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Mutual Information (MI)  
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Information leaks are a significant problem in modern software systems. In recent years, information theoretic
concepts, such as Shannon entropy, have been applied to quantifying information leaks in programs. One recent
approach is to use symbolic execution together with model counting constraints solvers in order to quantify
information leakage. There are at least two reasons for unsoundness in quantifying information leakage
using this approach: 1) Symbolic execution may not be able to explore all execution paths, 2) Model counting
constraints solvers may not be able to provide an exact count. We present a sound symbolic quantitative
information flow analysis that bounds the information leakage both for the cases where the program behavior
is not fully explored and the model counting constraint solver is unable to provide a precise model count but
provides an upper and a lower bound. We implemented our approach as an extension to KLEE for computing
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One of the most critical security issues in software systems today is protecting users’ private
information, which makes analyzing information leakage in software systems a timely and im-
portant research problem. A classic approach to address this problem is enforcing noninterference
which ensures that publicly observable properties of program execution (such as public outputs
or side-channels) are independent of secret input values. But, enforcing noninterference is often
not possible as software systems need to reveal some amount of information that depends on
secret inputs. Consider a password checker where, as public output, the system needs to provide

∗This material is based on research supported by NSF under Grants CCF-2008660, CCF-1901098, CCF-1817242.
†These authors have equal contribution to this paper.

Authors’ addresses: Seemanta Saha, UC Santa Barbara, USA, seemantasaha@ucsb.edu; Surendra Ghentiyala, UC Santa
Barbara, USA, sg974@cornell.edu; Shihua Lu, UC Santa Barbara, USA, shihualu@ucsb.edu; Lucas Bang, Harvey Mudd
College, USA, lbang@g.hmc.edu; Tevfik Bultan, UC Santa Barbara, USA, bultan@ucsb.edu.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/6-ART167
https://doi.org/10.1145/3591281

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 167. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Analytic approach 

Uses model counting

Software

Compute

…

… Joint prob. 
distribution



167

Obtaining Information Leakage Bounds via Approximate
Model Counting∗

SEEMANTA SAHA†, UC Santa Barbara, USA

SURENDRA GHENTIYALA†, UC Santa Barbara, USA

SHIHUA LU, UC Santa Barbara, USA

LUCAS BANG, Harvey Mudd College, USA

TEVFIK BULTAN, UC Santa Barbara, USA

Information leaks are a significant problem in modern software systems. In recent years, information theoretic
concepts, such as Shannon entropy, have been applied to quantifying information leaks in programs. One recent
approach is to use symbolic execution together with model counting constraints solvers in order to quantify
information leakage. There are at least two reasons for unsoundness in quantifying information leakage
using this approach: 1) Symbolic execution may not be able to explore all execution paths, 2) Model counting
constraints solvers may not be able to provide an exact count. We present a sound symbolic quantitative
information flow analysis that bounds the information leakage both for the cases where the program behavior
is not fully explored and the model counting constraint solver is unable to provide a precise model count but
provides an upper and a lower bound. We implemented our approach as an extension to KLEE for computing
sound bounds for information leakage in C programs.

CCS Concepts: • Software and its engineering→ Formal software verification; General programming
languages.

Additional Key Words and Phrases: Quantitative Program Analysis, Symbolic Quantitative Information Flow
Analysis, Model Counting, Information Leakage, Optimization

ACM Reference Format:
Seemanta Saha, Surendra Ghentiyala, Shihua Lu, Lucas Bang, and Tevfik Bultan. 2023. Obtaining Information
Leakage Bounds via Approximate Model Counting. Proc. ACM Program. Lang. 7, PLDI, Article 167 (June 2023),
22 pages. https://doi.org/10.1145/3591281

1 INTRODUCTION

One of the most critical security issues in software systems today is protecting users’ private
information, which makes analyzing information leakage in software systems a timely and im-
portant research problem. A classic approach to address this problem is enforcing noninterference
which ensures that publicly observable properties of program execution (such as public outputs
or side-channels) are independent of secret input values. But, enforcing noninterference is often
not possible as software systems need to reveal some amount of information that depends on
secret inputs. Consider a password checker where, as public output, the system needs to provide

∗This material is based on research supported by NSF under Grants CCF-2008660, CCF-1901098, CCF-1817242.
†These authors have equal contribution to this paper.

Authors’ addresses: Seemanta Saha, UC Santa Barbara, USA, seemantasaha@ucsb.edu; Surendra Ghentiyala, UC Santa
Barbara, USA, sg974@cornell.edu; Shihua Lu, UC Santa Barbara, USA, shihualu@ucsb.edu; Lucas Bang, Harvey Mudd
College, USA, lbang@g.hmc.edu; Tevfik Bultan, UC Santa Barbara, USA, bultan@ucsb.edu.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/6-ART167
https://doi.org/10.1145/3591281

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 167. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Analytic approach 

Uses model counting

Software

Compute

…

… Joint prob. 
distribution

An analytic approach 
provides  
a precise result or  
a formal guarantee!

🤓



Heterogeneous 
features

Complexity 
e.g., Path explosion problem

Software

Compute

…

… Joint prob. 
distribution



Heterogeneous 
features

Complexity 
e.g., Path explosion problem

Software

Compute

…

… Joint prob. 
distribution

Locational privacy 
Geographical characteristics 

 (e.g., roads, lakes)

Cyber Physical System 
Empirical data 
from sensors



Heterogeneous 
features

Complexity 
e.g., Path explosion problem

Software

Compute

…

… Joint prob. 
distribution

😖Locational privacy 
Geographical characteristics 

 (e.g., roads, lakes)

Cyber Physical System 
Empirical data 
from sensors



(Existing) Empirical Information Leakage Analysis
…Se

cr
et

 (S
)



(Existing) Empirical Information Leakage Analysis
…Se

cr
et

 (S
)

Observable (O)



(Existing) Empirical Information Leakage Analysis
…Se

cr
et

 (S
)

Observable (O)

,⟨ ⟩

,⟨ ⟩

,⟨ ⟩



(Existing) Empirical Information Leakage Analysis
…

…

100 0 … 30

2 78 … 0

… … … … …

13 50 … 50

Sample 
Joint 
Frequency 
Table

Se
cr

et
 (S

)

Observable (O)

Se
cr

et
 (S

)

Observable (O)



(Existing) Empirical Information Leakage Analysis
…

Se
cr

et
 (S

)

Observable (O)

Se
cr

et
 (S

)

Observable (O)

…

0.1 0.0 … 0.03

0.002 0.078 … 0.0

… … … … …

0.013 0.05 … 0.05

Empirical 
Joint 
Probability 
Distribution



1. Empirical MI Estimator (Empirical)

(Existing) Empirical Information Leakage Analysis

…

…

Directly compute
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🚨 Problem

It significantly overestimates MI if there are missing events.

Accuracy

0

0.088

0.175

0.262

0.35

True Distribution
0

0.088

0.175

0.262

0.35

Empirical Dist.

zero probability 
to missed events

frequent events’ probability 
is overestimated.

I ≪ ̂Iemp

Gap

Due to missing events ,  in the sample,⟨ ⟩



1. Empirical MI Estimator (Empirical)

(Existing) Empirical Information Leakage Analysis

…

…

Directly compute
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2. Miller MI Estimator (Miller)
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🚨 Problem

It significantly overestimates MI if there are missing events.

Accuracy
🚨 Problem

It underestimates MI if there are rare events in the sample.

Safety

Underestimating the information leakage is 
especially harmful, since it leads to 

overconfidence in the privacy of the 
vulnerable software.

This program 
must be secure!

Haha, it’s easy 
to break!

underestimate



Miller estimator

Unsafe w/ small samples

̂Imiller = ̂Iemp −
(mS − 1)(mO − 1)

2n

Research Aim

Empirical estimator
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inaccurate or unsafe estimates due to 
mishandling missing or rare events.

Miller estimator

Unsafe w/ small samples

̂Imiller = ̂Iemp −
(mS − 1)(mO − 1)

2n

Research Aim

Empirical estimator

̂Iemp(S; O) = Ĥemp(X) − Ĥemp(X ∣ Y )

Inaccurate

M
I

← True MI

Unsafe zone

Our estimator

Empirical

Miller

We developed an estimator that 
accurately and safely estimates the  

leakage in the presence of  
missing or rare events.
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• Given samples from the unknown multinomial distribution (MD), it reconstructs the underlying MD 
by approximation.
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Chao’s Multinomial Distribution (MD) Estimation

 A. Chao et al, “Unveiling the species-rank abundance distribution by generalizing the good-turing sample coverage theory.” Ecology, vol. 96 5, pp. 1189–201, 2015.

• Given samples from the unknown multinomial distribution (MD), it reconstructs the underlying MD 
by approximation.

➡ Handle the missing/rare events problem 😀
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MD estimation does not provide which 
missing event has which probability.

It only estimates the shape of the distribution, 
not the probability for each event.
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1. Subject programs from previous study

Benchmark

TABLE I: List of subject programs (from HyLeak [11])

Subject (|X |, |Y|) Variants (N ) Information Leakage

ProbTerm (N + 1, 10–20) {5, 7, 9, 12} A program implementing a loop that terminates after a certain number of iterations (observable). The termination
condition for that loop is a probabilistic function on the secret value (secret).

RandomWalk (500, 24–40) {3, 5, 7, 14} A robot control program leaks the final location of the controlled robot (observable). The adversary wants to guess
the starting location (secret).

Reservoir (2N , 2N/2) {4, 6, 8, 10, 12} An implementation of reservoir sampling [18] that leaks the random sample of size N/2 (observable) chosen
without replacement from a population of size N (secret).

SmartGrid (3N , 12) {1, 2, 3, 4, 5} A smart grid control program leaks whether the total consumption of all users exceed a cetain threshold (observable).
The adversary can be one of the users and wants to guess the consumption of another user (secret).

Window (N,N) {20, 24, 28, 32} A secret-avoiding random number generator which leaks the number chosen within a random range (observable).
If the selected range includes the secret, a different range is chosen. The adversary wants to guess the secret.

IV. EXPERIMENTAL SETUP

A. Research Questions
We design four research questions to investigate our main

hypothesis: whether accounting for missing events improves
the information leakage estimate.

RQ1: How accurate and safe is the proposed method com-
pared to existing statistical methods?

We measure accuracy using the mean-squared error (MSE), a
standard measure of estimator performance, and safety as the
frequency of underestimating the MI. Underestimating the MI
can lead to undue confidence in the confidentiality of the data
processed by the program and renders the estimator unreliable.

RQ2: How does each component of our proposed method
affect the performance of the estimation?

We investigate the effect of each component on the perfor-
mance of our proposed method. The components include:
(a) the selected approach (Flatten [FI] or By-Secret [BS]),
(b) with or without refinement heuristics, and (c) with or
without the Miller-Madow bias correction.

RQ3: What is the timing cost of the proposed method?
Compared to the empirical MI estimation or Miller-Madow
bias correction, which have negligible time overhead, the
proposed method requires additional computation to estimate
the MD. We investigate the timing cost of the proposed method
and discuss the feasibility of the proposed method in practice.

RQ4: How does the proposed method perform on real-world
applications for information leakage quantification?

We evaluate the proposed method in the practical context
of information leakage quantification. We consider two real-
world applications: location privacy and e-passport privacy.

B. Baseline and State-of-the-Art Estimators
We consider two baseline estimators: the empirical estimator

and the Miller estimator, i.e., the empirical MI with Miller-
Madow bias correction used in Leakwatch [8], [9].

We consider one state-of-the-art estimator, HyLeak, a hy-
brid estimation method that combines statistical and precise
analysis [11]. Similar to our work, Biondi et al. [11] aimed
to overcome the limitations of large sample sizes required for
statistical methods. Their HyLeak approach relies on precise
analysis for components that are impractical to analyze statis-
tically. They suggest an automatic program decomposition and

a set of heuristics to select components that have a large joint
sub-distribution matrix. For such components, they use precise
analysis, and for the others, they use statistical analysis. Then,
the results are combined to estimate the MI of the program.
The authors claimed that HyLeak is more scalable than the
Miller estimator and the purely precise method.

C. Subjects and Design of Experiment
Benchmark Programs (Table I). For the first three research

questions, we use the benchmarks from HyLeak [11] for our
evaluation. The subjects cover a wide variety of programs,
some of which operate probabilistically and exhibit non-trivial
secret-observable mappings. More details can be found in
the supplementary material. For every program, we choose
between four to five variants (choices of N ) for a total of 22
variants. For all variants, we choose four sample sizes for a
total of 88 configurations. We consider the uniform distribution
over the domain of secret values as in previous work [9], [11].

To determine the ground truth, at this scale, there exists
no method to compute the MI precisely. Hence, we follow
the approach typically followed in applied statistics. Given a
program, we compute the ground truth MI between (secret,
observable) from the empirical MI given a very large number
(1M) of executions. This is more than one to five orders of
magnitude of the number of samples for the estimation.

We consider the performance of the estimators for different
numbers of sample program executions. Our evaluation con-
siders ⇥0.5, ⇥1, ⇥2, and ⇥5 of the size of the observable
domain (Y) for each secret value (x 2 X ) as the number of
program executions. We call this relative number of executions
as a sample ratio. The range covers starting from the natural
situation when it is simply not possible to observe all the
observable values for each secret value (⇥0.5) and up to a case
when each secret value may have had enough opportunity to
be observed with all the observable values (⇥2, ⇥5). For each
N 2 {0.5, 1, 2, 5} · |X | · |Y|, we randomly sample N program
executions and estimate the MI using the estimators.

Real-world Applications. To investigate how the proposed
method performs in practice, we consider two real-world
applications of information leakage quantification in RQ4.

Our first application is measuring information leakage from
a location privacy-preserving mechanism (LPPMs) which is
used to protect the user’s location privacy (secret) by reporting
the obfuscated location (observable) to the corresponding
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We measure accuracy using the mean-squared error (MSE), a
standard measure of estimator performance, and safety as the
frequency of underestimating the MI. Underestimating the MI
can lead to undue confidence in the confidentiality of the data
processed by the program and renders the estimator unreliable.

RQ2: How does each component of our proposed method
affect the performance of the estimation?

We investigate the effect of each component on the perfor-
mance of our proposed method. The components include:
(a) the selected approach (Flatten [FI] or By-Secret [BS]),
(b) with or without refinement heuristics, and (c) with or
without the Miller-Madow bias correction.

RQ3: What is the timing cost of the proposed method?
Compared to the empirical MI estimation or Miller-Madow
bias correction, which have negligible time overhead, the
proposed method requires additional computation to estimate
the MD. We investigate the timing cost of the proposed method
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RQ4: How does the proposed method perform on real-world
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and the Miller estimator, i.e., the empirical MI with Miller-
Madow bias correction used in Leakwatch [8], [9].

We consider one state-of-the-art estimator, HyLeak, a hy-
brid estimation method that combines statistical and precise
analysis [11]. Similar to our work, Biondi et al. [11] aimed
to overcome the limitations of large sample sizes required for
statistical methods. Their HyLeak approach relies on precise
analysis for components that are impractical to analyze statis-
tically. They suggest an automatic program decomposition and

a set of heuristics to select components that have a large joint
sub-distribution matrix. For such components, they use precise
analysis, and for the others, they use statistical analysis. Then,
the results are combined to estimate the MI of the program.
The authors claimed that HyLeak is more scalable than the
Miller estimator and the purely precise method.

C. Subjects and Design of Experiment
Benchmark Programs (Table I). For the first three research

questions, we use the benchmarks from HyLeak [11] for our
evaluation. The subjects cover a wide variety of programs,
some of which operate probabilistically and exhibit non-trivial
secret-observable mappings. More details can be found in
the supplementary material. For every program, we choose
between four to five variants (choices of N ) for a total of 22
variants. For all variants, we choose four sample sizes for a
total of 88 configurations. We consider the uniform distribution
over the domain of secret values as in previous work [9], [11].

To determine the ground truth, at this scale, there exists
no method to compute the MI precisely. Hence, we follow
the approach typically followed in applied statistics. Given a
program, we compute the ground truth MI between (secret,
observable) from the empirical MI given a very large number
(1M) of executions. This is more than one to five orders of
magnitude of the number of samples for the estimation.

We consider the performance of the estimators for different
numbers of sample program executions. Our evaluation con-
siders ⇥0.5, ⇥1, ⇥2, and ⇥5 of the size of the observable
domain (Y) for each secret value (x 2 X ) as the number of
program executions. We call this relative number of executions
as a sample ratio. The range covers starting from the natural
situation when it is simply not possible to observe all the
observable values for each secret value (⇥0.5) and up to a case
when each secret value may have had enough opportunity to
be observed with all the observable values (⇥2, ⇥5). For each
N 2 {0.5, 1, 2, 5} · |X | · |Y|, we randomly sample N program
executions and estimate the MI using the estimators.

Real-world Applications. To investigate how the proposed
method performs in practice, we consider two real-world
applications of information leakage quantification in RQ4.

Our first application is measuring information leakage from
a location privacy-preserving mechanism (LPPMs) which is
used to protect the user’s location privacy (secret) by reporting
the obfuscated location (observable) to the corresponding
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2. Practical scenarios with real-world examples

Location Privacy Passport Tracing
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Safety
• Miller underestimates 57% of the estimation. 

• ChaoSec underestimates 8% of the estimation. 

• ChaoFlat underestimates 67% of the estimation.
UNSAFE

Our ChaoSec estimator is the best estimator in terms of both safety and accuracy.  
The Miller estimator often unsafely underestimates the MI unless the sample size is large.
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