

from the node trajectories, successfully distinguishes the lines in the same basic block, resulting in better

performance. As a result, the average number of tied lines with the faulty line in the CDFL ranking is

1.4 in tcas, significantly lower than the SBFL result. Such cases also appears in the bugs in other subject

programs, including sched, sched2, and totinfo.

In contrast, for the replace faults for which CDFL performs poorly, we find that the causal structure

discovery is inadequate. By definition, a causal structure is a DAG, and cannot properly represent the

cyclic dependence in a program. Breaking these cycles can lead to an incorrect set of Markovian parents,

103

- We delete block statements, too.

- In general, there can be non-deletable statement with n-hot
deletion (requiring (n+1)-hot)

- 2-hot / ORBS = 12%, but 2-hot / 3-hot is much larger

- However, 3-hot does not delete much.

- Random deletion generation scheme.

- Observe fixed number

- 2-hot always produces smaller size

- Exhaustive/random is inefficient. Specific heuristics is needed

- e.g. language model

P. MOAD, MORE THAN TWO UNITS DELETION

107

model simultaneously. Our approach will reduce the cost of generating slices
for multiple slicing criteria.

3 Multi-criteria Slicing

3.1 Methodology

Let the original program as P . We define a deletable unit set U = {u1, u2, ..., u|U |}
in program P with respect to the granularity (e.g. line-level, statement-level,
etc.). We can create a sub-program P

0 by deleting several units from P . Let’s
say a set of all sub-program as P (P, P 0

2 P).
The factor fi is a boolean list of length |U |. The m-th element of the factor

fi, f
(m)
i

, represents whether the unit um has been deleted(1) or remains(0) on
the source code. Each factor fi corresponds to a sub-program Pi 2 P . We call
this mapping as Gen (Gen(fi) = Pi).

Let the slicing criteria set on P as C = {c1, ..., c|C|}. The response rj is a

boolean list of length |C|. The m-th element of rj , r
(m)
j

, represent whether the
trajectory of the criterion cm has been preserved(1) or not(0).

For every factor f , the response r can be evaluated by running the sub-
program Gen(f) for a given test suite. An observation is a pair of the factor
and the corresponding reponse, < f, r >. The training data, O, is a bunch of
observations generated by a factor generating scheme. With O, we build the
model Mk : P (f, r(k)) or P (r(k)|f) for each slicing criterion ck. Then, the slice,
Pk is infered from the model with various inference strategies: Pk = Gen(fk)
s.t. fk = Infer(Mk).

3.2 Factor generating scheme

To gather the training observation data, we designed three di↵erent schemes to
generate a set of factors F .

• onehot: the factor set for the training is a one-hot encoding vector for
each deletion units.

• n-hot: similar to onehot scheme, the factor set for the training is a union
of sets of i-hot encoding vectors (1 i n).

• random: each element in the factor is sampled from Bernoulli distribution:
P (X = 1) = p = 1� Pr(X = 0). The initial value of p is 1/|U |.

3.3 Inference models

We design the following three inference models to generate a slice from the
training data for each slicing criterion.

2

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

u1

u2

u3

u4
⋮
ui-

ui

