
Extrapolating Coverage Rate in Greybox Fuzzing

Danushka Liyanage∗

Monash University
Australia

Seongmin Lee∗

MPI-SP
Germany

Chakkrit Tantithamthavorn
Monash University

Australia

Marcel Böhme
MPI-SP
Germany

ABSTRACT

A fuzzer can literally run forever. However, as more resources are

spent, the coverage rate continuously drops, and the utility of the

fuzzer declines. To tackle this coverage-resource tradeoff, we could

introduce a policy to stop a campaign whenever the coverage rate

drops below a certain threshold value, say 10 new branches covered

per 15 minutes. During the campaign, can we predict the coverage

rate at some point in the future? If so, how well can we predict the

future coverage rate as the prediction horizon or the current cam-

paign length increases? How can we tackle the statistical challenge

of adaptive bias, which is inherent in greybox fuzzing (i.e., samples

are not independent and identically distributed)?

In this paper, we i) evaluate existing statistical techniques to

predict the coverage rate𝑈 (𝑡0 + 𝑘) at any time 𝑡0 in the campaign

after a period of 𝑘 units of time in the future and ii) develop a new

extrapolation methodology that tackles the adaptive bias. We pro-

pose to efficiently simulate a large number of blackbox campaigns

from the collected coverage data, estimate the coverage rate for

each of these blackbox campaigns and conduct a simple regression

to extrapolate the coverage rate for the greybox campaign.

Our empirical evaluation using the Fuzztastic fuzzer benchmark

demonstrates that our extrapolation methodology exhibits at least

one order of magnitude lower error compared to the existing bench-

mark for 4 out of 5 experimental subjects we investigated. Notably,

compared to the existing extrapolation methodology, our extrapola-

tor excels in making long-term predictions, such as those extending

up to three times the length of the current campaign.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Security and privacy→ Software security engineering.

KEYWORDS

greybox fuzzing, extrapolation, coverage rate, adaptive bias, statis-

tical method

∗Both authors contributed equally to this research.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639198

1 INTRODUCTION

At the turn of the millennium, the late Mary-Jean Harrold drew a

research roadmap for the software testing community of the future

[13]. She highlighted the "development of techniques and tools for

use in estimating, predicting, and performing testing on evolving

software systems" as one of five research pointers. While there has

been some recent progress in the estimation of pertinent quantities

in the testing process, we have yet to start exploring methodologies

for prediction.

The rate at which new coverage is achieved is considered a fun-

damental measure of the efficiency of a fuzzing campaign. A fuzzer

is an automated software testing tool, and with increasing cover-

age, we mean the generation of inputs that cover new program

elements, such as a branch or a statement. If the coverage rate drops

below a certain threshold, the tester will abort the ongoing fuzzing

campaign for the lack of progress. Terminating a fuzzing campaign

early will help release computational resources and reduce the car-

bon footprint [17, 26]. If, throughout the campaign, the tester could

accurately predict the coverage rate at some point in the future,

they could conduct a cost-benefit analysis to assess the resources

required to achieve the targeted testing progress. Since fuzzing is a

preliminary testing technique that constitutes sophisticated testing

frameworks (e.g., a hybrid/ensemble fuzzing, an automated test

case generation framework, etc.), such a prediction would allow the

tester to adequately allocate resources (time and computing power)

for the entire testing process in advance [29].

One of the most successful fuzzing techniques is called greybox

fuzzing, which takes a mutation-based, coverage-guided approach.

A greybox fuzzer is mutation-based because it uses a corpus of pro-

gram inputs that are randomly mutated to slightly corrupt the seed

file while preserving much of the unknown but required input for-

mat. A greybox fuzzer is coverage-guided because it adds generated

inputs to the corpus that have been observed to increase coverage.

The hope is that an input generated from a coverage-increasing

input is itself more likely coverage-increasing. Since the probability

of covering a specific program element changes in this process, the

underlying distribution over these elements is not invariant. How-

ever, invariance is a key assumption in most statistical estimation

and extrapolation methodologies. Hence, a key statistical challenge

in the domain of greybox fuzzing is thus to tackle the resulting

adaptive bias.

In this paper, we introduce a novel extrapolation methodology

that allows us to predict the coverage rate𝑈 (𝑡0 +𝑚𝑡0) in a greybox

campaign of length 𝑡0 if the campaign length was extended𝑚 more

times while accounting for adaptive bias. We systematically select

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639198&domain=pdf&date_stamp=2024-04-12

coverage data from sub-campaigns of the ongoing greybox cam-

paign to bootstrap random blackbox campaigns. Conceptually, each

blackbox campaign samples inputs from an invariant distribution.

Since these blackbox campaigns are not subject to adaptive bias,

they can be used for estimation. Collectively, the coverage rates esti-

mated for the (overlapping) blackbox campaigns thus bootstrapped

can be used for extrapolation by rendering the following empirical

observation actionable. We observed that the log-log plot of the

“blackbox” estimates against campaign length shows a straight line.

We use this observation for linear regression and, ultimately, for

extrapolation.

We evaluate our extrapolation methodology against an existing

extrapolation methodology in biostatistics that does not account

for adaptive bias on thirty-week-long fuzzing campaigns for each

of the five programs from the Fuzztastic fuzzer evaluation bench-

mark. Regarding the coverage rate prediction accuracy directly, our

extrapolator exhibits a lower error, at least one order of magnitude

smaller than Chao and Jost’s extrapolator for 4 out of 5 chosen sub-

jects. Evaluation on the practical scenario, where one estimates the

time to reach the target coverage rate, we find that the empirically

observed coverage rate at the time predicted by our extrapolator

is significantly closer to the target coverage rate than the existing

extrapolation methodology for 3 out of 5 experimental subjects

with moderate to large effect sizes. For significant improvement,

our extrapolator achieves 35-77% closer to the target coverage rate

than the baseline extrapolator.

In summary, this paper makes the following contributions:

• We introduce the problem of extrapolating coverage rate in auto-

matic software testing, and specifically in greybox fuzzing, and

evaluate Chao and Jost’s state-of-the-art biostatistical extrapola-

tion methodology [8] as the first means to tackle this problem.

• We develop a novel extrapolation methodology that tackles the

adaptive bias problem in greybox fuzzing by constructing black-

box campaigns from the invariant average distribution of sub-

campaigns of the greybox campaign and conducting the extrapo-

lation by regression to the corresponding “blackbox” estimates.

• We evaluate the effectiveness of our approach to tackling adaptive

bias by comparing our extrapolation methodology against Chao

and Jost’s methodology on the greybox campaigns on multiple

real-world software programs across different campaign lengths

and prediction horizons.

• As our methodology is parameterized, we conduct an ablation

study to evaluate the degree to which the estimator performance

depends on the choice of parameter values.

Open Science and Reproducibilty. We make all our tools, data,

and analysis scripts available at the following location:

https://doi.org/10.5281/zenodo.10575734

2 PRELIMINARIES

2.1 A Statistical Model for Fuzzing

Fuzzing is essentially a sampling process where inputs are sampled

from the program’s input space and result in a testing outcome.

Similar to recent studies [2–4, 24], we can statistically formalize

the fuzzing process as a stochastic process F = F (𝑡) of length 𝑡

where 𝑡 test inputs are sampled with replacement from the space

of program inputs D.

F = {𝑋𝑛 | 𝑋𝑛 ∈ D}𝑡𝑛=1

We divide the input space D into 𝑆 individual, overlapping subdo-

mains {D𝑖 }
𝑆
𝑖=1 such that each subdomain corresponds to one of 𝑆

coverage elements. An input 𝑋𝑛 ∈ F is said to cover a new cover-

age element D𝑖 if 𝑋𝑛 ∈ D𝑖 and there does not exist a previously

sampled input 𝑋𝑚 ∈ F such that𝑚 < 𝑛 and 𝑋𝑚 ∈ D𝑖 (i.e., D𝑖 is

sampled for the first time).

Since each input can cover one or more coverage elements, during

fuzzing we collect coverage information as sampling unit-based inci-

dence data and represent the sampling process within the Bernoulli

Product model [7, 9]. In other words, a sampling unit 𝑋𝑛 ∈ F is

a vector of binary variables 𝑊𝑛 = 〈𝑊𝑛,1,𝑊𝑛,2, . . . ,𝑊𝑛,𝑆 〉 where

𝑊𝑛,𝑖 = 1 if 𝑋𝑛 covers D𝑖 and𝑊𝑛,𝑖 = 0 otherwise. The sampling

unit-based incidence data can be represented as a matrix 𝑊 =

𝑊𝑡×𝑆 = 〈𝑊1,𝑊2, . . . ,𝑊𝑡 〉 where 𝑡 is the number of sampling units

recorded during the campaign. The incidence frequency 𝑌𝑖 of a

coverage element D𝑖 is the number of sampling units in which

D𝑖 is covered, i.e., 𝑌𝑖 =
∑𝑡
𝑛=1𝑊𝑛,𝑖 . A coverage element D𝑖 that

has not been covered by any sampling unit will have an incidence

frequency of zero; i.e., 𝑌𝑖 = 0. In case of blackbox fuzzing, F is a set

of independent and identically distributed random variables. Thus,

the probability distribution for 𝑋𝑛 is

𝑃 (𝑋𝑛 = xn) =

𝑆∏
𝑖=1

𝜋
𝑥𝑛,𝑖
𝑖 (1 − 𝜋𝑖)

1−𝑥𝑛,𝑖 ,

where where 𝜋𝑖 is the probability that 𝑋𝑛 covers D𝑖 and x𝑛 =

〈𝑥𝑛,1, 𝑥𝑛,2, . . . , 𝑥𝑛,𝑆 〉 is the vector of binary variables indicating

whether 𝑋𝑛 covers D𝑖 or not. The probability 𝜋𝑖 is assumed to

be constant among all randomly selected sampling units. Generally,

the sum of all 𝜋𝑖 values will not be equal to 1.

The marginal distribution for the incidence-based frequency

𝑌𝑖 for the 𝑖-th coverage element (1 ≤ 𝑖 ≤ 𝑆) follows a binomial

distribution characterized by 𝑡 and the detection probability 𝜋𝑖 :

𝑃 (𝑌𝑖 = 𝑦𝑖) =

(
𝑡

𝑦𝑖

)
𝜋
𝑦𝑖
𝑖 (1 − 𝜋𝑖)

𝑡−𝑦𝑖 .

We denote the incidence frequency counts by (𝑓0, 𝑓1, . . . , 𝑓𝑡) given

a set of samples, where 𝑓𝑘 =
∑𝑆
𝑖=1 𝐼 (𝑌𝑖 = 𝑘) is the number of

elements covered in exactly 𝑘 sampling units in the data (0 ≤ 𝑘 ≤

𝑡). Here, 𝑓1 represents the number of singleton elements (those

that are covered in only one sampling unit), and 𝑓2 represents the

number of doubleton elements (those that are covered in exactly

two sampling units). The unobservable zero frequency count 𝑓0
denotes the number of coverage elements that are not covered by

any of the 𝑡 sampling units. Then, the number of covered elements

in the current campaign is 𝑆 (𝑡) =
∑
𝑖>0 𝑓𝑖 , and 𝑆 (𝑡) + 𝑓0 = 𝑆 .

2.2 Estimation of Coverage Rate𝑈 (𝑡)

In applied statistics, many estimators have been developed to quan-

tify different aspects of the sampling process for the Bernoulli

Product model [6, 7, 9]. In this paper, we are concerned with es-

timating and extrapolating the coverage rate (also known as the

discovery rate in applied statistics).

2

The coverage rate 𝑈 (𝑡) is defined as the number of new elements

covered at the (𝑡 + 1)-th sampling unit, i.e.,

𝑈 (𝑡) = 𝑆 (𝑡 + 1) − 𝑆 (𝑡). (1)

The expected value of𝑈 (𝑡) stands for the current testing efficiency

of the fuzzing campaign: if the expected coverage rate𝑈 (𝑡) is below

a certain threshold, we might consider terminating the campaign.

An estimator of𝑈 (𝑡) has been proposed by Chao et al. [7]:

𝑈 (𝑡) =
𝑓1

𝑡

[
(𝑡 − 1) 𝑓1

(𝑡 − 1) 𝑓1 + 2𝑓2

]
�

𝑓1

𝑡
. (2)

The estimator𝑈 (𝑡) is parameterized only by the number of single-

tons 𝑓1 and doubletons 𝑓2. We notice that the well-known Good-

Turing estimator [25] 𝛿 (𝑡) =
𝑓1
𝑡 of the missing mass 𝛿 (𝑡) in the

multinomial model (where subdomains 𝐷𝑖 are non-overlapping, s.t.∑𝑆
𝑖=1 𝜋𝑖 = 1) provides an upper bound on 𝑈 (𝑡). In fact, we can

see that 𝑈 (𝑡) = 𝛿 (𝑡) when 𝑓2 = 0 and 𝑈 (𝑡) ≈ 𝛿 (𝑡) for 𝑡 � 2. For

greybox fuzzing, the Good-Turing estimator has previously been

studied as an estimator of an upper bound on the residual risk that

an errorless campaign still finds an error [3].

2.3 Extrapolation of Coverage Rate 𝑈 (𝑡 + 𝑘)

We are interested in predicting the future coverage rate𝑈 (𝑡 + 𝑘) if

we extended the ongoing fuzzing campaign of length 𝑡 by 𝑘 more

sampling units [𝑈 (𝑡 + 𝑘) = 𝑆 (𝑡 + 𝑘 + 1) − 𝑆 (𝑡 + 𝑘)]. Although ex-

trapolation has not been investigated within the domain of fuzzing,

a baseline methodology for extrapolating sampling-unit-based inci-

dence data can similarly be found in applied statistics developed

by Chao and Jost [8]. This extrapolator can serve as a reference for

developing extrapolation techniques in the context of fuzzing.

𝑈 (𝑡 + 𝑘) = 𝑓0

⎡⎢⎢⎢⎢⎣1 −
(
1 −

𝑓1

𝑡 𝑓0 + 𝑓1

)𝑘+1⎤⎥⎥⎥⎥⎦ (3)

where the total number of uncovered (but coverable) elements 𝑓0
can be estimated using the Chao2 estimator [6]. Specifically, 𝑓0 is

computed as follows:

𝑓0 =

⎧⎪⎪⎨⎪⎪⎩
(𝑡−1)
𝑡

𝑓 21
2𝑓2

if 𝑓2 > 0
(𝑡−1)
𝑡 𝑓1

𝑓1−1
2 if 𝑓2 = 0.

From Equations (2) and (3) note that 𝑈 (𝑡) = 𝑈 (𝑡 + 𝑘) when 𝑘 = 0

and 𝑓2 ≠ 0.

2.4 Effect of Adaptive Bias

The main statistical challenge in greybox fuzzing is adaptive bias: as

coverage-increasing inputs are added as new seeds, the distribution

𝜋𝑖 for 𝑖 : 1 ≤ 𝑖 ≤ 𝑆 changes throughout the fuzzing campaign. A

simplifying assumption for the Bernoulli Product model—like in

much of statistics and machine learning—is that the samples are

independent and identically distributed (iid). In other words, the

distribution remains invariant throughout the campaign. However,

in greybox fuzzing, the outcome of one sample does have an impact

on the outcome of the next sample (not independent). As a result,

applying existing statistical estimators to greybox fuzzing yields

estimates that are adaptively biased: They may systematically over-

or under-estimate the true value for greybox campaigns.

In this paper, we evaluate Chao and Jost’s extrapolation method-

ology [8] and develop a new methodology to extrapolate the cover-

age rate of a greybox campaign in the presence of adaptive bias.

3 EXTRAPOLATION IN THE PRESENCE OF
ADAPTIVE BIAS

To address the adaptive bias in greybox fuzzing, we turn the follow-

ing insight into an extrapolation methodology. In a greybox cam-

paign, the adaptive bias exists as a change of distribution {𝜋𝑖 }
𝑆
𝑖=1

over the coverage elements D𝑖 every time a coverage-increasing

input is generated and added to the corpus. However, in a local

region of the greybox campaign, the change of distribution is much

smaller. If we could bootstrap random blackbox campaigns from

the invariant average distribution for local regions, we can tackle

adaptive bias for every such region. We propose to compute the

estimate 𝑈 (𝑡) for a large number of such bootstrapped blackbox

campaigns and to leverage the approximately linear relationship

between log(𝑡) and log(𝑈 (𝑡)) to extrapolate𝑈 by linear regression.

Figure 1 provides an overview of the proposed methodology.

Given the incidence matrix of the greybox campaign, we can extract

an arbitrary sub-campaign by subsetting the incidence matrix. The

resulting incidence matrix is shuffled column-wise to sample the

(invariant) average distribution over the coverage elements for

this greybox sub-campaign. We call this procedure as blackbox

approximation. The resulting random blackbox campaign has the

same coverage profile as the original greybox coverage data, i.e.,

𝑌 = 𝑌 ′. In other words, if a coverage element 𝑖 was covered 𝑌𝑖 = 10

times in the greybox sub-campaign, it will also be covered 𝑌 ′
𝑖 = 10

times at the end of the resulting blackbox approximation. However,

the blackbox approximation is not subject to adaptive bias. Using

this procedure multiple times with coverage data from different

(local) sub-campaigns of the (global) greybox campaign, we can

produce estimates 𝑈 (𝑡) for every resulting blackbox campaign.

Finally, we describe the extrapolation technique that we propose to

predict the coverage rate of the greybox fuzzing campaign in the

future.

3.1 Bootstrapping Blackbox Campaigns from
Local Regions of the Greybox Campaign

Algorithm 1 provides a more detailed procedural overview of our

proposed extrapolation methodology. As input, it takes the inci-

dence matrix𝑊𝑡0×𝑆 for a greybox fuzzing campaign of length 𝑡0
and the prediction horizon𝑚𝑡0. In addition, it takes two parameters,

𝛼 and 𝛽 , to control certain trade-offs of the methodology. As output,

it produces the estimate𝑈 (𝑡0 +𝑚𝑡0) of the coverage rate predicted

if𝑚𝑡0 more sampling units were taken.

For every 𝑖 from 1 to 𝑡0, we derive a greybox sub-campaign𝑊 ′

of length Δ𝛼 = 𝛼 log(𝑖) that starts at index 𝑠𝛼 and ends at index

𝑒𝛼 = 𝑖 of the greybox incidence matrix𝑊 (Line 1–7). Specifically,

𝑊 ′
= 𝑊Δ𝛼×𝑆 = 〈𝑊𝑠𝛼 , ..,𝑊𝑖 〉 where 𝑠𝛼 =
𝑖1−𝛼 �. The coverage

profile 𝑌 ′ of this sub-campaign is defined as the cumulative sum

of incidences for each coverage element 𝑖 , i.e., 𝑌 ′
𝑖 =

∑Δ𝛼

𝑗=1𝑊
′
𝑖, 𝑗 for

every 𝑖 : 1 ≤ 𝑖 ≤ 𝑆 .

3

t0

f1
f2

Û(t)

tt + kt0

f1ff
f2ff

(α)

(β)

Greybox Incidence matrix Sub-campaign
Blackbox

Approximation

Singletons
&

Doubletons Regression Extrapolation

BB

Shuffle Predict

Reset index

(α)
(α)

(α)
…

(α)

Figure 1: Overview of our extrapolation technique for the coverage rate of the greybox fuzzing campaign.

Algorithm 1: Extrapolating Cov. Rate for Greybox Campaigns

Input :𝑡0 and𝑚 as prediction point and horizon

𝑊 =𝑊𝑡0×𝑆 : Incidence matrix of the greybox campaign

𝛼 : Local region proportional window size

𝛽 : Linear regression proportional window size

1 Time-Estimate Pairs U = ∅

2 for Time 𝑖 ← 1 to 𝑡0 do

3 Region start 𝑠𝛼 ←
𝑖1−𝛼 �

4 Region end 𝑒𝛼 ← 𝑖

5 if 𝑠𝛼 = 𝑒𝛼 then

6 continue

7 Coverage data𝑊 ′ ← 〈𝑊𝑠𝛼 , · · · ,𝑊𝑒𝛼 〉 // Campaign len. 𝛼 log(𝑖)

8 Shuffled data𝑊 𝐵 ← shuffle(𝑊 ′)

9 for Index 𝑗 ← 1 to 𝑒𝛼 − 𝑠𝛼 + 1 do

10 Coverage profile 𝑌 ′ ←
∑𝑗

𝑘=1
𝑊 𝐵

𝑘
// BB campaign of length 𝑗

11 Singletons 𝑓1 ←
∑𝑆

𝑘=1 𝐼 (𝑌
′
𝑘
= 1)

12 Doubletons 𝑓2 ←
∑𝑆

𝑘=1 𝐼 (𝑌
′
𝑘
= 2)

13 Estimate 𝑈̂ ←
𝑓1
𝑗

[
(𝑗−1) 𝑓1

(𝑗−1) 𝑓1+2𝑓2

]
// cf. Equation (2)

14 U ← U ∪ {〈𝑠𝛼 + 𝑗 − 1, 𝑈̂ 〉}

15 Regression start 𝑠𝛽 ←
𝑡
1−𝛽
0 �

16 Regression end 𝑒𝛽 ← 𝑡0

17 Regression region U′ ← U[𝑠𝛽 : 𝑒𝛽] // Pairs whose time ∈ [𝑠𝛽 , 𝑒𝛽]

18 Model M ← LinearReg(log(𝑡) ∼ log(𝑈 (𝑡))) , ∀〈𝑡,𝑈 (𝑡) 〉 ∈ U′

19 Estimate 𝑈̂ (𝑡0 +𝑚 · 𝑡0) ← exp(M(log(𝑡0 +𝑚 · 𝑡0)))

Output :𝑈̂ (𝑡0 +𝑚 · 𝑡0) as our estimate.

The parameter 𝛼 controls the trade-off between tackling adaptive

bias and the length of the blackbox campaign for which the estimate

is computed. If 𝛼 gets larger, the length of the sub-campaign in-

creases; having a longer blackbox campaign gives better estimates

of the quantities of the blackbox campaign, but it also increases the

adaptive bias in the greybox sub-campaign. On the other hand, if 𝛼

gets smaller, less data is used for the estimation, which makes the

estimation less reliable.

We bootstrap a random blackbox campaign from this greybox

sub-campaign by shuffling the order of sampling units in the in-

cidence data (Line 8). Since this reordering does not change the

cumulative sum of incidences, we can obtain a new incidence ma-

trix𝑊 𝐵 whose coverage profile is equivalent to that of the greybox

sub-campaign. However, by sampling from the “average distribu-

tion,” the adaptive bias is eliminated within𝑊 𝐵 . We refer to𝑊 𝐵

as the blackbox approximation of𝑊 ′. Blackbox approximation pro-

vides a hypothetical blackbox fuzzing campaign that is suitable for

applying the statistical estimation techniques. Finally, we estimate

the coverage rate𝑈 for every data point 𝑗 in the shuffled incidence

matrix𝑊 𝐵 (Line 9–14).

3.2 Extrapolation of Coverage Rate

Figure 2: The behavior of the empirically observed coverage

rate 𝑈 (𝑡) (green dots) and estimated coverage rate 𝑈 (𝑡) (grey

dots) against the number of sampling units 𝑡 generated in

the log-log scale. Each red line and blue line represents the

linear regression model fitted to the estimated coverage rate

and empirically observed coverage rate with different ranges

of data points, respectively.

Given the set U constructed in Line 1–14 in Algorithm 1, we

suggest to conduct a linear regression on log(𝑡) ∼ log(𝑈 (𝑡)) and

compute the extrapolation 𝑈 (𝑡0 +𝑚𝑡0) by applying the resulting

model (Line 15–19). This method follows from the empirical ob-

servation that the coverage rate𝑈 (𝑡) emerges approximately as a

straight line in the log-log scale.

Figure 2 illustrates the behavior of the empirically observed

coverage rate 𝑈 (𝑡) (green dots) and estimated coverage rate 𝑈 (𝑡)

4

(grey dots) obtained for a single AFL++ greybox campaign on the

freetype2 program run for one week (𝑡0) in log-log scale. We use the

𝛼 = 0.3 for the estimation. The darkness of the grey dots indicates

which time 𝑖 the estimates are computed from; the black dots are

estimated from 0.8𝑡0 < 𝑖 < 0.9𝑡0, the dark grey dots are estimated

from 0.7𝑡0 < 𝑖 < 0.8𝑡0, and the light grey dots are estimated from

𝑖 < 0.7𝑡0. Similarly, the darkness of the green dots indicates the

time 𝑡 the empirical coverage rates come from.

From the figure, we can observe a decreasing, yet heavily scat-

tered, trend of the empirical coverage rate and the linearly decreas-

ing trend of the estimates in the log-log scale. The linear model

fitted to each of the coverage rates further explains the trend. The

blue-colored lines represent the linear regression model fitted to

the empirical coverage rate, and the red-colored lines represent

the linear regression model fitted to the estimates. The darkness

of the lines indicates the range of data points used for the linear

regression; the darkest, middle darkness, and lightest lines are fit-

ted to the data points until 0.9𝑡0, 0.8𝑡0, and 0.7𝑡0, respectively. The

resulting regression shows that, while the regression model for the

empirical coverage rate may change its slope significantly due to

the high variance of the empirically observed coverage rate, the

regression model for the estimates is more stable. This is because

the estimates are obtained from the blackbox approximation, which

is not subject to adaptive bias. Thus, we choose to fit a linear model1

to the estimates in U instead of the empirical coverage rate in our

extrapolation method.

Still, the coverage rate estimates in Figure 2 tend to have a higher

variability when the number of sampling units 𝑡 is small. The pa-

rameter 𝛽 is designed to manage the trade-off between stability

and accuracy of the regression from this variability. By choosing

𝛽 closer to one (1), plentiful data is used for the regression model,

which may result in a more accurate extrapolation. However, due

to the high degree of variability at the early stages of the campaign,

the regression model may not be stable. By choosing 𝛽 closer to zero

(0), it can avoid the variability at the early stages, yet the regression

model has less data to learn the trend, which may result in poor

extrapolation.

4 EXPERIMENTAL SETUP

We aim to evaluate the performance of statistical estimation to pre-

dict the coverage rate of a greybox fuzzing campaign at a given time

in the future, how our own extrapolation methodology can account

for the adaptive bias in greybox fuzzing, and how parameters 𝛼 and

𝛽 in Algorithm 1 impact the performance of our methodology.

4.1 Research Questions

Our experiments seek to answer the following research questions:

RQ1: Performance. How does the performance of our methodol-

ogy to extrapolate the coverage rate compare to the biostatistical

extrapolator by Chao and Jost [8]?

We evaluate the performance of our extrapolator against the exist-

ing estimator (cf. Section 2.3). As parameters, we choose 𝛼 = 0.11

and 𝛽 = 0.5. We consider two perspectives:

1We also attempt to fit a higher-order polynomial (orders ranging from 2 to 10) regres-
sion models, but the difference in the fitted models is negligible.

1-A For a given campaign length 𝑡0 and prediction horizon𝑚 · 𝑡0, how

accurate is the coverage rate prediction of the existing versus our

extrapolator if the campaign was extended by a period of𝑚 · 𝑡0
sampling units? For a set of benchmark programs, we compare

the performance of the extrapolators against the distribution of

coverage rate empirically observed in the future.

1-B For a given threshold coverage rate 𝑈𝑐 , how accurate are the ex-

trapolators in predicting the point in time when the coverage rate

falls below 𝑈𝑐? We evaluate the accuracy of the predicted time

point by comparing the target coverage rate 𝑈𝑐 against the ac-

tual coverage rate at the predicted time point. This evaluates the

utility of our extrapolator in the context of assessing an extended

campaign’s coverage-resource tradeoff.

RQ2: Sensitivity. What is the impact of the choice of parameters 𝛼

and 𝛽 on the performance of our extrapolator? Our methodology is

parameterized to control certain trade-offs:

• 𝛼 defines the width of the local region of the sub-campaigns

for blackbox approximation (Sec. 3.1). We expect for large 𝛼

the adaptive bias has a stronger influence while for small 𝛼 the

estimate will positively biased.

• 𝛽 represents the final proportion of the estimate 𝑈 𝐵 (𝑡) used in

the linear regression model (Sec. 3.2). We expect the regression

for large 𝛽 to be unstable due to the scarcity of data, while for

small 𝛽 , it may suffer from small data size.

4.2 Experimental Data Generation

Subject Project Version LoC # BBs

ftfuzzer FreeType2 2.7 44,686 27,521

gif2png Gift2png 2.5.3 988 700

jsoncpp_fuzz JsonCpp 1.8.4 7,251 5,938

jasper JasPer 1.900.0 17,385 14,417

readelf Binutils 2.29 22,347 18,578

Total 92,657 67,154

Figure 3: Fuzztastic programs and their statistics.

4.2.1 Programs, Fuzzer, and Infrastructure. Figure 3 shows the five

open-source C programs from the Fuzztastic fuzzer benchmarking

platform [16] we used for our experiments. These programs or

libraries cover awide range of applications, including the processing

of binary, movie, font, image, and JSONfiles. For the listed programs,

Fuzztastic uses the provided command line options for the subject

programs as fuzz harnesses and the initial seeds from AFL’s GitHub

repository.2 We excluded ffmpeg due to its extremely high number

of basic blocks.3

For each subject program, we ran 30 fuzzing campaigns, each

lasting for one week (7 days), to address the randomness in the

empirical evaluation. We used AFL++ fuzzer [11] (version: 2.64c;

command line options: -m none), one of the most popular and

widely used fuzzers today. It is also currently the best-performing

2https://github.com/google/AFL/tree/master/testcases
3For our experiments, we found that the memory demand exhibits near-linear growth
(8GB for every 50,000 basic blocks). The ffmpeg program has 432, 373 basic blocks
preventing us from running the week-long campaigns.

5

fuzzer on Fuzzbench [21]. Each fuzzing campaign was run on one

of four (4) virtual machines with 32x 2GHz x86_64 CPU cores, 32

GB of RAM, and 200 GB of disk space each. All VMs were running

in the Nectar Research Cloud.

4.2.2 Data transformation. We recorded the hit counts of basic

blocks (BB) at 15-minute intervals for each week-long fuzzing cam-

paign. We considered all the inputs generated within this time

interval as a single sampling unit. In other words, the 𝑡-th sampling

unit𝑊𝑡 = 〈𝑊𝑡,1,𝑊𝑡,2, . . . ,𝑊𝑡,𝑆 〉 is a boolean vector of length 𝑆 that

indicates whether the 𝑠th BB was hit at least once during the 𝑡-th

15-minute interval. The final matrix𝑊 = 〈𝑊1,𝑊2, · · ·𝑊𝑡0 〉 corre-

sponds to the incidence-based data model described in Section 2.

The incidence matrix𝑊 is used to calculate the incidence fre-

quencies (𝑓1, 𝑓2, . . .), which are necessary for performing extrap-

olations at different points in the campaign using both Chao and

Jost’s as well as our method. Yet, the number of singletons 𝑓1 (and

doubletons 𝑓2) often becomes zero through the campaign due to the

high sparsity of the data. With 𝑓1 = 0, the outcome of both extrap-

olators becomes zero (0). To tackle this challenge, we add 1 to all

the incidence frequencies (𝑓1, 𝑓2, . . .) before performing any estima-

tion/extrapolation. Regarding our extrapolator, the ‘add-1’ heuristic

has less impact: in Equation 2, increasing incidence frequencies

by 1 results in only a marginal increase in𝑈 (𝑡). Additionally, this

increase exponentially diminishes with the increase of the cam-

paign length 𝑡 . From our evaluation (Section 5), the ‘add-1’ heuristic

reduces the bias of what the existing extrapolator would have been

without the heuristic. It generally underestimates the coverage rate

in our experiment with ‘add-1’, which would be amplified without

‘add-1.’

4.2.3 Ground Truth and Extrapolation. We compute the ground

truth (i.e., the estimand) for the prediction 𝑈 (𝑡0, 𝑘) from empiri-

cally observed coverage rate, i.e., using the cumulative matrix 𝑆 of

the greybox fuzzing campaign F ; 𝑆 (𝑡) =
∑𝑡
𝑖=1𝑊𝑖 . At an arbitrary

evaluation point (𝑡0 + 𝑘) from the extrapolation point 𝑡0, the dif-

ference 𝑆 (𝑡0 + 𝑘 + 1) − 𝑆 (𝑡0 + 𝑘) represents the number of basic

blocks (BBs) discovered within that sampling unit. Again, because

of the sparsity of the data, a considerable number of sampling

units may not discover any new BBs. In such cases, the difference

𝑆 (𝑡0 + 𝑘 + 1) − 𝑆 (𝑡0 + 𝑘) becomes zero. Hence, we apply a moving

average filter to smooth the empirical coverage rate [14]. We choose

𝑛 = 5 consecutive raw empirical observations for both the left and

right window sizes of the moving average filter. However, if none

of the windows have any non-zero values, we extend the window

size to the left and right until we find a non-zero value. Finally,

to address the randomness from the shuffling in our algorithm,

we conduct five repetitions of the extrapolation for each of the 30

fuzzing campaigns per subject program.

4.3 Performance Measures

Evaluation matric. For RQ1.A and RQ2, we are given a campaign

length 𝑡0 and prediction horizon𝑚𝑡0 and compare the performance

of estimating 𝑈 (𝑡0 +𝑚𝑡0). To compare the estimator performance,

we calculate the average difference in the log scale for a campaign

involving a series of predictions 𝑈 (𝑡0 + 𝑘) for the ground truth

estimand𝑈 (𝑡0 +𝑘), where 1 ≤ 𝑘 ≤ 𝑚 · 𝑡0, at the prediction point 𝑡0:

L̄(𝑡0,𝑚) =

∑𝑚𝑡0
𝑘=1

(
log(𝑈 (𝑡0 + 𝑘)) − log(𝑈 (𝑡0 + 𝑘))

)
𝑚 · 𝑡0

(4)

The log error, denoted as 𝐿(𝑡0,𝑚), measures the difference inmag-

nitude and solves a problem of scale. We observe that the empirical

coverage rate distribution is highly skewed: Approximately 90%

of the values fall within the range of [0, 1] while a few but heavy

outliers impact the error. However, in the log scale, the coverage

rate distribution becomes more symmetric. Therefore, we choose

the log scale to evaluate the performance of the extrapolators in

both RQ1.A and RQ2.

We compute the log error 𝐿(𝑡0,𝑚) from 𝑡0 to 𝑚𝑡0 to indicate

the performance for a single campaign because the ground truth

𝑈 (𝑡0+𝑘) (i.e., the empirically observed coverage rate) is itself subject

to substantial variance—while the estimate 𝑈 (𝑡0 + 𝑘) is not. For

a given prediction point 𝑡0 and horizon 𝑘 = 𝑚 · 𝑡0, we report the

distribution of the log error across all 30 fuzzing campaigns.

For RQ1.B, we are given a campaign length 𝑡0 and a threshold

coverage rate 𝑈𝑐 and compare the performance of estimating 𝑚

such that𝑈 (𝑡0 +𝑚̂𝑡0) = 𝑈𝑐 . To evaluate the prediction performance

of the estimator for 𝑚̂, we compare the target coverage rate 𝑈𝑐

against the observed coverage rate around the predicted time point

𝑡0 + 𝑚̂𝑡0 within a fixed window𝑤 :

Δ̄(𝑡0, 𝑚̂) =

(∑𝑤
𝑖=−𝑤 𝑈 (𝑡0 + 𝑚̂𝑡0 + 𝑖)

2 ·𝑤
−𝑈𝑐

)/
𝑈𝑐 (5)

We compute the relative bias, denoted as Δ̄(𝑡0, 𝑚̂), within a fixed

window 𝑡 ∈ [𝑡0 + 𝑚̂𝑡0 −𝑤, 𝑡0 + 𝑚̂𝑡0 +𝑤] again because the ground

truth 𝑈 (𝑡) (i.e., the empirically observed coverage rate) is itself

subject to substantial variance. It represents how far the observed

coverage rate around the predicted time point 𝑡0 + 𝑚̂𝑡0 is from the

target coverage rate 𝑈𝑐 relative to 𝑈𝑐 ; a value of 𝑣 indicates that

the observed coverage rate is (𝑣 + 1) times higher than the target

coverage rate𝑈𝑐 . When selecting fuzzing trials for this evaluation,

we only consider trials that contain at least one 𝑈 (𝑡0 +𝑚𝑡0) for

both extrapolators falling below𝑈𝑐 . If all coverage rate predictions

𝑈 (𝑡0 + 𝑚̂𝑡0) of the extrapolator are below𝑈𝑐 , then we choose the

𝑚̂ that maximizes 𝑈 (𝑡0 + 𝑚̂𝑡0). Unlike the log error, 𝐿, the relative

bias Δ̄ is computed in the linear scale as the number of observed

coverage rates involved in the computation is small; thus, the impact

of outliers is negligible. For a given prediction point 𝑡0 and threshold

rate𝑈𝑐 , we report the distribution of the bias across all 30 fuzzing

campaigns.

Significance. We perform a two-sided hypothesis test to check

whether the median 𝐿 of our extrapolator significantly differs from

that of Chao and Jost’s extrapolator [8]. Since the normality of the

obtained 𝐿 values cannot be guaranteed for the limited number of

data points, we use theWilcoxon sign-ranked test, a non-parametric

equivalent of the t-test:

• H0: There is no difference between the median 𝐿 of Chao and

Jost’s extrapolator and that of our extrapolator.

• H1: There is a difference between the median 𝐿 of Chao and

Jost’s extrapolator and that of our extrapolator.

6

We use a confidence level of 𝛼 = 99% to check whether our

extrapolator exhibits a statistically significant improvement over

Chao and Jost’s extrapolator in terms of 𝐿.

Effect size. Further, we assess the effect size usingWilcoxon effect

size 𝑟 [28] that is the ratio between the Wilcoxon test statistic

and the square root of the sample size. It provides a measure of

the difference between the median 𝐿 for both extrapolators. The

magnitude of 𝑟 indicates the degree of separation between the two

techniques. Using the standard interpretation, we interpret the

effect size as negligible when 𝑟 < 0.1, small when 0.1 ≤ 𝑟 < 0.3,

moderate when 0.3 ≤ 𝑟 < 0.5, and large when 0.5 ≤ 𝑟 .

5 EXPERIMENTAL EVALUATION

5.1 RQ1-A. Coverage Rate Prediction Accuracy

The log error 𝐿 of the coverage rate prediction we evaluate in this

section is expected to increase as the prediction horizon extends

further into the future from the current point 𝑡0. Nevertheless, we

would like to be able to predict the coverage rate as far into the

future as possible with maximal accuracy. We first evaluate the

accuracy of extrapolators when the prediction horizon is fixed to

𝑚 = 0.5𝑡0 (i.e., extending by half of the current campaign length).

This gives the baseline ability of the extrapolators to predict the

coverage rate. We then extend our study to evaluate the coverage

rate extrapolation as we vary both the prediction point 𝑡0 and

prediction horizon𝑚.

5.1.1 Varying the prediction point. Figure 4 shows the log error

distribution of the predicted coverage rates for the existing method-

ology by Chao and Jost (CJ) [8] (red box plots) and our extrapolator

(blue box plots) when the prediction horizon is fixed to𝑚 = 0.5𝑡0
for varying prediction points 𝑓0.

Our extrapolator generally outperforms the CJ extrapolator for

all subjects in terms of the magnitude of the log error. The average

𝐿 of our extrapolator is 0.07-0.9, while that of CJ’s extrapolator is

0.2-2.9 across all the subject programs. On average, the difference of

the absolute 𝐿 between the two extrapolators is 1.47, which shows

that our extrapolator’s prediction is one order of magnitude closer

to the ground truth than CJ’s extrapolator’s prediction.

Except for readelf, the CJ extrapolator produces negatively biased

predictions irrespective of the prediction point 𝑡0. In contrast, the

median 𝐿 for our extrapolator is small in magnitude and remains

close to zero for most of the subjects (i.e., freetype2, jasper, and

readelf)—particularly when the campaign length increases. For

gif2png and jsoncpp, the median 𝐿 slightly deviates from zero while

the difference to the ground truth is at least one order of magnitude

smaller than that of the baseline.

One exception is observed for short campaigns up to 𝑡0 = 50

hours in freetype2, where the median 𝐿 values for our extrapolator

are marginally higher (< 10 on linear scale) than those for CJ for

𝑚 < 1. This behavior is expected, as our extrapolation relies on

a limited number of estimates 𝑈 (𝑡) during the early stages of the

fuzzing campaign. Due to the implementation of Fuzztastic, cover-

age data is available only at 0.25-hour intervals. At this granularity,

there are not many data points available for regression in the early

stages of the campaign.

For subjects gif2png and jsoncpp, we observe higher variance in 𝐿

for our approach compared to the existing extrapolator. This could

be explained by the higher variability in the coverage achieved

across program runs. That was evident for these two subjects even

when the initial conditions remained the same. For the other sub-

jects, the variability in 𝐿 is similar for both extrapolators.

When making short-term predictions (i.e.,𝑚 = 0.5) of𝑈 (𝑡) in

the log-log scale, our extrapolator exhibits at least one order of

magnitude lower absolute 𝐿 than Chao and Jost’s extrapolator

for 4 out of 5 chosen subjects, especially for greybox campaigns

longer than 50 hours.

5.1.2 Varying the prediction horizon. Figure 5 shows the results

in the same format as Figure 4 but for varying prediction horizons

𝑚 ∈ {0.5, 0.75, 1, 1.5, 2, 3}. For the baseline (CJ) estimator, similar to

Figure 4, we observe that the log error 𝐿 are consistently negative

across all subjects, excluding readelf. Additionally, the magnitude of

the log error generally increases as the prediction horizon increases.

In cases such as freetype2 with 𝑡0 = 37.5 hours, the magnitude of

the median 𝐿 value for the CJ extrapolator has increased by more

than two orders of magnitude.

For our estimator, we notice that it consistently maintains nearly

the same median log error as the prediction horizons increase,

especially for campaign lengths exceeding 50 hours. Notably, as

campaign duration extends, the median log error of our approach

tends to approach zero for freetype2, jasper, and readelf. As indicated

in Figure 3, this trend is attributed to the substantial number of

basic blocks in these subjects. This prompts the greybox fuzzer to

consistently discover new coverage actively, exhibiting no signs of

saturation even after one week [19]. This underscores the capacity

of our extrapolation methodology to converge towards the ground

truth coverage rate in ongoing greybox campaigns more effectively

than CJ’s extrapolator, as we believe, owing to its consideration of

adaptive bias.

Our extrapolator consistently exhibits a positive log error across

all prediction points 𝑡0 for freetype2. In contrast, for jasper, the me-

dian log error across runs remains nearly zero for various prediction

points 𝑡0 and horizons𝑚. In the case of gif2png and jsoncpp, the

median log error tends below zero for smaller campaign lengths,

such as 𝑡0 = 25 hours. However, as previously mentioned, these

predictions exhibit less error compared to the baseline. Notably, the

performance discussed for𝑚 = 0.5 in Section 5.1.1 holds true for

all values of𝑚 less than one.

Our extrapolation technique consistently demonstrates a lower

median log error than Chao and Jost’s extrapolator, irrespective

of the duration of the greybox campaign (𝑡0) and the extent of

the extrapolation into the future for coverage rate.

5.1.3 Statistical Assessment. Figure 6 shows the effect size and

statistical significance of the difference between two extrapolators.

Concretely, the heatmap color and the value in each cell represent

the effect size for the difference in Δ̄ between the two extrapolators;

the three asterisks (∗∗∗) on top of the cell indicate the statistical

significance of the difference. Our statistical analysis indicates a sub-

stantial effect size (𝑟 ≥ 0.5) with statistically significant differences

7

freetype2 gif2png jsoncpp jasper readelf

25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125
−6

−4

−2

0

2

4

Prediction Point t0 (hrs)

Lo
g

E
rr

or

Chao and Jost approach Our approach

Figure 4: Log error 𝐿 distribution over 30 runs of the predictions for different campaign lengths 𝑡0 if the campaign was extended

by another half of the current campaign length (i.e.𝑚𝑡0 = 0.5𝑡0).

t0 = 25hrs t0 = 37.5hrs t0 = 50hrs t0 = 62.5hrs t0 = 75hrs t0 = 87.5hrs t0 = 100hrs t0 = 112.5hrs t0 = 125hrs

freetype2
gif2png

jsoncpp
jasper

readelf

0.50.75 1 1.5 2 3 0.50.75 1 1.5 2 3 0.5 0.75 1 1.5 2 0.5 0.75 1 1.5 2 0.5 0.75 1 1.5 0.5 0.75 1 0.5 0.75 0.5 0.5

−2

0

2

−6
−4
−2

0
2
4

−6

−4

−2

0

2

4

−5

0

−2

0

2

4

Prediction Proportion (m/t0)

Lo
g

E
rr

or

Chao and Jost approach Our approach

Figure 5: Log error 𝐿 distributions for Chao and Jost’s- and our proposed extrapolator at different prediction points 𝑡0 for

varying prediction horizons𝑚𝑡0.

0.873 0.873 0.873 0.873 0.873 0.873

0.873 0.873 0.873 0.873 0.873 0.873

0.873 0.873 0.873 0.873 0.873

0.873 0.873 0.873 0.873 0.873

0.873 0.873 0.873 0.873

0.873 0.873 0.873

0.873 0.873

0.873

0.873

*** *** *** *** *** ***

*** *** *** *** *** ***

*** *** *** *** ***

*** *** *** *** ***

*** *** *** ***

*** *** ***

*** ***

0.873 0.873 0.873 0.873 0.873 0.873

0.851 0.847 0.832 0.813 0.809 0.836

0.798 0.783 0.764 0.768 0.772

0.734 0.700 0.693 0.697 0.715

0.738 0.715 0.712 0.730

0.723 0.708 0.700

0.700 0.678

0.730

0.708

*** *** *** *** *** ***

*** *** *** *** *** ***

*** *** *** *** ***

*** *** *** *** ***

*** *** *** ***

*** *** ***

*** ***

0.873 0.873 0.873 0.869 0.869 0.869

0.858 0.843 0.832 0.817 0.817 0.832

0.862 0.851 0.851 0.847 0.851

0.847 0.843 0.839 0.839 0.847

0.858 0.851 0.851 0.851

0.854 0.851 0.851

0.851 0.832

0.836

0.821

*** *** *** *** *** ***

*** *** *** *** *** ***

*** *** *** *** ***

*** *** *** *** ***

*** *** *** ***

*** *** ***

*** ***

0.799 0.804 0.809 0.844 0.874 0.874

0.874 0.874 0.874 0.874 0.874 0.874

0.864 0.864 0.864 0.864 0.874

0.869 0.869 0.869 0.869 0.869

0.869 0.874 0.874 0.874

0.844 0.849 0.854

0.839 0.854

0.859

0.874

*** *** *** *** *** ***

*** *** *** *** *** ***

*** *** *** *** ***

*** *** *** *** ***

*** *** *** ***

*** *** ***

*** ***

0.013 0.006 0.002 0.084 0.178 0.490

0.640 0.599 0.535 0.400 0.242 0.314

0.697 0.685 0.648 0.509 0.269

0.742 0.667 0.569 0.302 0.017

0.655 0.520 0.325 0.051

0.539 0.332 0.058

0.505 0.238

0.366

0.460

*** *** ***

*** *** *** ***

*** *** ***

*** ***

freetype2 gif2png jsoncpp jasper readelf

0.5 0.75 1 1.5 2 3 0.5 0.75 1 1.5 2 3 0.5 0.75 1 1.5 2 3 0.5 0.75 1 1.5 2 3 0.5 0.75 1 1.5 2 3

25

37.5

50

62.5

75

87.5

100

112.5

125

25

37.5

50

62.5

75

87.5

100

112.5

125

25

37.5

50

62.5

75

87.5

100

112.5

125

25

37.5

50

62.5

75

87.5

100

112.5

125

25

37.5

50

62.5

75

87.5

100

112.5

125

Prediction Proportion (m/t0)

P
re

di
ct

io
n

P
oi

nt
 t0

 (
hr

s) 0.2
0.4
0.6
0.8

effsize

Figure 6: Statistical test results for 𝐿 distribution differences between the Chao and Jost’s and our extrapolators across different

prediction points 𝑡0 and varying prediction horizons𝑚𝑡0.

8

in median 𝐿 observed at each 𝑡0 and 𝑚 for all subject programs

except for readelf. In the case of readelf, except for a couple of short-

term predictions (i.e.,𝑚 = 0.5) made at early prediction points such

as 𝑡0 = 50 or 62.5 hours, the two-sided hypothesis test did not reveal

statistical significance.

5.2 RQ1-B. Point-in-Time Prediction Accuracy

25 37.5 50 62.5 75 87.5 100112.5125137.5150162.5175187.5

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

t0 (hrs)

R
el

at
iv

e
bi

as

Chao and Jost
Our approach

freetype2
gif2png

jsoncpp
jasper

readelf

25 37.5 50 62.5 75 87.5100112.5125137.5150162.5175187.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−0.5

0.0

0.5

1.0

1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

t0 (hrs)

D
iff

er
en

ce
 in

 R
el

. b
ia

s

(a) Relative bias Δ̄ of the coverage rate predictions beyond a given threshold at
various prediction points (𝑡0) of existing and our extrapolators (left) and the
difference between the absolute relative bias of the two extrapolators (right,
existing − ours).

Subject 𝑈𝑐 Trials 𝑚 (Δ̄CJ) 𝑚 (Δ̄Our) p-value Effect size

freetype2 0.52 18 1.49 0.72 8.0E-07 (moderate) 0.32
gif2png 0.02 27 0.88 0.53 2.0E-24 (large) 0.54
jsoncpp 0.02 26 1.22 0.85 1.1E-22 (large) 0.56
jasper 0.12 17 1.54 0.37 0.1883 (small) 0.09
readelf 0.22 13 0.97 1.43 0.3537 (small) 0.07

(b) Statistics of RQ1-B.𝑚 shows the median of the relative bias. 𝑝-value and
the effect size are computed between the absolute relative bias of the two
extrapolators using the two-sided Wilcoxon paired signed-rank test with 95%
confidence level.

Figure 7: Result of RQ1-B

We extend our evaluation to assess the efficacy of our extrapola-

tor in attaining predefined coverage rate thresholds 𝑈𝑐 . Realistic

subject-specific thresholds are established based on the median em-

pirically observed coverage rate in the remainder of the available

campaign data (i.e., a total of seven days), which are presented in

the second column of 7b, along with the number of trials involved

in the analysis (third column). We choose 2 ·𝑤 = 75 hours so that

the window does not exceed 10% of the entire campaign length.

The left side of 7a shows the relative bias Δ̄ of the coverage rate

predictions beyond a given threshold at various prediction points

(𝑡0) of existing and our extrapolators, and the right side shows

their differences (existing − ours) between the absolute relative bias

of the two extrapolators. The result shows that, for gif2png and

jsoncpp, our extrapolator consistently exhibits a lower relative bias

than the baseline extrapolator for all 𝑡0 except 𝑡0 = 25 hours, and

so does freetype2 for the majority of 𝑡0 values. We confirm this

observation by performing a two-sided Wilcoxon paired signed-

rank test with 95% confidence level, whose results are shown in 7b.

All the p-values are significantly lower than 10−6, and the effect

sizes are moderate for freetype2 and large for gif2png and jsoncpp.

The median relative bias further explains how far the observed

coverage rate at the prediction point is from the target coverage

rate; our extrapolator achieves 35-77% closer to the target coverage

rate than the baseline extrapolator.

While the median relative bias of our estimator is significantly

closer to zero than the baseline estimator for jasper, both visual

inspection and the effect size indicate that the difference is not

significant. As we have seen in Figure 5, our estimator has no big

improvement over the baseline for readelf. The BB accumulation

curves for readelf, which exhibit approximately linear trends in

log-log scales and lower variance across fuzzing trials, suggest

that the influence of adaptive bias is less prominent compared to

other subjects. In situations with a diminished impact of adaptive

bias, we can expect the baseline extrapolator to perform at a level

comparable to our extrapolator. Also, notice that the number of

trials involved in the analysis is relatively small for readelf com-

pared to the other subject, which could be another reason for the

insignificant difference.

Given the target coverage rate, our extrapolator predicts the

time when the empirically observed coverage rate reaches the

target coverage rate siginificantly better than the existing ex-

trapolation methodology for 3 out of 5 subjects with moderate

to large effect sizes. For significant improvement, our extrap-

olator achieves 35-77% closer to the target coverage rate than

the baseline extrapolator.

5.3 RQ2. Evaluation of Parameter Sensitivity

To empirically study the impact of the choice of parameters on the

performance of our methodology, we conduct an ablation study.

Both parameters are chosen within the interval [0, 1]. For computa-

tional efficiency, we selected distinct values: 0.1, 0.3, 0.5, 0.7, and 1

for each parameter. When varying one parameter, we kept the other

fixed. By default, 𝛼 = 0.3 and 𝛽 = 0.5. The extrapolation algorithm

was repeatedly executed for each parameter combination (𝑡0 = 75,

𝑚 = 1).

Results are shown in Figure 8. The parameter 𝛼 controls the

length of the greybox sub-campaign used for bootstrapping the

blackbox campaigns (Line 7 in Alg. 1). We can see that a choice

of the small 𝛼 in RQ1 is optimal for the majority of the subjects

9

alpha beta

freetype2
gif2png

jasper
jsoncpp

readelf

0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1

−0.4

0.0

0.4

−3.0
−2.5
−2.0
−1.5
−1.0

−3

−2

−1

0

−2.5
−2.0
−1.5
−1.0

0.25

0.50

0.75

Parameter Value

M
ed

ia
n

Lo
g

E
rr

or

t0 (hrs)
75

Figure 8: The behaviour of median 𝐿 while varying the pa-

rameters 𝛼 and 𝛽 (𝑡0 = 75ℎ𝑟𝑠,𝑚 = 1).

(i.e., gif2png, jasper, jsoncpp, and readelf). The only exception is

freetype2, where 𝛼 = 0.5 is the best choice, yet the difference due to

the choice of 𝛼 is smallest for this subject. The parameter 𝛽 controls

the proportion of training data used for the regression (Line 18

in Alg. 1). In general the difference in the median 𝐿 is small for

different values of 𝛽 for all subjects compared to the difference due

to the choice of 𝛼 . The best 𝛽 also varies across subjects: a bigger 𝛽

is better for freetype2, jasper, and readelf, while a smaller 𝛽 is better

for jsoncpp; gif2png is not sensitive to the choice of 𝛽 .

A low value of 𝛼 (0.1) is optimal for most subjects, while the

choice of 𝛽 is less critical for the performance of the extrapolator.

6 THREATS TO VALIDITY

As with any empirical study, several threats exist to the validity of

our results and conclusions. The first threat arises with respect to

external validity, which relates to the extent to which our findings

can be generalized. As the subject of our study, we selected the

AFL++ greybox fuzzer [11], one of the most popular and widely

used fuzzers today that is also currently the best-performing fuzzer

on Fuzzbench [21]. As objects of our study, we selected five widely-

used open-source C programs from the Fuzztastic fuzzer bench-

marking suite [16], representing a wide range of applications, in-

cluding some processing binary, movie, font, image, and JSON files.

To maximize campaign length within the available resources, we

generated fuzzing campaigns of length seven (7) days and started on

the available seed corpus. However, we do not claim that our results

generalize to other types of programs written in other languages,

to other types of fuzzers started on other types of seed corpora, or

to fuzzing campaigns that are much longer than one week.

The second threat arises concerning internal validity, which is

the extent to which the presented evidence supports our claims

about cause and effect within the context of our study. To mitigate

the impact of randomness, we prepare 30 independent fuzzing cam-

paigns for each of the five subjects and conduct our extrapolation

method five times for each campaign. We cannot claim that our

analysis scripts are free from error, but we release all our scripts

and data for the reviewers and community to scrutinize.

The last threat arises concerning construct validity, which is the

degree to which a test measures what it claims to measure. In the

context of our study, one challenge has been that the ground truth

coverage rate is not directly available and can only be observed

indirectly. Specifically, technically, the actual coverage rate is an

expected value, while the observable (and measured) coverage rate

is only a random variable. To address this issue, we used the moving

average to smooth the measured coverage rate and measure the

relative bias (Δ̄) relative to the baseline to tackle the substantial

variance of the measured coverage rate when evaluating relative

performance. Again, to facilitate scrutiny and reproducibility, we

have made the source code and all data available.

7 RELATEDWORK

The significance of predicting the future progression of a software

testing campaign is as crucial as determining the current status of

a testing campaign. It enables security engineers to make informed

decisions regarding resource allocation and campaign continuation

to meet required security standards. Harrold’s [13] pointer for fu-

ture research on developing techniques and tools for estimating,

predicting, and performing testing on evolving software systems

highlights the importance of prediction in future software engineer-

ing research. In this work, we focus on extrapolating the greybox

fuzzing process, especially the coverage rate.

Extrapolating program behaviours for fuzzing. In recent years, the

popularity of fuzzing techniques has grown significantly, leading to

a demand for methods capable of extrapolating observed program

behaviors in fuzzing to unseen ones. The pioneering STADS frame-

work [2] proposed approaches to extrapolate parameters such as

residual risk and the effectiveness of the blackbox fuzzing campaign,

drawing inspiration from the mature discipline of bio-statistics. Yet,

it is hard to apply the STADS framework to greybox fuzzing cam-

paigns due to the adaptive nature of greybox fuzzers [2]. Recently,

inspired by the STADS framework, statistical estimation of residual

risk and maximum reachability have been introduced for greybox

fuzzing [3, 19]. Unlike those works, we focus on the coverage rate

of greybox fuzzing campaigns, a key decision-making parameter

for practitioners.

Other extrapolation in software testing. Due to the nature of cost

and time constraints, the extrapolation of software testing is well-

studied across different domains. For example, in the context of

software reliability, Cavano introduced a model-based approach

for predicting software failure rates by considering factors such

as functional complexity, coverage, test method, and current test

effort [5]. Such an effort to predict the reliability using Software

Reliability Modeling (SRMs) is preceded further by Littlewood and

Strigini [18] and Lyu [20] by proposing more sophisticated models,

for example, considering the user-centric nature or the end-to-end

software reliability model.

Several statistical techniques have also been used to predict the

defect density and the number of software faults [1, 10, 22, 27].

For instance, Neil and Fenton developed a statistical model using

10

Bayesian Belief Networks to predict the number of residual software

defects, considering factors such as test complexity [23]. Lately, a

machine learning (ML) based method has been incorporated to

predict the software testing parameters, such as fault rate and the

number of discoverable bugs within a given time budget for ongoing

testing campaigns for future time points. Grano et al. investigated

the feasibility of using source-code metrics and machine learning

(ML) techniques to predict the coverage achieved by test-data gen-

eration tools in continuous integration platforms [12]. Similarly,

Zakeri et al. introduced an ML model capable of predicting the

coverage of a test for a class, and they evaluated it on over 300 Java

classes [30]. Most recently, given the sample of program executions

from the (unknown) operational environment, a statistical extrapo-

lation also enables predicting the reaching probability of a certain

program state, even if it is not reached in the sample executions,

using the statistical estimators from bio-statistics [15].

8 DISCUSSION

Recent research clearly depicts the adverse effect of adaptive bias

in statistical estimation on testing parameters, particularly in the

case of residual risk [3], which arises as a result of the sampling

process failing to meet crucial distributional assumptions like in-

variance. Additionally, our description of the existing extrapolator

in this paper revealed that it also suffers from the adaptive bias

problem, as it does not account for the variability in the species

distribution from which we sample test inputs. We have observed

that this extrapolator fails to predict the coverage rate for greybox

fuzzers in an unbiased manner and tends to under-approximate

even in short-term predictions. Recalling that the primary objective

of the work presented in this paper was to introduce a novel extrap-

olation technique for coverage rate that effectively addresses the

adaptivity challenges encountered in greybox fuzzing campaigns.

Our empirical results serve as a testament to the success of our

approach, as it outperforms the existing extrapolator by Chao and

Jost [8] in terms of prediction bias.

In our approach, we divide the ongoing greybox campaign into

many overlapping sub-campaigns and then generate blackbox equiv-

alents for each sub-campaign by shuffling the incidences of coverage

elements. These blackbox approximations retain many properties

of their respective greybox sub-campaigns, such as coverage accu-

mulation while eliminating the adaptive bias. As a result, we are able

to generate a large number of coverage rate estimates𝑈 (𝑡) for the

current greybox campaign. This algorithm is specifically designed

for sampling unit-based incidence data, where each data point in

the original campaign represents whether a coverage element is

exercised from at least one out of the collection of individual test in-

puts generated within a specific time period. Similar to the observed

behavior for Δ in [3], these resulting coverage rate estimates𝑈 (𝑡)

also appear to follow a linear decline in log-log scale along with

the campaign length. Therefore, we proposed to perform linear ex-

trapolation to predict the coverage rate approximations beyond the

current campaign length 𝑡0. Our findings showed that our proposed

extrapolation technique outperforms the baseline extrapolator by

Jost and Chao in terms of relative bias Δ̄ for the majority of the sub-

jects, prediction point, and prediction proportion combinations; the

difference in Δ̄ between the two methods generally increases as the

prediction horizon𝑚 increases. Notably, this is due to the consis-

tent relative bias of our extrapolation technique, irrespective of the

campaign length. Moreover, the magnitudes of the relative bias of

our approach are comparatively low, no more than approximately

two orders of magnitude.

The ability to accurately predict and extrapolate the fuzzing cam-

paign’s coverage rate for a specified time horizon offers substantial

benefits. It enables security engineers to conduct thorough cost-

benefit analyses, assessing whether the available resources (e.g.,

time, processing power) are sufficient to meet the required test-

edness and correctness targets. If the target is deemed achievable

and the progress is satisfactory, organizations can identify surplus

machine time that can be utilized to optimize resource allocation.

In contrast, when the available resources are considered insuffi-

cient to achieve the desired target, it becomes essential to assess

the additional resource requirements needed to make the target

attainable.

To summarize, this paper offers practical guidance to entities in-

volved in fuzzing by providing themwith valuable foresight. Armed

with accurate long-term predictions, they can make proactive and

informed decisions, ensuring successful test outcomes while meet-

ing recommended hurdles.

ACKNOWLEDGMENTS

We thank Valentin Wüstholz for his inspiring discussions on an

earlier version of this draft. This work was partly funded by the Aus-

tralian Research Council (DE190100046) and Deutsche Forschungs-

gemeinschaft (DFG, German Research Foundation) under Germany’s

Excellence Strategy (EXC 2092 CASA - 390781972). Last but not

least, we express our gratitude to the anonymous reviewers for

their valuable feedback, with special appreciation for the artifact

reviewers who played a crucial role in ensuring the correctness and

reproducibility of our results.

REFERENCES
[1] Victor R Basili and Barry T Perricone. 1984. Software errors and complexity: an

empirical investigation0. Commun. ACM 27, 1 (1984), 42–52.
[2] Marcel Böhme. 2018. STADS: Software Testing as Species Discovery. ACM

Transactions on Software Engineering and Methodology 27, 2, Article 7 (June 2018),
52 pages. https://doi.org/10.1145/3210309

[3] Marcel Böhme, Danushka Liyanage, and Valentin Wüstholz. 2021. Estimating
Residual Risk in Greybox Fuzzing (ESEC/FSE 2021). Association for Comput-
ing Machinery, New York, NY, USA, 230–241. https://doi.org/10.1145/

3468264.3468570

[4] Marcel Böhme, Valentin Manès, and Sang Kil Cha. 2020. Boosting Fuzzer Effi-
ciency: An Information Theoretic Perspective. In Proceedings of the 14th Joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE). 970–981.
https://doi.org/10.1145/3368089.3409748

[5] Joseph P. Cavano. 1985. Toward high confidence software. IEEE transactions on
software engineering 12 (1985), 1449–1455.

[6] Anne Chao. 1987. Estimating the population size for capture-recapture data with
unequal catchability. Biometrics (1987), 783–791.

[7] Anne Chao and Robert K Colwell. 2017. Thirty years of progeny from Chao’s
inequality: Estimating and comparing richness with incidence data and incom-
plete sampling. SORT: statistics and operations research transactions 41, 1 (2017),
0003–54.

[8] Anne Chao and Lou Jost. 2012. Coverage-based rarefaction and extrap-
olation: standardizing samples by completeness rather than size. Ecol-
ogy 93, 12 (2012), 2533–2547. https://doi.org/10.1890/11-1952.1

arXiv:https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/11-1952.1
[9] Robert K Colwell, Anne Chao, Nicholas J Gotelli, Shang-Yi Lin, Chang Xuan Mao,

Robin L Chazdon, and John T Longino. 2012. Models and estimators linking

11

individual-based and sample-based rarefaction, extrapolation and comparison of
assemblages. Journal of plant ecology 5, 1 (2012), 3–21.

[10] B Terry Compton and CarolWithrow. 1990. Prediction and control of ada software
defects. Journal of Systems and Software 12, 3 (1990), 199–207.

[11] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In Proceedings of the USENIX
Workshop on Offensive Technologies.

[12] Giovanni Grano, Timofey V Titov, Sebastiano Panichella, and Harald C Gall. 2019.
Branch coverage prediction in automated testing. Journal of Software: Evolution
and Process 31, 9 (2019), e2158.

[13] Mary Jean Harrold. 2000. Testing: A Roadmap. In Proceedings of the Conference
on The Future of Software Engineering (Limerick, Ireland) (ICSE ’00). Association
for Computing Machinery, New York, NY, USA, 61–72. https://doi.org/10.

1145/336512.336532

[14] Rob J Hyndman. 2011. Moving Averages. Accessed 2023-07-30.
[15] Seongmin Lee and Marcel Böhme. 2023. Statistical Reachability Analysis. In

Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (<conf-loc>, <city>San
Francisco</city>, <state>CA</state>, <country>USA</country>, </conf-loc>)
(ESEC/FSE 2023). Association for Computing Machinery, New York, NY, USA,
326–337. https://doi.org/10.1145/3611643.3616268

[16] Stephan Lipp, Daniel Elsner, Thomas Hutzelmann, Sebastian Banescu, Alexander
Pretschner, and Marcel Böhme. 2022. FuzzTastic: A Fine-grained, Fuzzer-agnostic
Coverage Analyzer. In Proceedings of the 44th International Conference on Software
Engineering Companion (ICSE’22 Companion). 1–5. https://doi.org/10.1145/
3510454.3516847

[17] Stephan Lipp, Daniel Elsner, Severin Kacianka, Alexander Pretschner, Marcel
Böhme, and Sebastian Banescu. 2023. Green Fuzzing: A Saturation-Based Stop-
ping Criterion Using Vulnerability Prediction. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (Seattle, WA,
USA) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA,
127–139. https://doi.org/10.1145/3597926.3598043

[18] Bev Littlewood and Lorenzo Strigini. 2000. Software reliability and dependability:
a roadmap. In Proceedings of the Conference on the Future of Software Engineering.
175–188.

[19] Danushka Liyanage, Marcel Böhme, Chakkrit Tantithamthavorn, and Stephan
Lipp. 2023. Reachable Coverage: Estimating Saturation in Fuzzing. In Proceedings
of the 45th IEEE/ACM International Conference on Software Engineering (ICSE’23),

17-19 May 2023, Australia.
[20] Michael R Lyu. 2007. Software reliability engineering: A roadmap. In Future of

Software Engineering (FOSE’07). IEEE, 153–170.
[21] JonathanMetzman, László Szekeres, Laurent Simon, Read Sprabery, and Abhishek

Arya. 2021. FuzzBench: An Open Fuzzer Benchmarking Platform and Service.
In Proceedings of the Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 1393–1403. https:

//doi.org/10.1145/3468264.3473932

[22] K-HMoller andDaniel J Paulish. 1993. An empirical investigation of software fault
distribution. In [1993] Proceedings First International Software Metrics Symposium.
IEEE, 82–90.

[23] Martin Neil and Norman Fenton. 1996. Predicting software quality using Bayesian
belief networks. In Proceedings of the 21st Annual Software Engineering Workshop.
NASA Goddard Space Flight Centre, 217–230.

[24] Hoang Lam Nguyen and Lars Grunske. 2022. BeDivFuzz: Integrating Behavioral
Diversity into Generator-based Fuzzing. In Proceedings of the 44th International
Conference on Software Engineering (ICSE ’22). 1–13.

[25] Alon Orlitsky and Ananda Theertha Suresh. 2015. Competitive Distribution Esti-
mation: Why is Good-Turing Good. In Advances in Neural Information Processing
Systems 28. 2143–2151. https://doi.org/10.5555/2969442.2969479

[26] Jiradet Ounjai, Valentin Wüstholz, and Maria Christakis. 2023. Green Fuzzer
Benchmarking. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023). Association for
Computing Machinery, New York, NY, USA, 1396–1406. https://doi.org/10.

1145/3597926.3598144

[27] Vincent Yun Shen, Tze-jie Yu, Stephen M. Thebaut, and Lorri R. Paulsen. 1985.
Identifying error-prone software—an empirical study. IEEE Transactions on
Software Engineering 4 (1985), 317–324.

[28] Maciej Tomczak and Ewa Tomczak. 2014. The need to report effect size estimates
revisited. An overview of some recommended measures of effect size. Trends in
sport sciences 21, 1 (2014).

[29] Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, Atif Memon, and
Anna Rita Fasolino. 2019. Developing and Evaluating Objective Termination
Criteria for Random Testing. ACM Trans. Softw. Eng. Methodol. 28, 3, Article 17
(jul 2019), 52 pages. https://doi.org/10.1145/3339836

[30] Morteza Zakeri-Nasrabadi and Saeed Parsa. 2022. Learning to predict test effec-
tiveness. International Journal of Intelligent Systems 37, 8 (2022), 4363–4392.

12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

