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Information leaks are a significant problem in modern software systems. In recent years, information theoretic
concepts, such as Shannon entropy, have been applied to quantifying information leaks in programs. One recent
approach is to use symbolic execution together with model counting constraints solvers in order to quantify
information leakage. There are at least two reasons for unsoundness in quantifying information leakage
using this approach: 1) Symbolic execution may not be able to explore all execution paths, 2) Model counting
constraints solvers may not be able to provide an exact count. We present a sound symbolic quantitative
information flow analysis that bounds the information leakage both for the cases where the program behavior
is not fully explored and the model counting constraint solver is unable to provide a precise model count but
provides an upper and a lower bound. We implemented our approach as an extension to KLEE for computing
sound bounds for information leakage in C programs.
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1 INTRODUCTION

One of the most critical security issues in software systems today is protecting users’ private
information, which makes analyzing information leakage in software systems a timely and im-
portant research problem. A classic approach to address this problem is enforcing noninterference
which ensures that publicly observable properties of program execution (such as public outputs
or side-channels) are independent of secret input values. But, enforcing noninterference is often
not possible as software systems need to reveal some amount of information that depends on
secret inputs. Consider a password checker where, as public output, the system needs to provide
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Multinomial Distribution

* Given samples from the unknown multinomial distribution (MD), it reconstructs the underlying MD
by approximation.

= Handle the missing /rare events problem &
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Evaluation

Benchmark

Subject (1X], |Y|) Variants (V)
ProbTerm (N + 1, 10-20) {5,7,9,12}
RandomWalk (500, 24-40) {3,5,7,14}
Reservoir (2N 2N/2) | {4,6,8,10,12}
SmartGrid (3N, 12) {1,2,3,4,5}
Window (N,N) | {20,24,28,32}

1. Subject programs from previous study

- Small size

- Known ground-truth Ml



Our estimator

ChaoFlat

V S * Accuracy (Mean Square Error)

* Safety (whether underestimate)

Baselines

ChaoSec

Empirical

Miller

Evaluation

Benchmark

1. Subject programs from previous study

Subject (1X], |Y|) Variants (V)
ProbTerm (N + 1, 10-20) {5,7,9,12}
RandomWalk (500, 24-40) {3,5,7,14}
Reservoir (2N 2N/2) | {4,6,8,10,12}
SmartGrid (3N, 12) {1,2,3,4,5}
Window (N,N) | {20,24,28,32}

- Small size

- Known ground-truth Ml

2. Practical scenarios with real-world examples

Location Privacy Passport Tracing

- Domain of th omt

event space (.
is substantially larger

- Empirical ground truth



Result 1: Subject Programs from Prev. Study

— where the observable space is small —

S el Accuracy
[: 10_1-; L ‘ '
%’ 10 ’ﬁi m * MSE(Empirical)
s i > MSE(Miller), MSE(ChaoFlat), MSE(ChaoSec)
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§ 107 = il |4 * No significant difference b/w Miller, ChaoFlat, ChaoSec
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| x0.5 x 1 X2
Sample Ratio

* Sample Ratioof X k: |sample| = |S|-|O| X k
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Result 1: Subject Programs from Prev. Study

— where the observable space is small —

S el Accuracy
[: 10_1; 4 ' ‘
%’ - ‘ m—: m * MSE(Empirical)
g } > MSE(Miller), MSE(ChaoFlat), MSE(ChaoSec)
~ mpirica o
§ 107 = il |4 * No significant difference b/w Miller, ChaoFlat, ChaoSec
10—5-; ; 522225
| x0.5 x 1 X2
B Empirical Safety
I Miller
B ChaoFlat
2 B ChaoSec * Miller underestimates §7% of the estimation.
S
= é ﬁé * ChaoSec underestimates 8% of the estimation.
Q) B T T T T T T T T e T
= ' * ChaoFlat underestimates 67% of the estimation.
UINISAIFIE
x1 X 2

Sample Ratio



Result 1: Subject Programs from Prev. Study

— where the observable space is small —

Our ChaoSec estimator is the best estimator in terms of both safety and accuracy.

The Miller estimator often unsafely underestimates the Ml unless the sample size is large.



Result 2: Practical Scenarios

[ ( [
Location Privacy Passport Tracing
0 u_r:=:=:=:=:=:=3=3mJ 4 _—==-§-=L=.—-L‘O'¥S.6-6-6-o-o—o—m 0.104 *® == 1 Ground Truth 0.98 _—.:.§ﬂsh9-
—101 / 2 0.08 mmems EMp 0.96 4
—20 0- 0.06- Miller 0.94
= == : Ground Truth @ = == : Ground Truth s sxy ==e== ChaoSRM = 0'92: == Ground Truth
—30; : _5. — £ 0.04- — 0.90
_40/ —/-"P me | —— | 0.88- = =mp
Miller 41 Miller 0.02 Lo L o o o o o s e o 0.861 ¢ Miller
=501 wsem= ChaoSRM == ChaoSRM 0.00- 0.84- == ChaoSRM
—60+—— -+ — . S S— . —
10~> 104 10~3 1072 10~> 104 1073 1072 0.5 1 2 5 0.5 1 2 5
Sample Ratio Sample Ratio Sample Ratio Sample Ratio
Planner Laplacian Oya et al's LPPM British, Fixed British, Unfixed

* The Domain of the joint event space (%@ ,éQ ) is substantially larger than the previous subject programs.

* Miller estimator significantly underestimates (even < 0) due to the large bias correction term.

[Accuracy] ChaoSec > Empirical > Miller [Safety] Empirical ~ ChaoSec > Miller



Empirical estimator

Inaccurate

Miller estimator

; _; (mg — 1)(my — 1)
miller — “emp — n

A

Unsafe w/ small samples

Research Aim

A
® Empirical

Our estimator

--------- «— True Ml

Miller o

Unsafe zone

We developed an estimator that
accurately and safely estimates the
mutual information in the presence of
missing or rare events.







How Correct/Secureis
our Software?



Q. What is the probability of a thrown & ball to the Wl square dropped not into the_]circle?

i Analytic methodology

If the problem can easily be mathematically modeled,
(e.g, area = circle)

2\

Pr(—in circle)
_ Area(Square) — Area(Circle)

Area(square)
. (2r)? — ar?
= Oy
e

N

Precise result / Formal guarantees

~ 0.2146...

) |

& Empirical methodology

For example, the Monte Carlo method, where we
simulate the ball throwing

Pr(-in area)
7 of balls outside the area

# of balls thrown

3577
= —— =0.3577

10000

Scalable, i.e., can deal with complex problems



ﬁ 1Two Ways to answer

How
our Software?

1S



Analytical Methods

nfx z

x =

Mathematical proof can provide
a formal guarantee

Scalability issues on
modern software
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Mathematical proof can provide
a formal guarantee
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Empirical Methods

_

)

Test software by running it with
various test executions

By actually running the software,

it solves the A scalability issue

@ 2) There is always unseen
= No guarantee

Statistics
can solve

<}:| this!




Analytical Methods

T0 Sx

2>

Mathematical proof can provide
a formal guarantee

Scalability issues on
modern software

Empirical Methods

_

)

For example, statistically
approximate MD

approximates the
missing events’ probability

Test software by running it with
various test executions

Statistics

By actually running the software,
it solves the A scalability issue

can solve

@ 2 There is always unseen thisv
= No guarantee ’
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Accounting for Missing Events in
Statistical Information Leakage Analy

Research Aim Multinomial Distribution

Dr. Seongmin Lee
MPI-SP Software Security

A

o Empirical * Given a samples from the unknown multinomial distribution (MD), Chao’s MD reconstruct the

Empirical estimator underlying MD by approximation.

. . . a Our estimator
Iemp(S; 0) = Hemp(X) — Hemp(X | Y) = o4 = Handle the missing /rare events problem ©
""""""""""" - 2 https://nimgnoeseel.github.io/
Inaccurate Miller 0 5 p . g . g .
v 7 Unsafe zone
0.4 0.4
- 0.3 0.3
Miller estimator We developed an estimator that 02 Hl> 02
A A -1 -1 i 3 0.1
& (mg— 1)(mp — 1) accura'tely and .saf(.ely estimates the 0.1 g
2n mutual information in the presence of 0 0 e
Unsafe w/ small samples missing or rare events. Empirical Distribution Approximated MD

Shreyas Minocha

A. Chao et al, “Unveiling the species-rank abundance distribution by generalizing the good-turing sample coverage theory.” Ecology, vol. 96 5, pp. 1189—201, 2015.

*Georgia Tech

Our Approach to estimate Ml Result 2: Practical Scenarios

% https://shreyasminocha.me/

Empirical Joint

* The Domain of the joint event space (ﬁ ,p ) is substantially larger than the previous subject programs.

............ Location Privacy Passport Tracing
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: L. : MD EStI. 1= Approx, D|St, 1 Sample Ratio Sample Ratio Sample Ratio Sample Ratio
D“"dmg : : : Planner Laplacian Oya et al’s LPPM British, Fixed British, Unfixed
E : 1
[
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[
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Probability Dist.

.2. ChaoSec

Introduced heuristics for assigning
estimated unseen probabilities

Solve Challenge to unseen joint events

[Accuracy] ChaoSec > Empirical > Miller

* Miller estimator significantly underestimates (even < 0) due to the large bias correction term.

[Safety] Empirical ~ ChaoSec > Miller

Dr. Marcel Bohme
MPI-SP Software Security

%= https://mpi-softsec.github.io/

*This work has been done during his internship @ MPI-SP before joining Georgia Tech.



