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KEY IDEA: FUZZING IN TERMS OF STATISTICS

Seongmin Lee and Marcel  Böhme 

When Should We Stop Testing? 
 - Fuzzing from the perspective of statistics

FUZZING: SOTA SOFTWARE TESTING METHOD 

 
Fig. 1  Basic scheme of fuzzing 

Given a program that might contain a vulnerability, fuzzing  
1. generates lots of different inputs,  
2. runs the program with those inputs,  
3. and checks if a crash occurs based on the vulnerability.
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Fig. 2  OSS-Fuzz: open-source fuzzing infrastructure

Fig. 3  Academic Interests in fuzzing

🛠  [Fuzzing is highly practical] 

OSS-Fuzz found 10,000 vulnerabilities 
and 36,000 bugs across 1,000 open-
source projects. (~August 2023)

🚨  However, when should we stop the fuzzing campaign? 🚨
Software testing is always a trade-off between time/resource spent vs. how secure the software is. 

To answer the question, we need to extrapolate how the fuzzing will proceed.

🎓  [Fuzzing is actively investigated] 

Typical research topics in fuzzing: 

• How can we make fuzzers smarter at generating inputs? 
E.g., Magic value, Symbolic analysis, etc. 

• What/Where else can we apply the fuzzing? 
E.g., Smart contracts, Web applications, etc.

1. Statistical modeling can predict the future of the testing process and, more generally, any sampling-
based optimization/searching process. 

2. We bring two key insights to handle the adaptive bias, i.e., time-wise change of the distribution. 
3. The regression model is more accurate in predicting the future of the greybox fuzzing campaign.
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Fig. 4  Blackbox fuzzing as a stochastic process

“If the fuzzing is a random sampling process of a fixed distribution,  
we can statistically extrapolate the future of fuzzing.” 

• Coverage rate : the expected number of newly tested elements 
in -th data point. 

• Extrapolator of coverage rate : 
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Fig. 5  Coverage rate extrapolation and its expected impact 

Without Extrapolation With Extrapolation
american fuzzy lop 2.44b (djpeg)

________________________________________________________________________
| run time : 0 days, 12 hrs, 0 min, 5 sec | cycles done : 53 |
| last new path : 0 days, 0 hrs, 17 min, 44 sec | current paths : 4944 |
| last uniq crash : none seen yet | uniq crashes : 0 |

. . .

extrapolation edition yeah! (djpeg)
___________________________________________________________________

residual risk : 7·10^-06 | total inputs : 63.6M |
path coverage : 77.6% paths covered | singletons : 447 |

discover new path : 0 hrs, 1 min, 36 sec | doubletons : 70 |
142k new inputs needed | |

12h into the campaign & 18mins since last path. Only 78% of all paths?
(a) Keep going? (c) Let’s keep going!

american fuzzy lop 2.44b (djpeg)
________________________________________________________________________

| run time : 1 day, 0 hrs, 0 min, 5 sec | cycles done : 74 |
| last new path : 0 days, 0 hrs, 0 min, 31 sec | current paths : 5127 |
| last uniq crash : none seen yet | uniq crashes : 0 |

. . .

extrapolation edition yeah! (djpeg)
___________________________________________________________________

residual risk : 8·10^-07 | total inputs : 124.8M |
path coverage : 97.9% paths covered | singletons : 95 |

discover new path : 0 hrs, 15 min, 9 sec | doubletons : 42 |
1.3M new inputs needed | |

12h later, AFL has found only about 150 new paths. ⇠98% of all paths that the fuzzer can cover are covered.
However, it found the last one only 31s ago. It would take ⇠15 mins to discover just one more path.

(b) Continue or abort? How far towards “completion”? (d)We should probably abort!

Fig. 2. The le�-hand side (“without extrapolation”) shows the first few lines of AFL’s retro-style UI (AFL
v2.44b). Specifically, it shows the pertinent information for the fuzzing campaign (a) at 12 hours and (b) at 24
hours. The right-hand side (“with extrapolation”) shows our extension with estimates of the residual risk (i.e.,
the probability to discover a (crashing) path with the next input that is generated), the path coverage (i.e., the
proportion of paths discovered), and the time or test inputs needed to discover the next path—for the fuzzing
campaign (c) at 12 hours and (d) at 24 hours.

AFL [98] is the state-of-the-art fuzzer for automated vulnerability detection. Libjpeg-turbo [110] is a
popular, security-critical image parsing library that is used in many browser and server frameworks.
ASAN [89] is a dynamic analyzer that identi�es bu�er over�ows and other memory-related errors
and vulnerabilities. We use that fuzzing campaign to illustrate the challenges and opportunities of
automated testing and analysis in general.

Path discovery. While the true objective of AFL is to discover a maximal number of errors, it is
an unlikely measure of progress; errors are (thankfully) rather sparse in the program’s input space.
Instead, the more immediate (and measurable) goal of AFL is to explore paths.4 AFL’s compiler-
wrapper afl-gcc instruments the program such that each path yields a di�erent path-id. ASAN
instruments the program such that it crashes for inputs exposing a memory-related error. Hence,
AFL’s concrete testing objective is to discover a maximal number of paths and crashes.

Species discovery. In ecology, researchers sample individuals from an assemblage and identify
their species to gain insights about the species richness and diversity of the assemblage. AFL’s
fuzzer afl-fuzz generates and executes test inputs for the instrumented program by applying
random mutation operators at random points in a random seed �le. In other words, AFL is a (biased)
stochastic process that samples test inputs from the program’s input space. Our assemblage is the
program’s input space.5 Our individual is a discrete input. Our sample is the set of all test inputs
that have been generated throughout the current campaign. In this example, our species is the tuple
(path-id, crashing) where crashing is true if the input crashes the program and false otherwise.
ASAN and afl-gcc together form the dynamic analysis that identi�es the species for a program
input. The general testing objective is always to discover a maximal number of species.

4To address path explosion, AFL clusters paths that exercise the same control-�ow edges and do not yield substantially
di�erent hit counts for each edge [9]. E�ectively, AFL reports the number of discovered path clusters rather than the number
of discovered paths. For simplicity, we stick to the AFL terminology.
5This is grossly simpli�ed. Technically, our assemblage is the set of all program inputs that AFL is capable of generating
using the available seed �les and mutation operators. All statistical claims will hold only over AFL’s search space.
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ADVANCED: GREYBOX FUZZING TWO INSIGHTS TO HANDLE ADAPTIVE BIAS

Estimating Residual Risk in Greybox Fuzzing ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
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Figure 3: Adaptive bias (on a log-x-scale, top: Δ! (!) − Δ" (!);
bottom: log10 (Δ! (!))−log10 (Δ" (!)), where Δ! and Δ" are dis-
covery probabilities for greybox and blackbox campaigns,
resp.). As discovery probabilities span several orders of mag-
nitude, the bottom shows di!erence in magnitude.

94% of the variance found in the response variable log(Δ(!)) can
be explained by the predictor variable log(!). We investigate this
approach empirically in Section 6.3 for a state-of-the-art greybox
fuzzer, and the results con!rm our observation (median "2 ≥ 97%).

3.3 Adaptive Bias
Residual risk and discovery probability are subject to adaptive bias.
Suppose, our fuzzer can be run in two modes, a greybox mode and a
blackbox mode. The only di"erence between the two modes is that,
in a greybox campaign F! , the fuzzer adds a generated input to
the seed corpus if it discovers a new species, while in a blackbox
campaign F" , the fuzzer always maintains the initial seed corpus.
All other fuzzer properties, such as the initial corpus, the set of
mutation operators, or the power schedule, are equal in both modes.

Informally, we can de!ne adaptive bias as the di"erence in dis-
covery probability between grey- and blackbox campaigns of equiv-
alent length, started from the same corpus. Figure 2 illustrates the
impact of adaptive bias on the discovery probability in a greybox
campaign within our simulation study.

Due to adaptive bias, the discovery probability is consistently
higher in the greybox campaign than the blackbox campaign
(until shortly before 100% of species are discovered; Fig. 3).

We extend the STADS probabilistic model [1] to accommodate
greybox fuzzing and adaptive bias. Let C# be the current seed cor-
pus after exactly ! test inputs have been generated in a greybox
campaign F! = {#1, . . . ,##, . . . ,#$ }. Concretely,

C# = {#% | #% ∈ F! ∧ disc(#%, F! ) ∧$ ≤ !} (12)

where disc(#%, F! ) holds if there exists a species D& for % : 1 ≤
% ≤ & , such that generated input #% ∈ D& and there does not exist
a previously generated input #' ∈ F! such that ' < $ and #' ∈ D& .

Adaptive bias emerges in greybox campaigns as seeds are added
to a corpus. Suppose without loss of generality that the (!+1)-th
generated input discovers a new species, thus |C# | < |C#+1 |. Even if
the discovery probabilities Δ! (!) and Δ" (!) of grey- and blackbox
campaigns, respectively, were the same when ! test inputs have
been generated, i.e., Δ! (!) = Δ" (!)—we generally have Δ! (! +
1) ≠ Δ" (! + 1) because of the impact of the added seed’s local
species distribution on the global distribution (cf. Equation 7 & 11).

Current distribution (&,# . To quantify the impact of adding
seeds on the global species distribution, we use Kullback-Leibler
(KL) divergence [13] as a measure of distance between two distri-
butions. For a greybox campaign, let {(&,#}(&=1 be the current global
species distribution when ! test inputs have been generated, i.e.,

(&,# =

∑

) ∈*!

))(
)
& (13)

for % : 1 ≤ % ≤ & , where )) it the probability that the fuzzer chooses
to mutate the seed * ∈ C# .

Adaptive bias reduces. Under a realistic assumption, we show
that the “distance” between the species distributions before and
after the seed was added reduces as the number ! of generated test
inputs increases. Our assumption is that the probability )) ′ that
the fuzzer chooses to mutate the most recently added seed * ′ also
reduces as the seed corpus grows, where * ′ ∈ C#+1 but * ′ ∉ C# .
This assumption holds for all known power schedules in the most
popular greybox fuzzers, LibFuzzer [14] and AFL [29].

The KL-divergence from the global species distribution (&,# (be-
fore adding the seed * ′) to the distribution (&,#+1 (after adding * ′) is
a measure of distance between both distributions,

+ ((&,#+1 | | (&,#) =
(∑

&=1

(&,#+1 log

(
(&,#+1

(&,#

)

(14)

We observe that the global distribution {(&,#+1}
(
&=1 after *

′ was

added is composed of the previous global distribution {(&,#}
(
&=1 and

the local distribution {()
′

& }
(
&=1 of the new seed * ′

(&,#+1 = (1 − )) ′) · (&,# + )) ′ · (
) ′

& (15)

for % : 1 ≤ % ≤ & , such that

+ ((&,#+1 | | (&,#) =
(∑

&=1

(&,#+1 log
(
1 − )) ′ · ,&,#,) ′

)
, (16)

where )) ′ is the probability that the fuzzer chooses to mutate the

most recently added seed * ′, and ,&,#,) ′ =
+"

′

#

+#,!
− 1.

Recalling that log(1) = 0 and assuming that (&,# > 0 for all
% : 1 ≤ % ≤ & , we can see that

lim
,"′→0

+ ((&,#+1 | | (&,#) = 0 (17)

KL-divergence + approaches zero as )) ′ approaches zero. !

4 OUR ESTIMATORS OF DISCOVERY
PROBABILITY

Discovery probability Δ is the probability that the next generated
input discovers a new species. In Section 3.2, we discussed how
discovery probability provides an upper bound on the residual risk.
In our evaluation, we consider a good estimator to be conservative
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Fig. 7  Effect of adaptive bias on testing efficiency in greybox fuzzing
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Fig. 7. Bias in the path coverage estimate for the AFL-fuzzing campaign in our motivating example.

pi to discover any “neighboring” species Di slightly increases, compared to before t was added.
Hence, at �rst a coverage-based greybox fuzzer might discover more species per unit time than
a mutation-based blackbox fuzzer (which is not feedback-directed). However, in the limit every
coverage-based greybox fuzzer degenerates to a mutation-based blackbox fuzzer. Over time more
and more test inputs need to be generated to discover the next species: The fuzzer cycles several
times through the same set of seeds without any discoveries for hours, later for days. Hence, in
the limit the adaptive bias is non-existent. Thus, if an estimator is consistent for a fuzzer that is
not feedback-directed, it is also consistent for a coverage-based greybox fuzzer. The accuracy of a
consistent estimator increases as sampling e�ort (i.e., the number generated test inputs) increases.
The adaptive bias is obvious in Figure 7.a which shows the development of the path coverage

estimate over the �rst 48 hours of the fuzzing campaign in our motivating example (Section 2).
Between �ve and seven hours, we see a steep drop in the path coverage estimate. The reason
becomes obvious in Figure 7.b which shows the number of paths discovered for the same fuzzing
campaign. Just before the six-hour mark, the number of discovered paths seems to approach
a di�erent asymptote at about 3k paths when suddenly many more paths are discovered. This
sudden increase is not very uncommon for AFL, particularly in the �rst few hours when still
many new paths are discovered. However, such surges get more uncommon and their magnitude
smaller as sample coverage increases. This can be explained within the Markov chain model of
directed greybox fuzzing [9]. The path coverage estimate quickly recovers over the next 12 hours.
In Figure 7.b, we can see that 24 hours into the fuzzing campaign a large percentage of paths has
been discovered (w.r.t. the improved estimate of the asymptote). At this time, our path coverage
estimate quite accurately puts the coverage at about 98%. In future, we plan to investigate the
correlation between the discovery probability estimate Û of the sample and the bias/precision of
the species coverage estimate S(n)/Ŝ .
In our preliminary empirical study, we used the coverage-based greybox fuzzer AFL [98] to

investigate the performance of the proposed estimators and extrapolators for the state-of-the-art
vulnerability detection tool. The results are promising (see Section 6.5). For AFL, the magnitude
of the estimator bias was substantial right before and during short intervals when the number
of discovered path-species increased suddenly and signi�cantly. The extrapolation would not
anticipate such sudden surges. However, the bias from adaptive sampling reduced over time. Close
to the asymptotic species richness, the impact appeared negligible.
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pi to discover any “neighboring” species Di slightly increases, compared to before t was added.
Hence, at �rst a coverage-based greybox fuzzer might discover more species per unit time than
a mutation-based blackbox fuzzer (which is not feedback-directed). However, in the limit every
coverage-based greybox fuzzer degenerates to a mutation-based blackbox fuzzer. Over time more
and more test inputs need to be generated to discover the next species: The fuzzer cycles several
times through the same set of seeds without any discoveries for hours, later for days. Hence, in
the limit the adaptive bias is non-existent. Thus, if an estimator is consistent for a fuzzer that is
not feedback-directed, it is also consistent for a coverage-based greybox fuzzer. The accuracy of a
consistent estimator increases as sampling e�ort (i.e., the number generated test inputs) increases.
The adaptive bias is obvious in Figure 7.a which shows the development of the path coverage

estimate over the �rst 48 hours of the fuzzing campaign in our motivating example (Section 2).
Between �ve and seven hours, we see a steep drop in the path coverage estimate. The reason
becomes obvious in Figure 7.b which shows the number of paths discovered for the same fuzzing
campaign. Just before the six-hour mark, the number of discovered paths seems to approach
a di�erent asymptote at about 3k paths when suddenly many more paths are discovered. This
sudden increase is not very uncommon for AFL, particularly in the �rst few hours when still
many new paths are discovered. However, such surges get more uncommon and their magnitude
smaller as sample coverage increases. This can be explained within the Markov chain model of
directed greybox fuzzing [9]. The path coverage estimate quickly recovers over the next 12 hours.
In Figure 7.b, we can see that 24 hours into the fuzzing campaign a large percentage of paths has
been discovered (w.r.t. the improved estimate of the asymptote). At this time, our path coverage
estimate quite accurately puts the coverage at about 98%. In future, we plan to investigate the
correlation between the discovery probability estimate Û of the sample and the bias/precision of
the species coverage estimate S(n)/Ŝ .
In our preliminary empirical study, we used the coverage-based greybox fuzzer AFL [98] to

investigate the performance of the proposed estimators and extrapolators for the state-of-the-art
vulnerability detection tool. The results are promising (see Section 6.5). For AFL, the magnitude
of the estimator bias was substantial right before and during short intervals when the number
of discovered path-species increased suddenly and signi�cantly. The extrapolation would not
anticipate such sudden surges. However, the bias from adaptive sampling reduced over time. Close
to the asymptotic species richness, the impact appeared negligible.
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1. While the entire greybox fuzzing campaign 
is dominated by the adaptive bias, 

2. The local region of the campaign has 
a less adaptive bias. 

3. The near future is 
predictable! 

“The adaptive bias of the 
greybox fuzzing is 

predictable!”

Its changes are not random but 
have a pattern: 

1. The change occurs when a 
new input that increases the 
coverage is found. 

2. The input is added to the 
seed corpus. 

3. The inputs around that new 
input are sampled. 

4. (Cont'd)

Fig. 8  Greybox coverage rate estimation model considering the adaptive bias

TAKEAWAY

EVALUATION

Q. How accurate is the regression model considering the adaptive bias 
compared to the no-adaptive extrapolation model? 
• Subject program: five open-source C libraries 
• Procedure: 1) run the greybox fuzzer until it gets  executions,  

2) apply each extrapolator to extrapolate ,  
3) run the greybox fuzzer for  more executions to get . 

[Result] 

• For 4 / 5 subjects, |Bias(regress)| < |Bias(no-adaptive)|, at least one 
order of magnitude difference. 

• The average ratio :  
No-adaptive model: 1.6 - 800   vs.   Regression model: 1.17 - 7
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Figure 4: Log error !̄ distribution over 30 runs of the predictions for di�erent campaign lengths C0 if the campaign was extended
by another half of the current campaign length (i.e.<C0 = 0.5C0).

Figure 5: Log error !̄ distributions for Chao and Jost’s- and our proposed extrapolator at di�erent prediction points C0 for
varying prediction horizons<C0.

In cases such as freetype2 with C0 = 37.5 hours, the magnitude of the median !̄ value for the CJ extrapolator has increased by more
than two orders of magnitude.
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Fig. 9   Difference between  vs. log(U (t + k )) log(Û (t + k ))


