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Large Language Models (LLMs) have shown tremendous promise in automated software engineering. In this
paper, we investigate the opportunities of LLMs for automatic regression test generation for programs that
take highly structured, human-readable inputs, such as XML parsers or JavaScript interpreters. Concretely,
we explore the following regression test generation scenarios for such programs that have so far been difficult
to test automatically in the absence of corresponding input grammars:
e Bug finding. Given a code change (e.g., a commit or pull request), our LLM-based approach generates a test
case with the objective of revealing any bugs that might be introduced if that change is applied.
o Patch testing. Given a patch, our LLM-based approach generates a test case that fails before but passes after
the patch. This test can be added to the regression test suite to catch similar bugs in the future.
We implement CLEVEREST, a feedback-directed, zero-shot LLM-based regression test generation technique, and
evaluate its effectiveness on 22 commits to three subject programs: Mujs, Libxml|2, and Poppler. For programs
using more human-readable file formats, like XML or JavaScript, we found CLEVEREST performed very well. It
generated easy-to-understand bug-revealing or bug-reproduction test cases for the majority of commits in
just under three minutes—even when only the code diff or commit message (unless it was too vague) was
given. For programs with more compact file formats, like PDF, as expected, it struggled to generate effective
test cases. However, the LLM-supplied test cases are not very far from becoming effective (e.g., when used as
a seed by a greybox fuzzer or as a starting point by the developer).
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1 Introduction

Recently, Large Language Models (LLMs) have shown tremendous promise. Liu et al. [14] just
published a comprehensive survey of research on the automation of the most important software
engineering processes, including requirements engineering, code generation, program analysis,
testing, debugging, and end-to-end development and maintenance. For instance, the LLM-based
AutoCodeRover [36] can successfully resolve more than 30% of Github issues in a recent benchmark.

In this paper, we take a critical perspective on the utility of LLMs as assistants in automated
regression test generation for programs that take human-readable, highly structured inputs. Given a
commit or pull request, regression test generation is the problem of exposing any bugs that may
have been introduced or fixed by the code changes in that commit. We find this specific problem
statement interesting for several reasons.
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(1) Regression test generation is an important practical problem. Given a code change (e.g., a commit
or pull request), developers and code reviewers would like to have a witness test case’ that
checks (i) whether the change introduced any bugs or (ii) if a patch really fixed the bug.

(2) Regression test generation is an important research problem with a large body of existing work
along different streams of research, including symbolic execution, search-based software testing,
and directed or regression greybox fuzzing. However, we are unaware of existing LLM-based
approaches to generate bug-revealing test cases from code commits.

(3) Our problem poses an interesting opportunity for LLMs. While existing regression testing
techniques [10, 20, 33, 38], without existing seed inputs or input grammars, often fail to generate
valid inputs in the required format for programs taking highly structured inputs, LLMs are often
found to generate grammatically correct text in any language (incl. programming languages).

(4) Our problem poses interesting challenges for LLMs: (a) An LLM has no access to the source code
except for the commit message and diff (i.e., the changed lines of code plus a few unchanged
lines for context). Without the full code, how can an LLM interpret the behavior to be tested?
How does it perform with only a commit message or diff? (b) Even if an LLM “understands” the
changed unit (i.e., function or feature), how can it generate a system-level input that exercises
that unit and exposes a behavioral difference? (c) LLMs are known to struggle with reasoning
[8]. Yet, the regression testing problem is inherently a program analysis problem that requires
the capability to reason about the outcome of the computation represented by the program
statements. With these challenges in mind, we conduct experiments to explore the utility of
LLMs in regression test generation.

To evaluate the utility of LLMs for regression testing, we develop CLEVEREST, a feedback-directed,
zero-shot LLM-based regression testing technique for programs that take highly structured, human-
readable inputs. Using CLEVEREST, our evaluation seeks to answer the following research questions:

e RQ1 - How well does CLEVEREST perform as a regression test generator?
e RQ2 - How does CLEVEREST perform under various hyperparameter values?
e RQ3 - How does CLEVEREST compare to WAFLGo, the state-of-the-art in regression testing?

RQ1. How well does CLEVEREST perform as a regression test generator? For the XML parser and
JavaScript interpreter, CLEVEREST performed unexpectedly well. In under three minutes, it found
bugs in 3 of 6 bug-introducing commits and reproduced bugs patched in 4 of 6 bug-fixing commits—
it at least reached the changed code in 4 of the remaining 5 cases.”? However, for the PDF parser,
which requires a complex input format, CLEVEREST could not find or reproduce any of the five
bugs. It did reach the changed code in half the commits and exposed a difference in one.

RQ2. How does CLEVEREST perform under various hyperparameter values? To gain a more holistic
perspective of the capabilities of CLEVEREST, we studied the impact of various hyperparameters
on effectiveness. Most interestingly, we find that CLEVEREST continues to generate effective test
cases even when only an expressive commit message is provided. An LLM-based approach seems
to find bugs in the changed feature as long as the intention is obvious from the commit information
regarding which feature has been changed. We also found that asking CLEVEREST to generate the
command line prompt to execute the test case itself did not reduce its performance; it even found a
bug that was related to the changed feature but was only fixed much later. In addition, amongst

Throughout this paper, we use the terms “test case” and “test input” interchangeably.

2We also checked for data leakage, i.e., whether the generated test cases existed in the LLM’s training data. We computed
the similarity, using Levenshtein distance ratio [2], between CLEVEREST-generated test cases and available bug-triggering
test cases from the bug report (not the commit). The majority of CLEVEREST-generated cases were less than 7% similar
(mean 10%, max 40%), suggesting they are generated based on commit information, not memorized from training data.
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others, we found that using the less powerful GPT-40 mini or dropping the execution feedback is
detrimental to its effectiveness.

RQ3. How does CLEVEREST compare to WAFLGo, the state-of-the-art in regression test generation?
WAFLGo [33] is the most recent, state-of-the-art directed greybox fuzzer for regression test genera-
tion that was shown to outperform previous directed and regression greybox fuzzers [4, 6, 15, 37, 38].
Given a corpus of valid input seeds, WAFLGo mutates these seeds in a feedback-directed manner
with the objective of reaching the changed code and exposing any bugs. In our experiments, we
found that, while substantially faster (under 3 minutes versus several hours), CLEVEREST performs
as well as WAFLGo in bug reproduction and slightly worse than WAFLGo in bug finding. However,
upon closer inspection, we found that CLEVEREST was often not very far from exposing the bug.
In the majority of cases, CLEVEREST would at least reveal a difference in behavior. Only for 5
of 22 commits would it not even reach the changed code (short of generating valid PDF files).
Indeed, running a fuzzer on the CLEVEREST-generated seeds, we found/reproduced more bugs than
WAFLGo when started on the independently provided initial seeds.

We also investigated the opportunities of CLEVEREST as a zero-shot regression test generator.
While CLEVEREST generates the regression test cases from scratch, the performance of WAFLGo
depends on an initial set of seed files (i.e., valid XML, JS, or PDF files). Upon closer inspection,
we found that WAFLGo’s initial seeds happen to be very close to bug-revealing already:*> Out of
22 cases, in 4 cases, the initial seeds revealed the bug; in 9 cases, the initial seeds reached the
changed code, and in 2 cases, only a few characters needed to be changed to reveal the bug. In
contrast, by upgrading CLEVEREST by fuzzing the generated test cases, our zero-shot approach
outperforms WAFLGo, whose performance depends on a user-provided seed corpus. Hence, we find
that CLEVEREST, as a zero-shot regression test generator, also makes an excellent seed generator
for greybox fuzzers.

In summary, this paper makes the following contributions:

e We introduce CLEVEREST, a feedback-directed, zero-shot LLM-based regression test generation
technique for programs that take highly structured, human-readable inputs to evaluate the
utility of LLMs for regression test generation.

e We evaluate CLEVEREST on 22 commits to three subject programs: Mujs, Libxml2, and Poppler.
We find that CLEVEREST performs very well for programs using human-readable file formats.

o CLEVEREST performs robustly even when only the code diff is given, without the command line
prompt, or the randomness of the LLM is increased. Lack of information in the commit message,
a less powerful LLM, or dropping the execution feedback is detrimental to its effectiveness.

e CLEVEREST performs closely while being substantially faster than WAFLGo, a state-of-the-art
few-shot regression test generator, whose initial seeds are already close to bug-revealing. Using
CLEVEREST-generated test cases as seeds, a vanilla AFL++ outperforms WAFLGo.

o All the implementation code, data, and scripts used in this study are shared in the replication
package available at https://anonymous.4open.science/r/cleverest-7767/.

Overall, we can safely recommend the use of LLMs as an effective means to automatically generate
or even just bootstrap the manual generation of regression test cases for a code commit or pull
request—particularly if the program takes highly structured, human-readable inputs as test cases.

2 Experimental Design

In this paper, we seek to evaluate the capabilities of a large language model (LLM) as a regression
test generation tool in the CI/CD pipeline (Continuous Integration / Continuous Delivery) for

3For fairness, the WAFLGo authors decided to take the initial seeds from the UNIFUZZ benchmark [13].
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Fig. 1. CLEVEREST: Our zero-shot feedback-guided LLM-based regression test generation methodology.

programs that take highly structured, human-readable inputs, like JavaScript programs or XML files.
Given only the code changes and/or a description of these changes (i.e., a commit or pull request),
we want to find out how well an LLM performs in generating test cases that reveal bugs that might
have been introduced or patched by these changes. Rather than using an LLM as-is, we introduce a
tailored approach to our regression testing problem statement where the LLM is embedded in a
feedback-directed framework involving a prompt synthesizer and execution analyzer. We call our
tool CLEVEREST (communicate with an LLM for software version testing). Finally, we discuss our
benchmark selection and experimental infrastructure.

2.1 Research Questions

e RQ1. How well does CLEVEREST perform as a regression test generator? Specifically, we evaluate
the two most important properties of CLEVEREST if it was fully embedded in a CI/CD pipeline:
effectiveness and execution time. Given the corresponding commits, we evaluate (i) finding bugs
that were introduced in a commit and (ii) reproducing bugs that were patched in a commit. To
understand how CLEVEREST performs in the hands of a developer, we study quantitatively and
qualitatively how “close” CLEVEREST-generated test cases are from revealing the bug.

® RQ2. How well does CLEVEREST perform under various hyperparameter values? Specifically, we
evaluate how well CLEVEREST performs compared to the default configuration if we (a) only
used the commit message but not the diff, (b) only used the commit diff but not the message,
(c) let it generate the command line prompt in addition to the test input. (d) used maximum LLM
temperature, (e) used a less powerful LLM (40-mini), (f) used 10 iterations instead of 5 in the
feedback loop, and (g) dropped the execution analysis result in the feedback loop.

e RQ3. How does CLEVEREST compare to WAFLGo, the state-of-the-art in regression test generation?
Specifically, we evaluate (1) the performance of WAFLGo as a few-shot regression test generator
and (2) the dependence of WAFLGo on the quality of the initial seed corpus. We then (3) evaluate
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Fig. 2. The prompt generated by the prompt synthesizer for the LLM to generate the test input for Mujs.

the performance of CLEVEREST against WAFLGo both directly and as a seed generator for
zero-shot greybox fuzzing.

2.2 CLEVEREST: LLM-based Regression Testing Technique and Implementation

We present the design and implementation of CLEVEREST, a zero-shot feedback-guided LLM-based
regression test generation tool, to evaluate the effectiveness of LLMs for generating regression
tests for software commits to programs taking highly structured, human-readable inputs.

Figure 1 gives a procedural overview of CLEVEREST. Our tool CLEVEREST consists of three key
components: Prompt Synthesizer, LLM Module, and Execution Analyzer, which work in a feedback
loop to generate regression test cases for the commit under test.

2.2.1  Prompt Synthesizer. The first component of CLEVEREST is the Prompt Synthesizer, which
generates a domain-specific prompt for the LLM to create the test input. Given the testing target,
which is the software and the commit under test, and optionally some feedback from a previous
iteration, the prompt synthesizer constructs the prompt for the LLM, which includes the task
description, commit information, and the attempt history.

Figure 2 shows an example prompt to generate a regression test case for a code commit to Mujs,
a lightweight JavaScript interpreter. The synthesized prompt has the following structure:

(1) Task Description: The beginning of the prompt starts with a general description of the
task. The main parts consist of (a) a simple sentence to describe the program under test, e.g.,
“JavaScript interpreter,” (b) the goal of the LLM-generated input, e.g., “trigger a bug introduced
by the commit,” and (c) format specification of LLM’s response, e.g., “return the input wrapped
in a triple-backtick fenced block along with its brief explanation of the expected behavior”

(2) Commit Information: The second part contains the information about the commit under
test to the LLM. We consider both the commit message and the code diff as the source of the
information as they provide different levels of context about the commit: The code diff contains
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the changed lines of code plus a few unchanged lines of context. The commit message offers a
high-level description of the developer’s intention and the purpose of the commit.

(3) Attempt History: From the second iteration on, the prompt will contain the execution result of
the previous input generated by LLM. Each item for the previous input will show (a) the general
execution result analyzed by the execution analyzer (we will discuss this in Section 2.2.3), (b) the
program output (combining stdout and stderr), and (c) the program return code.

Several hyperparameters in the prompt synthesizer will affect the task difficulty for the LLM. One
is the level of commit information provided to the LLM: we may consider providing only the
code diff, only the commit message, or both. Another hyperparameter is whether to provide the
command-line utility and parameters (cmd) expected to be used to test the commit. Unlike fuzzing
tools, which can only modify the input and require the user to specify the cmd, an LLM can generate
the full cmd for the program execution. Allowing the generation of the cmd can make the task more
challenging for the LLM, as it needs to understand the program’s behavior to generate the correct
cmd.

2.2.2  LLM Module. The generated prompt is fed into the LLM module, which generates the test
input for the commit under test. The output of the LLM contains the content of the test input along
with the explanation of the expected behavior and the cmd if asked. The output is then parsed to
produce the actual test case, which is executed to verify the commit under test. Depending on the
task description, the LLM tries to generate the input that triggers the bug introduced by the commit
(without knowing a priori if the bug is introduced) or reproduces the bug fixed by the commit.

The LLM module has several hyperparameters that affect the quality of the generated output.
One hyperparameter is the size of the LLM model, which determines the model’s capacity. A larger
model size generally results in better output quality but requires more computational resources.
Another hyperparameter is the temperature, which controls the randomness of the output. A higher
temperature value results in more randomness in the output, while a lower temperature value
results in more deterministic output.

2.2.3 Execution Analyzer and Feedback Loop. The final component of CLEVEREST, the Execution
Analyzer, receives the LLM-generated test input and executes it on the program before and after
the commit under test. The execution analyzer compares the two executions to measure if the
generated input contributes to the commit testing. To classify the test outcome, we leverage the RIPR
model [1, 12], i.e., Reaching, Infecting, Propagating, and Revealing, to measure the effectiveness of
the generated input. We measure the result of the execution in the following three aspects:

(1) Bug Triggering: Bug triggering is the ultimate goal of the testing; it represents the Revealing
part of the RIPR model. Depending on the scenario, the execution analyzer checks if the input
triggers the intended bug: the input should trigger the bug on the program after or before the
commit for the bug-finding or bug-reproduction scenario, respectively, and the same input
should not trigger the same bug on the other version of the program. For instance, even if the
input triggers a bug in the program, it is not considered a successful bug triggering if the same
bug is triggered in both versions of the program.

(2) Output Changing: Even if the input does not trigger a bug as the sanitizer does not detect the
anomaly, it may result in a behavior difference; this represents the Infecting and Propagating
parts of the RIPR model. We detect the behavior difference by comparing the output and return
code of the program before and after the commit. Any difference will imply that the generated
test successfully exploits the difference in the program behavior introduced by the commit.

(3) Commit Reaching: The first necessary condition for input to reveal a bug introduced by
the commit is to reach the code changed by the commit; this represents the Reaching part of
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the RIPR model. Yet, even generating an input that reaches the commit is not trivial. We thus
measure the coverage of the program execution with the generated input to see if there is any
overlap between the code changed by the commit and the code covered by the execution.

The output of the execution analyzer is the assessment result of the generated input categorized
into four types: bug triggered, output changed, commit reached, and none of the above. Notice that
the prior categories are strict inclusions of the latter ones.

If the execution results do not trigger a bug, the inspected execution result, i.e., whether the
input reaches the commit, if so, which lines are covered, and if the execution result is different,
is transmitted back to the prompt synthesizer as feedback for the next input generation. This
incremental prompting strategy can guide the LLM in exploring the input space more effectively
and being able to generate high-quality test input for the commit under test.

Two hyperparameters in the feedback loop affect the performance of CLEVEREST. One hyper-
parameter is whether or not to provide the analyzed execution result as feedback to the LLM for
the next iteration. If not, only the previously generated input is used as the prompt for the next
iteration to avoid generating the same input. The other hyperparameter is the number of iterations,
which determines the number of times the LLM generates the input, and the execution analyzer
verifies the input. A higher number of iterations can lead to more effective input generation but
requires more computational resources.

2.24 Implementation. Below, we describe the implementation details of CLEVEREST.

Commit Information Extraction. We use Git to extract the commit message and code diff. The
command ‘git show —format=%B’ is used to print them together in a concise format. For commits
with lengths that exceed the context length of LLM, we will apply a filter mechanism to keep only
code diff in the C/C++ source file. If it still does not fit, we keep only the commit message.

Execution Feedback. CLEVEREST utilizes the sanitizer while compiling the program to detect
the bugs. It inserts instrumentation code during the compilation so that it detects malicious or
undefined behavior at runtime. Using the sanitizer, one can detect various types of bugs, such as
memory corruption, use-after-free, and buffer overflow, without any preliminary effort to define
the oracle and write assertions or test cases.

In the experiment, we used AddressSanitizer since the benchmark dataset we considered consists
of memory-related bugs. The execution analyzer checks for the keyword Sanitizer in the program
output to determine the existence of a bug. For behavior difference, we compare the stdout, stderr,
and return code of the program built before and after the commit under test. To identify the
reachability of the commit, we use GCOV to get code coverage information. We consider the input
reaches the commit if there is any overlap between the code changed by the commit and the code
covered by the execution.

LLM Configuration. We use openai-cli, a command line client written in Bash, to make LLM
queries. We use GPT-4o as the default model and set the max token to 4096 to achieve a balance
between performance and cost. It is worth noting that we do not keep conversation history when
querying LLM, as it consumes more tokens. The default temperature is set to 0.5, and the number
of iterations is set to 5. We additionally consider up to ten iterations and the temperature to be 1.0
to investigate the effect of the parameter in our methodology. We also consider the GPT-40 mini
model to investigate the effect of the model size in our methodology. GPT-40 mini is a smaller, more
efficient version of GPT-4o; it scores 82% on the MMLU benchmark, whereas GPT-40 scores 88.7%. It
is designed especially for applications where affordability and lower latency are critical.
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Table 1. Detail of Bug Dataset. The column Issue refers to the issue number in the project repository. The
columns BIC and BFC refer to the bug-introducing-commit and the bug-fixing-commit id, respectively.

Software ‘ Description ‘ Command-Line Utility and Parameters ‘ Issue ‘ BIC ‘ BFC
mujs (input file) #65 | 8c27b12 | 833f82c
. JavaScript mujs (input file) #141 | 832e069 | 6871e5b

Mujs : .

interpreter | mujs (input file) #145 | 4c7febe | £93d245
mujs (input file) #166 | 3f7lalc | 8b5ba20
Libxml2 XML parsing | xmllint -recover -sax1 —sax (input file) #535 | 9a82b94 | d0c3f01
library xmllint -recover -dropdtd -nofixup-base-uris -sax1 (input file) | #550 | 7e3f469 | 6273df6
pdfunite (input file 1) (input file 2) output.pdf #1282 | 3d35d20 | 4564200
. pdfunite (input file 1) (input file 2) output.pdf #1289 | 3cae777 | efb6868
Poppler PDla;lf;crlermg pdftops (input file) /dev/null #1303 | e674ca6 | adca3a9
y pdftoppm -mono -cropbox (input file) #1305 | aaf2e80 | 907d05a
pdftoppm -mono -cropbox (input file) #1381 | 245abad | 1be35ee

2.3 Benchmark Selection and Experimental Infrastructure

Benchmark Selection. To answer the research questions for CLEVEREST, we choose a commit bench-
mark dataset for our experiment based on the following selection criteria:

(1) We want to focus on regression test generation for programs that take highly structured,
human-readable input formats.*

(2) We want to maximize the fairness of our comparison to the state-of-the-art regression test
generation tool WAFLGo, which is used for comparison.

(3) We consider real-world regression bugs of various types that have been introduced and patched
in identified commits to open-source software.

Table 1 shows the details of the dataset that satisfies our selection criteria. Specifically, we found
that the benchmark dataset that was used during the evaluation of WAFLGo [33] satisfies selection
criteria 2 and 3, while the three programs (i.e., the JavaScript interpreter Mujs, the XML parsing
library Libxml2, and the PDF rendering library Poppler) satisfy selection criterion 1. These programs
cover various types of textual input formats: JavaScript, XML, and PDF, which are all highly
structured. Each software has one or more command-line utilities that retrieve the textual input
files as command-line parameters with relevant options.

The WAFLGo dataset lists 11 bugs for these three benchmark programs, all of which are memory-
related. The bug types span a wide range of memory-related bugs, including heap-buffer-overflow,
global-buffer-overflow, heap-use-after-free, stack-overflow, etc. For each bug, we consider the
bug-introducing-commit (BIC) and the bug-fixing-commit (BFC) as the target commit in each
scenario: BIC for bug-finding and BFC for bug-reproduction scenarios. Thus, we have 22 commits
in total for the experiment.

Experiment Configuration. The default configuration of our CLEVEREST is as follows: we provide
both the commit message and the code diff to the LLM as the commit information, and we provide
the command-line utility and parameters expected to be used to test the commit. We attached
the execution analysis result during the feedback. As previously mentioned, we use the GPT-40
model with a temperature of 0.5 and set the number of iterations to 5. We set the timeout for each
LLM-based input generation to 30 seconds. We repeat each experiment five times to account for
the randomness of the LLM and the fuzzer. All experiments are conducted on a docker container
with 64 cores of AMD EPYC 7713P @ 2.0GHz and 251GB memory.

4Without valid input examples as seeds or an input grammar this type of programs pose a challenge for existing regression
test generation tools while we LLMs are known to handle highly structured texts quite well.
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Table 2. Results for bug finding and bug reproduction effectiveness of CLEVEREST across five repetitions.
For every bug and both scenarios, we show the average effectiveness score on a slider (X : Not reached;
reached;«”: output-changing; v : bug-revealing, the number of trials in which the bug was found (“Bug”), and
the average time in seconds (“T (s)”).

Bug-Introducing Commit | Bug-Fixing Commit
X >« v Bug TGs)|X><"v Bug T(s)
#65 @ 5/5 14.2 (©) 2/5 266
Mujs #141 Q@ 0/5 47.0 @ 0/5 332
#145 O 4/5 31.6 @ 3/5 294
#166 Q@ 0/5 182.6 L 5/5 12.6
Libxml2 #535 @ 5/5 8.8 @ 5/5 7.8
#550 O 0/5 514 | @ 0/5 398
#1282 O 0/5 162.2 O 0/5 155.0
#1289 | «© 0/5 131.8 @ 0/5 892
Poppler #1303 | @ 0/5 188.4 O 0/5 123.2
#1305 | @ 0/5 185.0 | @ 0/5 152.4
#1381 | @ 0/5 1610 | @ 0/5 133.6
| =@ 3/11 105.8 | =@ 411 730

3 RQ1. Evaluation of Capabilities

Effectiveness. We measure the effectiveness of CLEVEREST by computing the average effectiveness
score across all five repetitions. If the generated regression test case finds the bug in the bug-
introducing commit or reproduces the bug in the bug-fixing commit, the score is 3 (v'). Similarly,
2 indicates an output-changing test case (), 1 indicates a commit-reaching test case (>), and 0
indicates a test case that fails to reach the changed code (X). Visually, we represent the average
effectiveness score on a slider. The slider is colored in red, , olive, and teal if the score is
within the range of [0-0], (0-1], (1-2], and (2-3], respectively.

Table 2 shows how well CLEVEREST performs as a regression test generator. We find that CLEVER-
EsT performs unexpectedly well in bug finding and bug reproduction for the two programs, Mujs
and Libxml2, which take more human-readable formats. Despite missing the code of the full program
and without information about the input features needed to exercise the changed code, CLEVEREST
found bugs in 3 of 6 bug-introducing commits (one bug existed before) and reproduced the bugs
patched in 4 of 6 bug-fixing commits—it at least reached the changed code in 4 of the 5 remaining
cases.

However, for the Poppler PDF parser, which requires a complex input format, CLEVEREST could
not find or reproduce any of the five bugs. At least, it reached the changed code in half of the
commiits and exposed a difference in one commit. CLEVEREST consistently fails to generate the input
relevant to the regression test generation in both scenarios for the two issues of Poppler, #1305 and
#1381. While the generated input contains some related components required to test the commit,
it does not satisfy the validity constraints required to successfully parse the input. For instance,
CLEVEREST can generate an input that already contains the key elements necessary for revealing
the bug in Issue #1305, including an annotation of type Highlight with an appearance stream and
a Resources dictionary with an ExtGState entry. The failure to reach the commit occurs because
Poppler strictly checks the existence of QuadPoints and Rect properties in the annotation object
and exits early before reaching the changed code. If CLEVEREST knew these validity constraints
and added these specific elements, as we confirmed, the generated PDF input could have reached
the commit and even demonstrated an output difference before and after the commit.
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Execution time. CLEVEREST is definitely suited for the time-constrained environment of a CI/CD
pipeline. CLEVEREST takes less than one minute on average for generating (XML and JS) inputs
for Mujs and Libxml2 (~ 0.2$ on OpenAl), and still less than five minutes for more (PDF) inputs
which require a more complex input format (~ 0.5$). One exception is the case of Mujs #166 in the
bug-finding scenario, where the LLM generates an input with an enormous array size to trigger
the bug, which usually takes a long time to execute in the Execution Analyzer.

Utility of CLEVEREST-generated test cases. We evaluate how developers can use the CLEVEREST-
generated input in the pursuit of commit testing. Based on our execution analysis result, we found
that even when CLEVEREST-generated inputs do not directly trigger the bug, the commit-reaching
or output-changing inputs are still useful for the human developer to understand the program
behavior and to guide the bug-finding process. CLEVEREST-generated test cases for bug-introducing
commits often “prepare” the precondition for the input to test the commit. For instance, the commit
introducing Issue #550 of Libxml2 refines the XML parser’s logic for checking the occurrence of the
‘<’ character in entities. CLEVEREST catches the “intention” of the commit and generates an input
containing a ‘<’ character for the entity (e.g., CLEVEREST generated <!ENTITY test "<notallowed>">)
to reach the commit. The bug appears with the command xmllint -dropdtd, which removes the
Document Type Definition (DTD) section from the document, which includes the entity definitions;
thus, if CLEVEREST-generated input that has an entity reference, which gets removed by the
command (e.g., <!DOCTYPE[<!ENTITY test>]<o><t test=“&test;”>...), the bug would have been
exposed.

CLEVEREST-generated test cases for bug-fixing commits can often be modified to trigger the
bug. For instance, the commit that fixes Issue #141 of Mujs adds missing end-of-string checks
in the regexp lexer for special syntax-indicating starting characters, including \x, \u, and \c.
CLEVEREST generates the input var regex = /\x/; which exactly reflects the changed feature and
produces a difference in program output from ‘SyntaxError: invalid escape sequence to ‘SyntaxError:
unterminated escape sequence, demonstrating a newly added error-handling sequence in the
commit. To trigger the bug in the program before the bug-fixing commit, the regex has to have
a very long string that starts with one of those special characters—information that cannot be
derived from the commit information alone. Yet, the human developer can easily modify the
CLEVEREST-generated input to contain a long string that reproduces the bug that was fixed by that
commit.

RQ1. Result Summary. CLEVEREST performs unexpectedly well for the commits to programs
that take more human-readable formats but struggled to generate the right structure for the
more complex format. With a short execution time of minutes, CLEVEREST is well-suited to
be used in the CI/CD pipeline. As they are easy to read and may already be halfway there,
CLEVEREST-generated inputs can also be used as a starting point for manual regression testing,
even if they do not trigger any bugs in the given commit.

4 RQ2. Ablation Study

Table 3 shows how CLEVEREST performs under various hyperparameter values for the bug-finding
and bug-reproduction scenarios. Specifically, we evaluate how well CLEVEREST performs compared
to the default configuration if we only used the commit message but not the diff or only used the
commit diff but not the message (commit information), let it generate the command line prompt in
addition to the test input (task difficulty), used GPT-40 mini as a less powerful LLM or maximized
the LLM temperature (LLM module), used ten (10) iterations instead of five (5) in the feedback loop
(number of iterations), or dropping the execution analysis result from the feedback (feedback utility).
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Table 3. Results for our ablation study with average effectiveness score on a slider.

Default

Scenario

Subject

Issue

Prompt Synthesizer
Only msg  Only diff  Gen. cmd
X>o/ X>7/ X>JV

LLM Module

Execution Analyzer

Tempox
X>

40-mini

X>V

Iteryo

X>av

No feedback
X>

Bug-finding

Mujs

#65
#141
#145
#166

@ (S @
@ @ (O]
@ @ @

Libxml2

#535
#550

Poppler

#1282
#1289
#1303
#1305
#1381

Average

Mujs

#65
#141
#145
#166

Libxml2

#535
#550

#1282 O @) @)
#1289 @) @
#1303 @) @ (©]
#1305 | @ @
#1381 | @ @

Bug-reproduction

Poppler

O

O

O o
[
@

| @ (&) @ | =@

o
[ ]
©

‘ Average ‘ @)

Commit Information. We evaluate the impact of only using the commit message but not the
diff (“only msg”) or only using the commit diff but not the message (“only diff”) and find that the
results reproduce as long as the intention of the change is captured. In the bug-finding scenario,
providing only the commit message changes the score very slightly from 1.32 to 1.35 (i.e., sometimes
output-changing). In both scenarios, providing only the commit diff also only changes the score
very slightly from 1.32 to 1.23 and from 1.35 and 1.44, respectively.

Only in the bug reproduction scenario, where the commit messages for bug fixes happen to be
fairly brief and lack detailed information about the intended change, the effectiveness of CLEVEREST
drops from 1.35 (i.e., sometimes output-changing) to 0.66 (i.e., sometimes unreached). For example,
the bug fix for Issue #145 of Mujs comes with the commit message “Fix js_strtol.” This is too
brief to understand the bug context. The patch for Issue #1284 of Poppler comes with the commit
message, “topIdx can’t be negative” Yet, it remains unclear what topIdx is, how it can be negative,
and how it relates to features required in the generated test case.

In contrast, the commit diff often points to the intention of the change. For instance, the patch of
Issue #141 in Mujs adds an error handling routine that checks if there is an unterminated escape
sequence in some regex pattern, which goes much beyond what the commit message says: “Add
missing end-of-string checks in regexp lexer”

Task Difficulty. We evaluate the difference in effectiveness if CLEVEREST is also asked to generate
the command line prompt in addition to the regression test case (“Gen. cmd”) and find no significant
impact on the performance of CLEVEREST. We can only observe a negative effect for the commit
introducing Issue #535 of Libxml2, changing the average score from 1.32 to 1.20. This indicates that
the LLM is even capable of generating the right command line prompt for regression testing.
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Interestingly, CLEVEREST found one otherwise undiscovered bug when asked to also generate
the command line prompt. This bug was not known at the time when the benchmark data was
collected and has only recently been fixed well after the GPT-40 cut-off date (Commit #3dea98e
in May 2024). Specifically, when CLEVEREST was asked to generate a test case that reproduces
Issue #550 of Libxml2 from the bug-fixing commit and a corresponding command line prompt, a
bug was found that was unrelated to Issue #550 but related to the same feature that was changed
(i.e., xpath and dropdtd). This confirms our intuition that CLEVEREST generates regression test cases
from the intention more than the actual code changes.

LLM Module. We evaluate the impact of using a less powerful LLM (GPT-40 mini) and find that
model size has a significant impact on the performance of CLEVEREST. Changing the LLM from
GPT-40 to GPT-40 mini reduces the effectiveness of CLEVEREST for five issues in the bug-finding
scenario. For two bug-introducing commits, the generated test cases never even reach the code
changes. The average score drops from 1.32 to 0.81. The same happens, but more severely, for the
bug-reproduction scenario: Effectiveness reduces for eight (8) patches. For five (5), the generated
test cases never even reach the code changes. The average score drops from 1.35 to 0.42. The result
indicates that while GPT-40 mini is more cost-effective than GPT-4o, it is insufficient to assist the
complex input generation for the commit testing.

We also evaluate an increase in temperature (i.e., the degree of confabulation). We expected that
maximizing temperature would also lead to an increase in test case diversity. However, we find no
significant changes in the effectiveness of CLEVEREST when the temperature is increased.

Number of Iterations. We evaluate the impact on effectiveness if we increase the number of
feedback iterations from five (5) to ten (10) and find a small positive impact only for bug-reproduction
(from 1.35 to 1.56). In every iteration, CLEVEREST appends the execution feedback of the previous
iteration from the Execution Analyser to the synthesized prompt (Fig. 2). We expect an increased
number of iterations may positively impact on the effectiveness.

After increasing the number of iterations, two cases (2) turned from reaching to bug-triggering.
Three cases (3) turned from failing to reach to output-changing. One case (1) turned from reaching
to output-changing. Probably due to randomness, one case (1) turned from reaching to failing to
reach. For the bug-finding scenario, we find no significant impact on CLEVEREST’s effectiveness.
Overall, there may be some benefit of increasing the number of feedback iterations at the cost of
execution time.

Feedback utility. We evaluate the impact of dropping the execution analysis result from the
feedback, i.e., having only the record of previously generated inputs in the prompt, and find that
it has a negative impact on the effectiveness of CLEVEREST, particularly in the bug-reproduction
scenario. In the bug-finding scenario (from 1.32 to 1.26), the decrease is obvious only for Issue #1289
of Poppler, where the generated test case now even fails to reach the code changes. In the bug-
reproduction scenario (from 1.35 to 0.99), CLEVEREST s effectiveness reduces across all bug-fixing
commiits. The result indicates that the execution feedback is crucial for generating the regression
test input in the bug-reproduction scenario.

Taking a closer look, we found that the feedback was especially helpful to the LLM by pointing
out invalid components in the input. For instance, for Issue #166 of Mujs, the test case that is often
generated in the first iteration contains a token, Symbol, which is not supported by the program
and returns an error: ReferenceError: ‘Symbol’ is not defined. The execution feedback helps
the LLM avoid generating another input with the invalid component in the next iteration — until,
finally, a valid, bug-triggering input is generated.
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Table 4. Results for bug finding and bug reproduction effectiveness of CLEVEREST, CLEVEREST + fuzzing
(CLEVFuUzz), and WAFLGo across five repetitions. For every bug and both scenarios, we show the number
of initial seeds (WAFLGo #Init), the effectiveness of the initial seeds (from X tov"), the number of WAFLGo
campaigns in which the bug was found and the time-to-exposure (T.O. means timeout after 24 hours),
CLEVEREST’s average effectiveness score on a slider, number of bug-triggering repetitions, and execution time.

Scenario | Subiect  Issue WAFLGo CLEVEREST CrLevFuzz

) Init Bug T(hm:s) | X >« v  Bug T (hms) |Bug T (him:s) Bugan

#65 | X 5/5 01:36:20 @ 5/5 00:00:14 | -/- - 5/5

Mujs  #141 | X 0/5 TO. o 0/5 00:00:47 | 4/5 09:42:15  4/5

(19)  #145 | X 5/5  00:14:01 @ 4/5 00:00:31 | 1/1  00:00:01 5/5

- #166 | v 5/5  00:00:00 o 0/5 00:03:02 | 0/5 TO. 0/5

= Libxml2 #535 | v 5/5  00:00:00 @ 5/5 00:00:08| -/- - 5/5

q§ (14)  #550 0/5 TO. | =@ 0/5  00:00:51 | 0/5 TO. 0/5

=14}

2 #1282 5/5  00:06:23 | =@ 0/5 00:02:42 | 4/4 00:00:55  4/5

Poppler 71289 0/5 TO. | © 0/5 00:02:11 | 0/2 TO. 0/5

(fo%) #1303 | X 0/5 TO. | ® 0/5  00:03:08 | -/- N

#1305 | X 0/5 TO. | ® 0/5 00:03:05 | -/- - 0/5

#1381 0/5 TO. | @ 0/5 00:02:41 | -/- - 0/5

\ Aggregate | 511 13:16:04 | <@ 3/11  00:01:45 | 5/11

#65 0/5 TO. o 2/5 00:00:26 | 2/3 08:11:04  4/5

Mujs  #141 | X 5/5  00:12:47 @) 0/5 00:00:33 | 4/4 03:03:18  4/5

(19)  #145 | X 5/5  00:05:56 @ 3/5  00:00:29 | 1/1  00:00:18  4/5

8 #166 | v/ 5/5  00:00:00 @ 5/5 00:00:12| -/- - 55

,§ Libxml2 #535 | v 5/5  00:00:00 @ 55 00:00:07 | -/- - 5/5

g (14)  #550 | X 0/5 TO. | ® 0/5  00:00:39 | /- - 0/5

T #1282 0/5 TO. | ~® 0/5 00:02:35 | 0/5 TO. 05

= #1289 0/5 TO. @) 0/5 00:01:29 | 0/5 TO. 0/5
A Poppler

(100) #1303 | X 0/5 TO. | =@ 0/5  00:02:03 | 0/2 TO. 0/5

#1305 0/5 TO. | @ 0/5 00:02:32 | -/- - 0/5

#1381 0/5 TO. | ® 0/5 00:02:13 | -/- - 0/5

\ Aggregate | 411 15:18:03 | =@ 4/11  00:01:13 | 5/11

RQ2. Result Summary. Surprisingly, we found that CLEVEREST continues to generate effective
test cases that find bugs in the changed feature as long as the intention is obvious which feature
is changed, i.e., even when only an expressive commit message is provided. We also found that
asking CLEVEREST to generate the command line prompt itself did not reduce its performance;
it even found a bug that was related to the changed feature but was only fixed much later.
Reducing the model size or dropping the execution feedback both reduced the effectiveness.
Doubling the number of iterations (at double the cost) slightly increased the effectiveness of
CLEVEREST.

5 RQ3. Comparison to the State-of-the-Art

We evaluate how CLEVEREST compares to WAFLGo, the state-of-the-art in regression test generation.
WAFLGo [33] is the most recent, state-of-the-art directed greybox fuzzer for regression test genera-
tion that was shown to outperform previous directed and regression greybox fuzzers [4, 6, 15, 37, 38].
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Subject Tssue Bug-finding Bug-reproduction
WAFLGo CLevEREST CrEvFuzz | WAFLGo CLEVEREST CLEVFUZZ
#65 5/5 5/5 5/5 0/5 2/5 4/5
Mujs #141 0/5 0/5 4/5 5/5 0/5 4/5
#145 5/5 4/5 5/5 5/5 3/5 4/5
107 gyg- g #166 5/5 0/5 0/5 5/5 5/5 5/5
finding P 5/5 5/5 5/5 5/5 5/5 5/5
| ibxml2 o5 0/5 0/5 0/5 0/5 0/5 0/5

Bug-repro- /3 >
duction #1282 5/5 0/5 4/5 0/5 0/5 0/5
4 #1289 0/5 0/5 0/5 0/5 0/5 0/5
Poppler #1303 0/5 0/5 0/5 0/5 0/5 0/5
#1305 0/5 0/5 0/5 0/5 0/5 0/5
#1381 0/5 0/5 0/5 0/5 0/5 0/5
Aggregate | 5/11 3/11 511 | 4/11 4/11 5/11
(a) (b)

Fig. 3. The result of the CLEVFuzz. (a) The outer circle shows the number of cases where the fuzzer finds
the bug-triggering input for the regression test generation scenario: V'’ indicates the fuzzer finds the bug-
triggering input and ‘-’ indicates otherwise. The inner circle shows the original result the CLEVEREST-generated
input: > indicates the input reaches the commit and %7’ indicates the input changes the program output
execution. (b) The overall bug-triggering input generation result between WAFLGo, CLEVEREST, and CLEVFuzz.

Given a corpus of valid input seeds, WAFLGo mutates these seeds in a feedback-directed manner,
intending to reach the changed code and expose any bugs.

5.1 Direct Comparison

Table 4 contains the results for comparing CLEVEREST and WAFLGo regarding effectiveness score
and execution time. We first evaluate both tools head to head and then explore the effectiveness of
CLEVEREST if the reaching or output-changing test cases were also fuzzed (CLEvFuUzz).

Effectiveness. Technically speaking, CLEVEREST performs as well as WAFLGo in bug reproduction
and slightly worse than WAFLGo in bug finding (Columns Bug in Tab. 4). WAFLGo finds the
bug-triggering input in five (5) and four (4) of the 11 bug-introducing and bug-fixing commits,
respectively. However, we also notice that the initial seed corpus that is provided to WAFLGo
already finds the bugs that were introduced and patched in the respective commits in four (4) cases
(Column Init). We explore the dependence of WAFLGO0’s effectiveness further in the next section.

Execution time. CLEVEREST is substantially faster than WAFLGo, which makes our LLM-based
approach more suitable as part of the CI/CD pipeline, which runs under strict time and resource
constraints. A typical fuzzing campaign is set to 24 hours. Apart from four cases where the initial
seeds already found or reproduced the bug that was introduced or patched in a commit, WAFLGo
takes between five and fifteen minutes to find the bugs, on average. For the commit introducing
Issue #65 of Mujs, WAFLGo took more than 1.5 hours. CLEVEREST s execution time is bounded by
the number of iterations (fixed to 5 in our experiments) and requires less than one minute for Mujs
and Libxml2 and between two and three minutes for Poppler.

Fuzzing CLEVEREST's seeds for improved effectiveness. We explore an opportunity to automatically
improve the effectiveness of CLEVEREST using the generated test inputs as fuzzer seeds (CLEVFUZz).
During the qualitative analysis of the change-reaching and output-changing CLEVEREST-generated
test cases for RQ1 (§3), we found that they are often not “very far” from bug-revealing. This insight
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is further inspired by the use of LLMs as seed generators for fuzzing as an effective strategy in the
2024 DARPA Al Cyberchallenge (AIxCC).’

For every trial with a change-reaching or output-changing CLEVEREST-generate input, we run
one campaign of AFL++ v4.21c with the default configuration for 24 hours using that test case as
the only seed. Column CLEvFuzz.Bug in Table 4 shows the number of successful campaigns with
respect to the number of CLEVEREST trials that apply. Specifically, 22 CLEVEREST-generated test
cases at least reached the changes but did not reveal the bug when trying to find the bug in six
bug-introducing commits, and 20 CLEVEREST-generated test cases at least reached the change but
did not reveal the bug when trying to reproduce the bug in six bug-fixing commits.

Results. As shown in the last column of Table 4 and Figure 3, this approach outperforms WAFLGo,
which is started on a user-provided seed corpus. Specifically, our LLM-seeded fuzzer CLEvFuzz now
also finds the bugs introduced in the commits corresponding to Issue #141 of Mujs and Issue #1282
of Poppler as well as the bug that was fixed in the commit corresponding to Issue #141 of Mujs. As
we can see in Figure 3.a, fuzzing turned 6 reaching and 10 output-changing CLEVEREST-generated
test cases into effective test cases. This progression is further explored in Figure 3.b. Timewise,
this LLM-based zero-shot fuzzing approach is still faster than WAFLGo. Considering CLEVFUZzZ’s
time as the sum of the time for CLEVEREST and the time for fuzzing, CLEvVFUzz takes roughly 6
hours® for both bug finding and bug reproduction scenarios, while WALFGo takes 13 and 15 hours,
respectively. Indeed, this is an intriguing result as WAFLGo can be considered few-shot (i.e., starting
from a user-provided corpus) while our approach is zero-shot (i.e., no examples needed).

5.2 CLEVEREST as Zero-Shot Regression Test Generator

From the perspective of CLEVEREST as a zero-shot regression test generator, we wanted to explore
the dependence of WAFLGo’s effectiveness on the initial set of seed files (i.e., valid XML, JS, or
PDF files). For Mujs, Libxml2, and Poppler, there are 19, 14, and 100 initial seeds for WAFLGo. The
authors of WAFLGo [33] used a sound and fair seed corpus selection strategy for their experiments;
the initial seeds were taken from the UNIFUZZ benchmark [13]. Nevertheless, in four cases, the
initial corpus already reveals Issues #166 of Mujs and #535 of Libxml2 introduced or fixed in the
corresponding commits (cf. Column WAFLGo.Init in Tab. 4). This raises the question of how close
to triggering the corresponding bugs are WAFLGo initial seeds.

(function() { c = 30000;
var a = 1, b = 2; a =101
for(var i = @; i < 1e5; i++) { /a/g for (i = 0; i <2 xc; i +=1) {
- if(a === b) { a.push(i%c);
+ if(a =Error== b) { 3}
throw new Error; a.sort(function (x, y) { return x - y; });
3 -print(al2 * ¢ - 21);
»NO; +print(al2 * a - 2]);
Listing 1. Mujs #65 Listing 2. Mujs #145

Results. Table 4 (Col. WAFLGo.Init) shows the effectiveness of the initial corpus in terms of
reaching the code changes (*) and revealing changes in the output (+”). Among the 22 cases, in
addition to the four (4) bug-revealing cases, in nine (9) cases, the initial seed corpus at least already
reaches the code changes. In two (2) additional cases, only a few characters need to be changed to

5Trail of Bits, one of the finalists says: “Our system uses large language models (LLMs) to generate seed inputs for fuzzing,
significantly reducing the time needed to discover vulnerabilities. This innovative approach helps us work within the
competition’s strict time constraints” https://blog.trailofbits.com/2024/08/09/trail- of-bits-buttercup-heads- to-darpas-aixcc/
®Including the time-out of the fuzzing campaign, which is 24 hours.
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reveal the bug. Listings 1 and 2 above show such examples for Issues #65 and #145 of Mujs. Given
this result, we find that CLEVEREST, as a zero-shot regression test generator, also makes an excellent
seed generator for regression greybox fuzzers, like WAFLGo.

RQ3. Result Summary. While CLEVEREST is substantially faster than WAFLGo, CLEVEREST per-
forms as well as WAFLGo in bug reproduction and slightly worse in bug finding. However, by
upgrading CLEVEREST by fuzzing the generated test cases, our zero-shot approach outperforms
WAFLGo, whose performance depends on a user-provided seed corpus, which, as we found,
happens to be quite close to bug-revealing already. Hence, we find that CLEVEREST, as a zero-shot
regression test generator, also makes an excellent seed generator for regression greybox fuzzers.

6 Threats to Validity

Construct Validity. A key concern is the potential for data leakage and memorization by LLMs, where
test set information may inadvertently influence training. In this study, the risk pertains to LLMs
memorizing the regression test cases from the WAFLGo benchmark (cf. Table 1). To assess this risk,
we computed the similarity, in terms of Levenshtein ratio [2], between the CLEVEREST-generated
test cases and the available bug-triggering test cases that were provided along with the bug report
(not the commit). We find that the majority of CLEVEREST-generated test cases are less than 7%
similar (mean 10%, max. 40%) to the ones available online. A significant difference suggests that the
LLM did not simply memorize them. We also note that in an experiment where CLEVEREST was
asked to generate the command line prompt, as well, a bug was found that—while unrelated to the
feature changed in the targeted bug fix—was only fixed after LLM’s cut-off date (cf. RQ2).

Internal Validity. We identified three main threats to internal validity: implementation correctness,
confabulation of the LLM, and the randomness of our results. To ensure correctness, we conducted
thorough code reviews and testing. Our implementation, including data and scripts, is made available
in a replication package for transparency. We used publicly accessible GPT-40 and GPT-40 mini
models via the OpenAl API, adhering strictly to their documented usage guidelines. We mitigate
the impact of confabulation; all generated test cases are actually executed on subject programs to
validate the test outcome. To handle the randomness in our results, we repeated each experiment
within the available budget, i.e., five (5) times, and reported the findings across all trials. To assess
the impact of various hyperparameters on our approach effectiveness, we performed an ablation
study (RQ.2).

External Validity. We do not claim the generality of our results but consider our experiments as an
important case study for three open-source C programs that take highly structured, human-readable
inputs. We sought to test the capabilities of an LLM as a regression test generation tool and carefully
established benchmark selection criteria to align with this goal. We selected all programs from the
WAFLGo benchmark that apply and all of their commits. The results demonstrate that the LLMs
are capable of generating contextually relevant and well-structured inputs for the selected commits.
However, the findings may not extend to programs with less structured or non-human-readable
input formats. Our case provides valuable insights into the potential of LLMs for regression test
generation, expanding the current understanding of their capabilities and limitations in this context.

7 Related Work

LLMs for Automatic Unit Test Generation. The field of automated test case generation has evolved
significantly, particularly with the advent of LLMs and deep learning techniques. Early research
relied on non-LLM approaches, such as Atlas [31], which uses neural machine translation to
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generate assert statements, and ATHENATEST [28], which applies deep learning to generate unit
tests based on real-world examples. Both approaches use sequence-to-sequence models to map test
methods to assert statements. Similarly, CodeT [5] relies on language models to generate both code
solutions and corresponding tests for programming problems.

More recent advancements have explored LLM-based methods. For instance, Bareif3 et al. [3]
employ few-shot learning with large pre-trained models for code generation tasks, including unit
test generation. Approaches like LLM4VV [18] and ITDCG [11] incorporate human feedback to
refine the unit test generation process: LLM4VV focuses on generating unit tests for OpenACC
compiler implementations, while ITDCG combines LLMs with runtime feedback for test pruning
and mutation. Among the LLM-based approaches, TESTPILOT [24], COVERUP [21], HITS [30], and
SymPrompt [23] explored the adoption of LLMs for automatic unit test generation. TESTPILOT [24]
relies on LLMs to generate unit tests by providing the signature of the function under test, its
documentation comment, its usage examples and its source code. Moreover, it sets up a feedback
loop with the LLM sharing the failing test and the error message if the test fails until it gets a
successful test. COVERUP [21] improves code coverage by using LLMs to generate unit tests that
target untested code areas. HITS [30] breaks down complex methods into smaller slices, statically
retrieves information on the dependencies of the method-to-test, and then shares it with LLM to
generate high-coverage test suites. SymPrompt [23] uses LLMs to generate test inputs for executing
a specific path identified during the static analysis. The LIBRO framework proposed by Kang et
al. [9] is the closest solution to CLEVEREST that we found. LIBRO relies on LLMs to automatically
generate test cases that reproduce bugs from general bug reports and, after ranking them, present
the most relevant ones to developers.

CLEVEREST is distinguished from previous works in the following ways:

o Itisthe first LLMs performance evaluation with respect to regression test generation. In particular,
CLEVEREST focuses on generating bug-revealing test cases from code commits, while previous
works have addressed the broader unit test generation problem;

o It prompts LLMs with minimal contextual information, demonstrating that an expressive commit
message is already sufficient for an LLM to generate effective test cases. On the contrary, previous
works share lots of information about the target method (e.g., API signature, documentation,
full source code);

o It confirms the lack of need to rely on few-shot prompting, as zero-shot prompts are already
informative enough, thus not requiring samples to be shared with the LLMs;

o It does not require any prior static analysis of the target method, as the commit details (i.e.,
commit diff and commit message) are enough. Our feedback mechanism only calculates the code
coverage and shares it with the LLM during the iterative process.

LLMs for Static Bug Detection. The advent of LLMs has pushed researchers towards exploring their
potential in vulnerability detection. Previous works [7, 26] tested different prompting strategies [19,
27], revealing that performance varies greatly depending on the prompt, with the Chain-of-Thought
approach being the most promising one. Zhang et al. [34] incorporated additional information
from the source code, such as API call sequences, but found that improvements were limited to
specific programming languages. To be fully integrated into developer workflows, LLMs should
accurately explain the root causes of vulnerabilities. However, Ullah et al. [29] found that they often
provide inaccurate explanations, frequently missing the true root causes when asked to justify their
classifications. While previous works have identified limitations in LLMs when asked to identify
vulnerabilities in software, in our evaluation, we saw that LLMs can perform well in generating
regression test cases from code commit or pull requests, confirming they have some reasoning
capabilities.
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LLMs for Fuzzing. Several fuzzers leverage LLMs to enhance fuzzing techniques, but each operates
with different goals and methods. ChatAFL [17] uses LLMs to construct grammars for protocol
messages, mutate inputs, and generate sequences to improve fuzzing efficiency, distinguishing
it from CLEVEREST, which is not a protocol fuzzer. PromptFuzz [16], on the other hand, utilizes
LLMs to iteratively generate fuzz drivers that explore API functions, making it fundamentally
different from CLEVEREST, which focuses on fuzzing through input generation rather than fuzz
driver creation. Fuzz4All [32] employs a pure-LLM approach to generate and mutate code snippets
testing various compiler features with user-provided documentation and example code. In contrast,
CLEVEREST generates regression tests for commits in a zero-shot manner. LLM4FUZZ [25] guides
fuzzing by prioritizing high-value code regions and input sequences likely to trigger vulnerabilities,
serving as both a fuzzing guide and a fuzzer itself, unlike CLEVEREST. LLAMAFUZZ [35] integrates
LLMs to perform structure-aware mutations, starting with traditional seeds and using the LLM to
mutate them, whereas CLEVEREST uses LLMs to generate the initial seeds. Lastly, ChatFuzz [22]
combines LLMs and reinforcement learning to generate interconnected machine code sequences
for hardware fuzzing, a tool specifically designed to detect vulnerabilities in processors, making it
quite different from CLEVEREST, which is not focused on hardware fuzzing.

8 Discussion

Throughout the study, we have shown the significant potential of LLMs in generating structured,
human-readable, system-level inputs for regression testing. Our results highlight that even without
advanced techniques such as fine-tuning or retrieval-augmented generation (RAG), LLMs, when
combined with prompting and execution feedback, are capable of producing high-quality test
inputs. These inputs can reflect the semantic meaning inside commits. In some cases, they directly
trigger the bugs, and in other cases, they could be “repaired” to trigger the bugs. This points to
the potential of LLMs in directed software testing, enabling automated testing workflows that are
typically more challenging for conventional tools.

One notable observation is the LLM’s ability to generate meaningful input without access to the
complete program context or compilation databases, which static analysis tools traditionally rely on.
This process mirrors human intuition in crafting tests based on high-level semantic understanding.
While LLMs may generate inaccurate tests, these inaccuracies are mitigated by real program
execution—similar to how dynamic analysis and greybox fuzzing operate. This testing loop can be
viewed as a “clever” fuzzer that, while slower (in terms of execs/sec) and more computationally
expensive than greybox fuzzers, compensates by generating semantically rich inputs.

While using our tool CLEVEREST standalone has already shown promising results in generating
effective test cases in a short time, we believe the value of CLEVEREST shines even more in their
subsequent use as a means to an end (i.e., as a tool in a developer’s hand). The LLM-generated test
cases are easily comprehensible by human developers, as they are structured and human-readable;
we demonstrated how human developers can modify these test cases to trigger bugs. They are
also an excellent seed generator for regression greybox fuzzers; even a vanilla greybox fuzzer can
perform similarly or better than WAFLGo, which requires a user-provided seed corpus.

This research suggests that LLMs offer a complementary tool in the evolving landscape of auto-
mated software testing. While this study focuses on text-based programs, there is an opportunity to
extend CLEVEREST’s capabilities to more complex formats, such as binary files, and to environments
where programs are not executed via command-line but through API calls or other non-trivial
interfaces. With ongoing advancements in LLMs and further integration with execution feedback
mechanisms, we anticipate even greater contributions to the field of regression testing and bug
detection.
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9 Data Availability

All the implementation code, data, and scripts used in this study are shared in the replication
package available at https://anonymous.4open.science/r/cleverest-7767/.
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