Check for
Updates

Refining Fuzzed Crashing Inputs for Better Fault Diagnosis

Kieun Kim Seongmin Lee Shin Hong
kieun@cbnu.ac.kr seongmin.lee@mpi-sp.org hongshin@cbnu.ac.kr
Chungbuk National University Max Planck Institute for Security and Chungbuk National University
(CBNU) Privacy (MPI-SP) (CBNU)
Cheongju, Republic of Korea Bochum, Germany Cheongju, Republic of Korea

ABSTRACT

We present DIFFMIN, a technique that refines a fuzzed crashing
input to gain greater similarities to given passing inputs to help de-
velopers analyze the crashing input to identify the failure-inducing
condition and locate buggy code for debugging. DIFFMIN iteratively
applies edit actions to transform a fuzzed input while preserving
the crash behavior. Our pilot study with the Magma benchmark
demonstrates that DIFFMIN effectively minimizes the differences
between crashing and passing inputs while enhancing the accuracy
of spectrum-based fault localization, highlighting its potential as a
valuable pre-debugging step after greybox fuzzing.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging.

KEYWORDS
greybox fuzzing, test input generation, debugging, fault localization

ACM Reference Format:

Kieun Kim, Seongmin Lee, and Shin Hong. 2025. Refining Fuzzed Crashing
Inputs for Better Fault Diagnosis. In 33rd ACM International Conference
on the Foundations of Software Engineering (FSE Companion ’25), June 23—
28, 2025, Trondheim, Norway. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3696630.3731436

1 INTRODUCTION

Greybox fuzzers [2, 6, 7] generate new test inputs by repeatedly
applying random mutations to existing test inputs, while guiding
the random mutation process to maximize code coverage. When
a fuzzer generates a crashing input, the project maintainers diag-
nose the failure for debugging. Bisection aids fault diagnosis by
identifying bug-inducing commits if the fuzzing infrastructure sup-
ports conducing fuzzing across program versions [1]. Otherwise,
the maintainers need to inspect the input data to determine which
aspects of the input trigger the failure. In addition, they analyze the
code coverage or execution traces produced by the input to locate
code elements that contribute significantly to the crash [5, 8].

A key challenge in fault diagnosis is that fuzzed crashing inputs
are often difficult for human maintainers to analyze, since these
fuzzed inputs typically differ significantly from valid program in-
puts due to the accumulation of random mutations. Moreover, since

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

FSE Companion °25, June 23-28, 2025, Trondheim, Norway

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1276-0/25/06

https://doi.org/10.1145/3696630.3731436

1248

greybox fuzzers generate these inputs while aiming to maximize
code coverage, fuzzed crashing inputs typically explore diverse
program features, many of which are unrelated to the crashes.

To aid fault diagnosis after fuzzing, we present DIFFMIN, a tech-
nique that refines a fuzzed crashing input into a crashing input with
greater similarity to a given passing input. Given pair of crashing
and passing inputs, DIFFMIN first identifies edit actions to convert
the crashing input to the passing input. Subsequently, DIFFMIN
iteratively applies the edit actions until the crash disappears. As a
result, DIFFMIN derives a refined crashing input that shares more
aspects with the passing input, than the original fuzzed input. We
suspect that refined crashing inputs would be better to diagnose.

We have conducted a pilot study to demonstrate the efficacy of
D1rrMIN with the Magma benchmark [3]. We found that DIFFMIN
effectively transforms fuzzed crashing inputs into alternative crash-
ing inputs having greater similarities with given passing inputs. We
also found that, for 3 out of 4 programs, the accuracies of spectrum-
based fault localization are improved when refined inputs are used.

2 DIFFMIN

D1rrMIN, as shown in Algorithm 1, takes as input a program under
test (P), and both a crashing input (c) and a passing input (p). The
given passing input (p) serves as a reference to which the crashing
input (c) must be transformed to achieve similarity. The key idea
behind DIFFMIN is to define a series of edits by computing the
differences between the two given inputs and iteratively applying
each edit while preserving the same crashing behavior. Note that
D1rrMIN is different from delta debugging as DIFFMIN focuses on
minimizing the difference between a crashing input and a passing
input rather than merely reducing the size of the crashing input.

Algorithm 1: DIFFMIN

Input: P, program under test; ¢, crashing input; p, passing input
Output: ¢y, a refined crashing input

1 Cmin < C;

2 do
3 Edits « GetEdits(p, cmin) ;
4 ¢ — 1
5 foreach e € Edits do
6 ce < EditApply(c,e) ;
7 if P(c) = P(ce) /* crashing preserved */ then
8 if ¢/ = L Vv EditDist(p,ce) < EditDist(p,c’) then
9 ‘ ¢ —ce;
10 end
11 end
12 end
13 if ¢’ # L then
14 | Cmin ¢
15 end

16 while ¢’ # L;
17 return ¢;uin

https://orcid.org/0009-0007-2330-3724
https://orcid.org/0000-0003-0805-8947
https://orcid.org/0000-0003-4217-6031
https://doi.org/10.1145/3696630.3731436
https://doi.org/10.1145/3696630.3731436
https://doi.org/10.1145/3696630.3731436
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696630.3731436&domain=pdf&date_stamp=2025-07-28

FSE Companion ’25, June 23-28, 2025, Trondheim, Norway

Table 1: Target Buggy Programs from Magma [3]

Bug ID Num. Avg.Initial Time to Crashing

Initial Seeds Seed Size Crash Input Size
PNG006 4 312 bytes 4 min 384 bytes
PNG007 4 312 bytes 230 min 281 bytes
XML003 1196 505 bytes 36 min 33024 bytes
XML009 1196 505 bytes 104 min 233 bytes

Starting with the given crashing input (Line 1), DIFFMIN itera-
tively refines the crashing input by applying one edit that minimizes
the lexical difference and reproduces the same crash (Lines 2-16).
At each iteration, DIFFMIN represents both inputs as byte strings
and uses the Hirshberg’s algorithm [4] to find an optimal sequence
alignment between the two byte strings which minimizes their
Levenshtein distance. Given sequence alignment, DIFFMIN derives
a set of possible edits (Edits) by defining each substring insertion,
deletion or replacement as an edit operation (Line 3). Once possible
edits are defined, DIFFMIN iterates over these edits (Lines 5-12) to
apply each edit (Line 6) and finds one that reduces the Levenshtein
distance (Line 8) most while reproducing the same crash (Line 7). If
such edit exists (¢’), DIFFMIN updates the latest minimized crashing
input (Lines 13-14) and takes another iteration (Line 16). If there
exists no single edit preserving the same crash behavior, DIFFMIN
returns the latest minimized crashing input as output (Line 17).

3 PILOT STUDY

We conducted a pilot study to evaluate whether DIFFMIN effectively
refines fuzzed crashing inputs and assists in fault diagnosis tasks.
Specifically, we designed this study to answer two questions: (1) To
what extent does DIFFMIN reduce the lexical distance between a
fuzzed crashing input and a passing input (RQ1)? and (2) Does SBFL
results improve when refined crashing inputs are used instead of
fuzzed crashing inputs (RQ2)? We selected four buggy programs
from Magma [3] as target programs (Table 1). These four programs
were randomly sampled from the 138 buggy programs available
in Magma. Since each Magma target program contains multiple
bugs, we configured each program to include only the target bug by
disabling the other bugs and enabling the bug-specific test oracle
(i.e., canary). We obtained one crashing input by running AFL++,
which took between 4 and 230 minutes.

To answer RQ 1, we applied DIFFMIN for each initial seeds
(i.e., passing inputs) and compared the Levenshtein distances be-
tween the initial seeds and the fuzzed crashing inputs (labeled as
Dist(p, c)), as well as the distances between the initial seeds and
the DIFFMIN results (labeled as Dist(p, ¢min)). Table 2 shows the
minimal, average, and maximal Levenshtein distances (in bytes)
with all initial seeds. These results clearly show that DIFFMIN sig-
nificantly reduces the lexical distances in most cases. For the four
programs, the ratios of the average distances with the DIFFMIN
results to the average distances with the fuzzed crashing inputs
are 14%, 90%, 45% and 40%, respectively. For example of XML003,
D1rrMIN transforms the fuzzed crashing input having 33024 bytes
into a 174-bytes crashing input subject to a 90-bytes passing input.

To answer RQ 2, we conducted SBFL with three set-ups: (1) use
all initial seeds (passing tests) and the fuzzed crashing input (labeled
as fuzz in Table 3), (2) use all initial seeds and the ddmin [9] result
of the fuzzed crashing input (ddmin), (c) use all initial seeds and all
crashing inputs refined by DiIrFrMIN with the initial seeds (DIFFMIN).
Table 3 shows the best ranks of a buggy line (statement-level) and a

1249

Kieun Kim, Seongmin Lee, and Shin Hong

Table 2: RQ 1. Lexical Distance Reduction

Dist(p, ¢) Dist(p, ¢min)
Min Avg Max | Min Avg Max
PNG006 341 348 356 5 52 123
PNG007 151 240 320 137 217 285
XML003 72 32681 45533 72 14777 33023
XML009 7 1663 140462 4 667 106468

Table 3: RQ 2. SBFL Result (Op2)

Statement-level

Function-level

fuzz ddmin DIFFMIN | fuzz ddmin DIFFMIN
PNG006 70 70 50 16 16 14
PNG007 70 70 58 12 12 12
XML003 116 89 29 14 12 4
XML009 95 94 94 12 12 12

buggy function with Op2. The result shows that DiIFFMIN improves
statement-level rankings for three programs, and function-level
rankings for two programs, suggesting that DIFFMIN can substan-
tially contributes to improving SBFL accuracy.

The pilot study demonstrates that DIFFMIN effectively mini-
mizes the differences between crashing and passing inputs while
enhancing the accuracy of spectrum-based fault localization, high-
lighting its potential as a valuable pre-debugging step after greybox
fuzzing. In future work, we will explore the following three direc-
tions: (1) The crashing inputs that DIFFMIN can discover are limited
by the possible edit operations defined through lexical comparison.
We will explore alternative refinement algorithms that define and
apply edits using different strategies. (2) We used only lexical dis-
tance as the complexity measure. We will explore different metrics
considering different fault diagnosis methods. (3) We will conduct
comprehensive empirical evaluations on how crashing input refine-
ments influence the accuracies of spectrum-based fault localization.
We will explore different strategies for selecting fuzzing inputs and
generating crashing inputs to better understand the effectiveness
of the proposed technique.

Acknowledgement. This work is partially supported by the NRF of
Korea grants funded by the Korea government (2021R1A5A1021944,
RS-2024-00465145), and the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence strategy-
EXC 2092 CASA-390781972.

REFERENCES

[1] Rui Abreu, Franjo Ivanci¢, Filip Niksi¢, Hadi Ravanbakhsh, and Ramesh
Viswanathan. 2021. Reducing time-to-fix for fuzzer bugs. In IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE.

A. Fioraldi, D. Maier, H. Eififeldt, and M. Heuse. 2020. AFL++: Combining incre-
mental steps of fuzzing research. In USENIX workshop on offensive technologies.
Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A ground-
truth fuzzing benchmark. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 4, 3 (2020), 1-29.

Daniel S. Hirschberg. 1975. A linear space algorithm for computing maximal
common subsequences. Commun. ACM 18, 6 (1975), 341-343.

James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the taran-
tula automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. 273-282.

Valentin JM Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward] Schwartz, and Maverick Woo. 2019. The art, science, and engi-
neering of fuzzing: A survey. IEEE Transactions on Software Engineering 47, 11
(2019), 2312-2331.

Kosta Serebryany. 2016. Continuous fuzzing with libfuzzer and addresssanitizer.
In 2016 IEEE Cybersecurity Development (SecDev). IEEE, 157-157.

W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A survey
on software fault localization. IEEE Transactions on Software Engineering 42, 8
(2016), 707-740.

Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on software engineering 28, 2 (2002), 183-200.

	Abstract
	1 Introduction
	2 DiffMin
	3 Pilot Study
	References

