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When Should We Stop Testing? VARl NS
- Fuzzing from the perspective of statistics

Seongmin Lee and Marcel Bohme

FUZZING: SOTA SOFTWARE TESTING METHOD et
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P 0OSS-Fuzz found 10,000 vulnerabilities E.g., Magic value, Symbolic analysis, etc.
rogram and 36,000 bugs across 1,000 open- * What/Where else can we apply the fuzzing?
source projects. (~August 2023) E.g., Smart contracts, Web applications, etc.
Fig. 1 Basic scheme of fuzzing
Given a program that might contain a vulnerability, fuzzing E However. when should we stop the fuzzing campaign? E
1. generates lots of different inputs, o o - T .
2. runs the program with those inputs, Software testing is always a trqde-of'f between time/resource spent vs. how secure the software is.
] - To answer the question, we need to extrapolate how the fuzzing will proceed.
3. and checks if a crash occurs based on the vulnerability.

KEY IDEA: FUZZING IN TERMS OF STATISTICS

“If the fuzzing is a random sampling process of a fixed distribution, ;
we can statistically extrapolate the future of fuzzing.”

« Coverage rate U(t): the expected number of newly tested elements
in (t 4+ 1)-th data point.
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Fig. 5 Coverage rate extrapolation and its expected impact

ADVANCED: GREYBOX FUZZING | TWO INSIGHTS TO HANDLE ADAPTIVE BIAS
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Fig. 6 Greybox fuzzing as a stochastic process

The sampling distribution changes as time goes on
in a Greybox fuzzing. < Adaptive bias
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Fig. 7 Effect of adaptive bias on testing efficiency in greybox fuzzing

MODEL SUMMARY EVALUATION
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Fig. 8 Greybox coverage rate estimation model considering the adaptive bias 4
TAKEAWAY
Fig. 9 Difference between log(U (t + k)) vs. log(ﬁ(t +k))
1. Statistical modeling can predict the future of the testing process and, more generally, any sampling- - For 4 /5 subjects, |Bias(regress)| < |Bias(no-adaptive)|, at least one
based optimization/searching process. order of magnitude difference.
2. We bring two key insights to handle the adaptive bias, i.e., time-wise change of the distribution. « The average ratio U(7 + k)/U(t + k):
3. The regression model is more accurate in predicting the future of the greybox fuzzing campaign. No-adaptive model: 1.6 - 800 vs. Regression model: 1.17 - 7



