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ABSTRACT

We present DiffMin, a technique that refines a fuzzed crashing
input to gain greater similarities to given passing inputs to help de-
velopers analyze the crashing input to identify the failure-inducing
condition and locate buggy code for debugging. DiffMin iteratively
applies edit actions to transform a fuzzed input while preserving
the crash behavior. Our pilot study with the Magma benchmark
demonstrates that DiffMin effectively minimizes the differences
between crashing and passing inputs while enhancing the accuracy
of spectrum-based fault localization, highlighting its potential as a
valuable pre-debugging step after greybox fuzzing.
CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.
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1 INTRODUCTION

Greybox fuzzers [2, 6, 7] generate new test inputs by repeatedly
applying random mutations to existing test inputs, while guiding
the random mutation process to maximize code coverage. When
a fuzzer generates a crashing input, the project maintainers diag-
nose the failure for debugging. Bisection aids fault diagnosis by
identifying bug-inducing commits if the fuzzing infrastructure sup-
ports conducing fuzzing across program versions [1]. Otherwise,
the maintainers need to inspect the input data to determine which
aspects of the input trigger the failure. In addition, they analyze the
code coverage or execution traces produced by the input to locate
code elements that contribute significantly to the crash [5, 8].

A key challenge in fault diagnosis is that fuzzed crashing inputs
are often difficult for human maintainers to analyze, since these
fuzzed inputs typically differ significantly from valid program in-
puts due to the accumulation of randommutations. Moreover, since
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greybox fuzzers generate these inputs while aiming to maximize
code coverage, fuzzed crashing inputs typically explore diverse
program features, many of which are unrelated to the crashes.

To aid fault diagnosis after fuzzing, we present DiffMin, a tech-
nique that refines a fuzzed crashing input into a crashing input with
greater similarity to a given passing input. Given pair of crashing
and passing inputs, DiffMin first identifies edit actions to convert
the crashing input to the passing input. Subsequently, DiffMin
iteratively applies the edit actions until the crash disappears. As a
result, DiffMin derives a refined crashing input that shares more
aspects with the passing input, than the original fuzzed input. We
suspect that refined crashing inputs would be better to diagnose.

We have conducted a pilot study to demonstrate the efficacy of
DiffMin with the Magma benchmark [3]. We found that DiffMin
effectively transforms fuzzed crashing inputs into alternative crash-
ing inputs having greater similarities with given passing inputs. We
also found that, for 3 out of 4 programs, the accuracies of spectrum-
based fault localization are improved when refined inputs are used.
2 DIFFMIN

DiffMin, as shown in Algorithm 1, takes as input a program under
test (𝑃 ), and both a crashing input (𝑐) and a passing input (𝑝). The
given passing input (𝑝) serves as a reference to which the crashing
input (𝑐) must be transformed to achieve similarity. The key idea
behind DiffMin is to define a series of edits by computing the
differences between the two given inputs and iteratively applying
each edit while preserving the same crashing behavior. Note that
DiffMin is different from delta debugging as DiffMin focuses on
minimizing the difference between a crashing input and a passing
input rather than merely reducing the size of the crashing input.

Algorithm 1: DiffMin
Input: 𝑃 , program under test; 𝑐 , crashing input; 𝑝 , passing input
Output: 𝑐𝑚𝑖𝑛 , a refined crashing input

1 𝑐𝑚𝑖𝑛 ← 𝑐 ;
2 do

3 𝐸𝑑𝑖𝑡𝑠 ← 𝐺𝑒𝑡𝐸𝑑𝑖𝑡𝑠 (𝑝, 𝑐𝑚𝑖𝑛 ) ;
4 𝑐′ ← ⊥ ;
5 foreach 𝑒 ∈ 𝐸𝑑𝑖𝑡𝑠 do
6 𝑐𝑒 ← 𝐸𝑑𝑖𝑡𝐴𝑝𝑝𝑙𝑦 (𝑐, 𝑒 ) ;
7 if 𝑃 (𝑐 ) = 𝑃 (𝑐𝑒 ) /* crashing preserved */ then
8 if 𝑐′ = ⊥ ∨ 𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡 (𝑝, 𝑐𝑒 ) < 𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡 (𝑝, 𝑐′ ) then
9 𝑐′ ← 𝑐𝑒 ;

10 end

11 end

12 end

13 if 𝑐′ ≠ ⊥ then

14 𝑐𝑚𝑖𝑛 ← 𝑐′ ;
15 end

16 while 𝑐′ ≠ ⊥;
17 return 𝑐𝑚𝑖𝑛
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Table 1: Target Buggy Programs from Magma [3]

Bug ID Num. Avg. Initial Time to Crashing
Initial Seeds Seed Size Crash Input Size

PNG006 4 312 bytes 4 min 384 bytes
PNG007 4 312 bytes 230 min 281 bytes
XML003 1196 505 bytes 36 min 33024 bytes
XML009 1196 505 bytes 104 min 233 bytes

Starting with the given crashing input (Line 1), DiffMin itera-
tively refines the crashing input by applying one edit that minimizes
the lexical difference and reproduces the same crash (Lines 2-16).
At each iteration, DiffMin represents both inputs as byte strings
and uses the Hirshberg’s algorithm [4] to find an optimal sequence
alignment between the two byte strings which minimizes their
Levenshtein distance. Given sequence alignment, DiffMin derives
a set of possible edits (𝐸𝑑𝑖𝑡𝑠) by defining each substring insertion,
deletion or replacement as an edit operation (Line 3). Once possible
edits are defined, DiffMin iterates over these edits (Lines 5-12) to
apply each edit (Line 6) and finds one that reduces the Levenshtein
distance (Line 8) most while reproducing the same crash (Line 7). If
such edit exists (𝑐′), DiffMin updates the latest minimized crashing
input (Lines 13-14) and takes another iteration (Line 16). If there
exists no single edit preserving the same crash behavior, DiffMin
returns the latest minimized crashing input as output (Line 17).

3 PILOT STUDY

We conducted a pilot study to evaluate whether DiffMin effectively
refines fuzzed crashing inputs and assists in fault diagnosis tasks.
Specifically, we designed this study to answer two questions: (1) To
what extent does DiffMin reduce the lexical distance between a
fuzzed crashing input and a passing input (RQ1)? and (2) Does SBFL
results improve when refined crashing inputs are used instead of
fuzzed crashing inputs (RQ2)? We selected four buggy programs
from Magma [3] as target programs (Table 1). These four programs
were randomly sampled from the 138 buggy programs available
in Magma. Since each Magma target program contains multiple
bugs, we configured each program to include only the target bug by
disabling the other bugs and enabling the bug-specific test oracle
(i.e., canary). We obtained one crashing input by running AFL++,
which took between 4 and 230 minutes.

To answer RQ 1, we applied DiffMin for each initial seeds
(i.e., passing inputs) and compared the Levenshtein distances be-
tween the initial seeds and the fuzzed crashing inputs (labeled as
Dist (𝑝, 𝑐)), as well as the distances between the initial seeds and
the DiffMin results (labeled as Dist (𝑝, 𝑐𝑚𝑖𝑛)). Table 2 shows the
minimal, average, and maximal Levenshtein distances (in bytes)
with all initial seeds. These results clearly show that DiffMin sig-
nificantly reduces the lexical distances in most cases. For the four
programs, the ratios of the average distances with the DiffMin
results to the average distances with the fuzzed crashing inputs
are 14%, 90%, 45% and 40%, respectively. For example of XML003,
DiffMin transforms the fuzzed crashing input having 33024 bytes
into a 174-bytes crashing input subject to a 90-bytes passing input.

To answer RQ 2, we conducted SBFL with three set-ups: (1) use
all initial seeds (passing tests) and the fuzzed crashing input (labeled
as fuzz in Table 3), (2) use all initial seeds and the ddmin [9] result
of the fuzzed crashing input (ddmin), (c) use all initial seeds and all
crashing inputs refined byDiffMinwith the initial seeds (DiffMin).
Table 3 shows the best ranks of a buggy line (statement-level) and a

Table 2: RQ 1. Lexical Distance Reduction

Dist (𝑝, 𝑐 ) Dist (𝑝, 𝑐𝑚𝑖𝑛 )
Min Avg Max Min Avg Max

PNG006 341 348 356 5 52 123
PNG007 151 240 320 137 217 285
XML003 72 32681 45533 72 14777 33023
XML009 7 1663 140462 4 667 106468

Table 3: RQ 2. SBFL Result (Op2)

Statement-level Function-level
fuzz ddmin DiffMin fuzz ddmin DiffMin

PNG006 70 70 50 16 16 14

PNG007 70 70 58 12 12 12

XML003 116 89 29 14 12 4

XML009 95 94 94 12 12 12

buggy function with Op2. The result shows that DiffMin improves
statement-level rankings for three programs, and function-level
rankings for two programs, suggesting that DiffMin can substan-
tially contributes to improving SBFL accuracy.

The pilot study demonstrates that DiffMin effectively mini-
mizes the differences between crashing and passing inputs while
enhancing the accuracy of spectrum-based fault localization, high-
lighting its potential as a valuable pre-debugging step after greybox
fuzzing. In future work, we will explore the following three direc-
tions: (1) The crashing inputs that DiffMin can discover are limited
by the possible edit operations defined through lexical comparison.
We will explore alternative refinement algorithms that define and
apply edits using different strategies. (2) We used only lexical dis-
tance as the complexity measure. We will explore different metrics
considering different fault diagnosis methods. (3) We will conduct
comprehensive empirical evaluations on how crashing input refine-
ments influence the accuracies of spectrum-based fault localization.
We will explore different strategies for selecting fuzzing inputs and
generating crashing inputs to better understand the effectiveness
of the proposed technique.
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