— Journal of Systems and Software, 2021 —

OBSERVATION-BASED

APPROXIMATE DEPENDENCY MODELING
AND ITS USE FOR

PROGRAM SLICING

Seongmin Leel, David Binkley2, Robert Feldt3, Nicolas Gold4, Shin Yoo!

1 KAIST

OOOOOOOOOOOOOOOOOOOOOO

PROGRAM DEPENDENCY ANALYSIS

Q =
if (b > 0) {

3;

C = a + 42;

PROGRAM DEPENDENCY ANALYSIS

Q =
if (b > 0) {

3;

C = a + 42;

PROGRAM DEPENDENCY ANALYSIS

a = 3;
if (b > 0) {
C = a + 42;

PROGRAM DEPENDENCY ANALYSIS

a = 3;
if (b > 0) {
C = a + 42;

PROGRAM DEPENDENCY ANALYSIS

* Program comprehension
» Software maintenance and evolution
= 3;
?f s o * Where do we need to change and
1f (b >8) o what are going to be affected by the change

C = a + 42;
* Shrink the search space of the source code

G e.g. fault localization, refactoring,
code reuse, etc.

¥

STATIC DEPENDENCY ANALYSIS

d =

3;

if (b > 0) {

C = a + 42;

STATIC DEPENDENCY ANALYSIS

Formal | esw
semantics

(Pass #2)

a = 3;
if (b > 0) {
C = a + 42;

struct [tagged [“tag”, 1], 7]
{“p” — obj [ptr [obj [struct [tagged [“tag”,1], L], noqual]], noqual] }

struct [tagged [“tag”, 1], 7°]
{ “p” — obj [ptr [obj [struct [tagged [“tag”, 1], n'], noqual]], noqual] }

Static analyzer

STATIC DEPENDENCY ANALYSIS

Formal | esw
semantics

(Pass #2)

a = 3;
if (b > 0) {
C = a + 42;

struct [tagged [“tag”, 1], 7]
{“p” — obj [ptr [obj [struct [tagged [“tag”,1], L], noqual]], noqual] }

struct [tagged [“tag”, 1], 7]
{ “p” — obj [ptr [obj [struct [tagged [“tag”, 1], n'], noqual]], noqual] }

Static analyzer

s = “Linux”
with open(“/tmp/arch.txt”, “w”) as f:
f.write(s)

with open(“/tmp/arch.txt”) as f:
arch = f.read()

s = “Linux”
with open(“/tmp/arch.txt”, “w”) as f:
f.write(s)

with open(“/tmp/arch.txt”) as f:
arch = f.read()

(Pass #0) “tag” —» T

(Pass #1) “tag” w— struct [tagged [“tag”,1], 7]

't = {“p” — obj [ptr[obj [struct [tagged [“tag”, 1], L], noqual]|, noqual] }
(Pass #2) “tag” > struct [tagged [“tag”, 1], 7’|

w2 = {“p” — obj [ptr[obj [struct [tagged [“tag”, 1], 7], noqual]], noqual] }

s = “Linux”

with open(“/tmp/arch.txt”, “w”) as f:
f.write(s)

with open(“/tmp/arch.txt”) as f:
arch = f.read()

(Pass #0)

(Pass #1)

struct [tagged [“tag”, 1], 7]
{ “p” — obj [ptr [obj [struct [tagged [“tag”, 1], L], noqual]|, noqual] }

struct [tagged [“tag”, 1], 7°]
{ “p” — obj [ptr [obj [struct [tagged [“tag”, 1], n'], noqual]], noqual] }

s = “Linux”
with open(“/tmp/arch.txt”,
f.write(s)

with open(“/tmp/arch.txt”)
arch = f.read()

“w”) as f:

as

f:

| don’t know!

Static analyzer

LIMITATION OF STATIC DEPENDENCE ANALYSIS

LIMITATION OF STATIC DEPENDENCE ANALYSIS

Various features have no

1010101 r) ? A =
: 0101010 : ,,
formal semantics 4 1 J java

0101010

¢ - strutagged o)7 Binary External Multi-lingual
= { obj [ptr [obj | [[J, 1]
v st o 15 1) libraries database program
2 = {“p” — obj [ptr[obj [struct [tagged [“tag”, 1], =], noqual]], noqual] }

Various features have no

formal semantics

Stack

“tag” > struct[tagged [“tag”,1], 7]
! = {“p” — obj [ptr [obj [struct [tagged [“tag”,1], L], noqual]|, noqua

“tag” > struct [tagged [“tag”, 1], 7’|
2 = {“p” — obj [ptr[obj [struct [tagged [“tag”, 1], =], noqual]], noqual] }

(Pass #1)

String[] args =

Employee el =

Employee e2 =

Heap

Heavy computation cost

 E.g. pointer analysis

e . N\ o) e
String[] String charf]
—P
ad [l char[] value = {J''h' o' 'n}
N~ ~ ~—— _
(N\ (. \ (
Employee String charf]
name = ////)' charf] value = > (5,5,5,-1,2,-,3,4,5}
— \ J
ad Add ([String) charl]
emai ress = >
N char[] Vaer = {T,lO','h‘,‘nl,|@|,|Cl...lyl,l.l,IC','Ol,lm|}
yearOfBirth = 0 . J 4
M) (o)
Employ: String charl]
—P
name = | | char[] value = {T"'0','m"}
~———
} o)
emailAddress = null String char(]
yearOfBlr'[h — 1974 Char[] Value = . { ‘4‘,I5‘,‘6I,"I,I7','8|,|",‘9I,I0','1 ||}

LIMITATION OF STATIC DEPENDENCE ANALYSIS

1010101
0101010
1010101
0101010

=)

—

Java
48

Multi-lingual
program

External
database

Binary
libraries

* Lack scalability

Various features have no

formal semantics

LIMITATION OF STATIC DEPENDENCE ANALYSIS

1010101
0101010
1010101
0101010

=)

—

Java
48

(Pass #0) tag” — T
.. * I I A I' I
“ 99 , » 1
Bosh) ag’ o strcttagged [ag”, 1)) Binary Externa Multi-lingua
't = {“p” — obj [ptr [obj [struct [tagged [“tag”,1], L], noqual]|, noqual] }
.. 2 >
P g o ot agsd (128" 1)) libraries database program
w2 = {“p” — obj [ptr [obj [struct [tagged [“tag”, 1], =], noqual]], noqual] }
Stack Heap
(String]) String [char(]
| V| [1 char(] value = ’ {J','h''0",'n}
\ J & J \
String[] args = (Employee) String (char[]
name = char[] value = {’5','5''5",-",'"1",'2",'-''3",'4",'5'} o
— ' H mputation t
N —— : eavy computation Cos
Employee el = 1Add — tring char] =
emal eSS > charf] value = > {j')o''h",n''@",'c'...y","",'c''0",'m"} L
yearOfBirth = 0 .) C a C sca a ’ ’ y
Employee e2 = Employee) String char(] ® E N 't | 1
o e e .g. pO INter analysis
~———
} ssh =
---------------- ————
_Employee €3 = | emailAddress = null \ String char(]
yearOBirth = 1974 char[] value = > (4,5,6,-,7,8,-,9,0,17}

OBSERVATIONAL KNOWLEDGE

OBSERVATIONAL KNOWLEDGE

s = “Linux”
with open(“/tmp/arch.txt”, “w”) as f:
f.write(s)

with open(“/tmp/arch.txt”) as f:
arch = f.read()

OBSERVATIONAL KNOWLEDGE

s = “Window”
with open(“/tmp/arch.txt”, “w”) as f:
f.write(s)

with open(“/tmp/arch.txt”) as f:
arch = f.read()

OBSERVATIONAL KNOWLEDGE

s = “Window”
with open(“/tmp/arch.txt”, “w”) as f:
f.write(s)

with open(“/tmp/arch.txt”) as f:
arch = f.read()

@

OBSERVATIONAL KNOWLEDGE

s = “Window”
with open(“/tmp/arch.txt”, “w”) as f:
f.write(s)

with open(“/tmp/arch.txt”) as f:
arch = f.read()

@

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©;

int 1 = 1;

while (1 < 11) {
sum = sum + 1i;
i=1+ 1;

}

printf(“%d\n”, sum);

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

i=1+ 1;
} ’

printf(“%d\n”, sum);

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

\ i=1+ 1; ’ rri — 11» Q
Oracle

printf(“%d\n”, sum);

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

i=1+ 1;
} ’

printf(“%d\n”, sum);

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

i=1+ 1;
} ’

printf(“%d\n”, sum);

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

i=1+ 1;
} ’

nimna L7660/ 4\ I crim \ e
Pl .Lll\-l\ /704 \ 11 k) .DUIII/,

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

i=1+1; ’

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

i=1+ 1;
} ’

printf(“%d\n”, sum);

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

i=1+ 1;
} ’

printf(“%d\n”, sum);

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

i=1+ 1;
} ’

nimna L7660/ 4\ I crim \ e
Pl .Lll\-l\ /704 \ 11 k) .DUIII/,

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

i=1+1; ’

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

T TR T) '
LLLLL k)

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

i=1+ 1;
} ’

printf(“%d\n”, sum);

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

i=1+ 1;
} ’

nimna L7660/ 4\ I crim \ e
Pl .Lll\-l\ /704 \ 11 k) .DUIII/,

Trajectory preserved!

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int sum = ©; I—_I
int 1 = 1; >

while (i < 11) { 311?“ EXECUTE
sum = sum + 1i; 8?%10

i=1+ 1;
} ’

Trajectory preserved!

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

int main() {

int 1 = 1; > -I

01 &

while (i < 11) { 883?3 EXECUTE

01101

i=1+ 1;
} '

Trajectory preserved!

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

Purely dynamic

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the

same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

checker.java:
1 class checker {
» public static void main(String[] args) {
int dots = 0;
for (int i = 0; i < args[0].length(); ++i) {
if (args[0].charAt(i) == ".") {
++dots;
}
8 }
o 1}
reader.c:
1 #include <locale.h>
» int main(int argc, char **argv) {
3 struct lconv *cur_locale = localeconv();

printf("%s\n", cur_locale->decimal_point);

6

7 }
glue.py:

1 import commands

> import sys

3 use_locale = True

4 currency = "?"

s 1f use_locale:

¢ decimal = commands.getoutput(’./reader 1’)

7 cmd = (’java checker ’ + currency

+ sys.argv[1l] + decimal + sys.argv[2])

o print commands.getoutput (cmd)

Purely dynamic

Multi-lingual
Program

OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the

same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

checker.java:
1 class checker {
» public static void main(String[] args) {
int dots = 0;
for (int i = 0; i < args[0].length(); ++i) {
if (args[0].charAt(i) == ".") {
++dots;
}
8 }
o 1}
reader.c:
1 #include <locale.h>
» int main(int argc, char **argv) {
3 struct lconv *cur_locale = localeconv();

printf("%s\n", cur_locale->decimal_point);

6

7 }
glue.py:

1 import commands

> import sys

3 use_locale = True

4 currency = "?"

s 1f use_locale:

¢ decimal = commands.getoutput(’./reader 1’)

7 cmd = (’java checker ’ + currency

+ sys.argv[1l] + decimal + sys.argv[2])
o print commands.getoutput (cmd)

Purely dynamic

Multi-lingual
Program
Picture
Description
Language

LIMITATION OF ORBS

LIMITATION OF ORBS

SCALABILITY

/
 —
ORIGINAL SELECT & — —
PROGRAM DELETE LINES
UPDATE —
PROGRAM —_—

PROGRAM
EXECUTE & SLICE
OBSERVE — ‘
f—
:I

1]

Requires a large number of compilations & executions

LIMITATION OF ORBS

SCALABILITY

/
 —
ORIGINAL SELECT & — —
PROGRAM DELETE LINES
UPDATE —
PROGRAM —_—

PROGRAM
EXECUTE & SLICE
OBSERVE — ‘
f—
:I

1]

Requires a large number of compilations & executions

LIMITATION OF ORBS

SCALABILITY

EXPLAINABILITY
ALL

PROGRAM

ELEMENT

E S {e1,e2} — e3

=/=
ORIGINAL SELECT &
PROGRAM DELETE LINES
UPDATE —
PROGRAM —_—
PROGRAM
EXECUTE & SLICE
OBSERVE — ‘
—
:l

Requires a large number of compilations & executions

LIMITATION OF ORBS

SCALABILITY

EXPLAINABILITY
ALL

PROGRAM

ELEMENT

E S {e1,e2} — e3

= 2

=/=
ORIGINAL SELECT &
PROGRAM DELETE LINES
UPDATE
PROGRAM

®
PROGRAM
EXECUTE & SLICE e4
OBSERVE _i
=|

Another element

Requires a large number of compilations & executions

LIMITATION OF ORBS

SCALABILITY

EXPLAINABILITY
ALL

PROGRAM

ELEMENT

E S {e1,e2} — e3

— / —
—
ORIGINAL SELECT &
PROGRAM DELETE LINES
UPDATE
PROGRAM

= 2 2

i F—>e; i es—> E

Another element Forward dependency

Requires a large number of compilations & executions

LIMITATION OF ORBS

SCALABILITY

EXPLAINABILITY
ALL

PROGRAM

ELEMENT

& E S {e1,e2} — e;

UPDATE — :
PROGRAM — ? : 7
® : ®
PROGRAM : ﬁ
, [meba, oy E
OBSERVE — i :

Another element Forward dependency

ORIGINAL SELECT &
PROGRAM DELETE LINES

Requires a large number of compilations & executions

No general dependence / only a single slice

STATIC ANALYSIS ORBS

@) General (?Q—I Observation-based

dependence 8??310 approach

=t |

STATIC ANALYSIS

S e
| e |=

Observation-based analysis

=l

01 &3
0110

0001 Q
01101

ORBS

QQ_—I Observation-based

o Q‘ approach
11111

STATIC ANALYSIS ORBS

@) General (?Q—I Observation-based

o Q‘ approach
11111

dependence

=t | |S

Observation-based analysis

D
Q —I
01 Qq
0110
0001 Q
01101

o el

Modeling dependency

9

STATIC ANALYSIS ORBS

@) General QQ—I Observation-based

01
o Q‘ approach
11111

dependence

=t |

= MODELING

i OBSERVATION-BASED

[E b [E APPROXIMATE
DEPENDENCY

Delete! . i

10

Trajectory preserved = £3 Compile & Execute

"‘l'l,‘
IS TS RS
. CvRa
o S e TS e L]
n Femmnm - '--. L] S
L] EEEEEEEN L]
- n N]
. = \
’ o - h I
* PY [] \
[]
o ..ll“‘] :
an? e,

""" Independent!

10

10

=g Compile & Execute

C2 =42

3.141592

(‘foo??

(D
-
|

bar()

10

11

ec: answer = 42

Preserved! ij(answe r‘) = 42

11

el: fec—="tecit
e2: foo.bar =

ec. answer

11

el: fee——=Faols
e2 COmpilatiOn Error! e?2: foo.bar =

ec. answer

Changed!! Traj(answer) = &

11

4smmmmmnn"

sEEEEEEENS

[]
e
=]

11

answer

Preserved! ij(answe r‘) = 42

11

OBSERVATION PHASE

S

C1,62 €1,€3

12

OBSERVATION PHASE

P
.
e
an
RS
am R
[: A
i M
™ L
i MRS
(S
‘\
b
.
M
.
.
.
.
5

*
+
D

. -u
" o .

Ll

OBSERVATION PHASE

.nn

o, .

a

=
"Ll ‘O'
.: ‘O

A .

™ L
| L ALY
.

:'-

ey
.
", e
-
.

*
* .
L
LER RN}

.
LY]

o% "
o~

L3 .
®auns®

.
o

;-

"

T

peEEEEEER

-

R J

X3

00

$

.

OBSERVATION PHASE

01 &3

01101

)

= Compile & Execute

42

3.141592

INFERENCE PHASE

01 &3

0110
0001
01101

X3

"tammnuds
Ky
0.-0

sennmmnnd
$

-

.

»
.

*
+
D

.
-
*
o
L]
.

.‘
b

Ll

12

-

Funsnnust
----v-m

"=

01101

EEEEEms®
e

"

APPROXIMATE

12

ADVANTAGE OF MOAD VS. ORBS

13

ADVANTAGE OF MOAD VS. ORBS

IQ-_—-I
01 G
%3 Compile & Execute

e

13

ADVANTAGE OF MOAD VS. ORBS

's=] Compile & Execute

o

01

0110

0001 o
01101

13

ADVANTAGE OF MOAD VS. ORBS

's=] Compile & Execute

o

01

0110

0001 o
01101

TR C3

\ 2
I
0.2

I -ad
o 1. EFFICIENCY

4

13

's=] Compile & Execute

o

01

0110

0001 c
01101

e %

\ e
N
0.2

I -ad
o 1. EFFICIENCY

4

13

ADVANTAGE OF MOAD VS. ORBS

2
[E—>63

Backward dependency

?

b e o

Forward dependency

0L

2. COMPLETENESS

* Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

<

HEHEHEE
N Ul - W N =

;

int sum = 9;

et]

A 4

while (i < 11) {

sum = sum + 1i;
i =i 1

}

printf(“%d\n”, sum);

printf(“%d\n”, 1);

A

DELETION GENERATION SCHEME

14

* Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

g

HEHEHEE
N Ul - W N =

4

et]

AL

while (i < 11) {

sum = sum + 1i;
i =i 1

}

printf(“%d\n”, sum);

printf(“%d\n”, 1);

e i

14

DELETION GENERATION SCHEME

0: remains, 1: deleted

1 e 1

0

&= deletion

<

HEHEHEE
N Ul - W N =

4

ALS

\

R

DELETION GENERATION SCHEME

H
1]

while (1 < 11) {

sum = sum + 1i;
i+ 1

printf(“%d\n”, sum);

printf(“%d\n”, 1);

14

* Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

0: remains, 1: deleted

int main() {

it = 1

while (i < 11) {

printf(“%d\n”, 1i);

&= deletion

DELETION GENERATION SCHEME

* Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

* 0: remains, 1: deleted

1-HOT : every single statement 2-HOT : 1-HOT + every pair of statements

Uy e Ui-1 (VH

original @ | 0 0 0 0 0 0
ey B | oo | - 00 S DN o | o | | o |0
0 | 1 b | 6 | .+ 0 |0 1 0 | 1 o.| =1 o0 |.o
0-.[- 0. o= 0 0 | 1 o [0 F©0 |0 1 1

15

* Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

* 0: remains, 1: deleted

* Run the programs, check whether the trajectory changed (9) or not (1) for each variable.

OBSERVATION PHASE

16

STATISTICAL MODEL

16

STATISTICAL MODEL — INFER DEPENDENCY

* Main hypothesis:

A variable v, is more likely to be independent of a statement u; if

more observations show that v, preserves its behavior when u. is deleted.

17

INFERENCE MODEL

18

INFERENCE MODEL

1. Once success (Q)

Deleted

Behavior preserved

18

INFERENCE MODEL

2. Logistic (L) 3. Bayesian (B)

19

INFERENCE MODEL

2. Logistic (L) 3. Bayesian (B)

19

INFERENCE MODEL

2. Logistic (L) 3. Bayesian (B)

Vi

1=(- 0] .. O] 0 log1
o [- lEp | * = o

.‘ Y. .‘-.‘ RN
= Po w08 Bpo@ + - £ iR

Coefficients represent the
relative impact on dependence

19

INFERENCE MODEL

2. Logistic (L) 3. Bayesian (B)

Vi

1=(- 0] .. O] 0 10g1
o [- lEp | * = o

.‘ e .‘-.‘ RN
= Po w08 Bpo@ + - £ iR

Coefficients represent the
relative impact on dependence

It >0, then u; —d&» vy

If <0, then y, — @ vy

19

INFERENCE MODEL

2. Logistic (L) 3. Bayesian (B)

Vi Dep u; — v, : how much does u, affects when v, changed P 0
o .. o] o log : % o o | 1
—)V V, = I/ll' i l/tl- =
0 1 1 * .0156‘ .“.‘ “.‘ NP(l/tl:1|Vk:O): k P(Vk:()) 1 1
1 0 0 %) 3 'BO _l‘".B-]FI 410',8_2112 2 _E.ﬂ"kui F P, =0]u=1) =Py | w) 4

Coefficients represent the Py, Fuyp= 12
relative impact on dependence

It >0, then u; —d&» vy

If <0, then y, — @ vy

If 5, the coefficient for u; of the logistic regression for v, is larger than 0,

then v, is independent from u..

19

2. Logistic (L)

log

Vi

1 — Vi
.“.‘ .“.‘ “.‘
= Po wp\ B0 + -+ P,

Coefficients represent the
relative impact on dependence

It >0, then u; —d&» vy

is independent from ..

If <0, then y, — @ vy

If 5, the coefficient for u; of the logistic regression for

, is larger than O,

19

3. Bayesian (B3)

INFERENCE MODEL

Dep u; — v, : how much does u, affects when v, changed P
Py =0 u; = DP(; = 1) 2
~ Pl = 1] v, = 0) = =
£ay 0
~Pyv,=0|u=1) =P, | u) &
PO, |) = 172

: average of the probability over units
M g y

It }A’(vk | u;) > u , then Ui + Vk

It P |u) <p,then y, == vy

If the P(1, behaves the same | i; has been deleted) is larger than the mean,

then v, Is independent from u..

EVALUATION

EVALUATION

1-HOT

2-HOT

EVALUATION

1-HOT VS

2-HOT

RQ1. MOAD vs. ORBS

e Efficiency: number of observation needed

 Effectiveness: size of the resulting slice

EVALUATION

- — ey

Backward element

Forward dependency

1-HOT VS

2-HOT

RQ1. MOAD vs. ORBS RQ2. MOAD vs. Static slicing

o Efficiency: number of observation needed » Difference between slices

 Effectiveness: size of the resulting slice

EVALUATION

* Subject

Subject SLoC # of statements # of numeric variables

mbe * 64 45 16

Well-known examples
mug * ‘ 61 44 13| where static analysis fails

I e - - t? identify dependency
print tokens 410 388 98"‘

print_ tokens?2 ‘ 387 364 75

replace ‘ 508 465 253

schedule ‘ 283 252 75

schedule2 ‘ 276 248 81

tot_info ‘ 314 227 210

tcas ‘ 152 110 62

2]

observations

106 -
105 -
104 -
103 -
102 -
101 -}
100 -

1074
106 |
105 |
104

103

102 |
10" |

100

REP

SCHD

RQ1: MOAD VS. ORBS

SCHE2

TOT

TCAS

22

EFFICIENCY

MOAD with 1-HOT used

% 0037% of the # of observations

MOAD with 2-HOT used

- l 8.6% of the # of observations

compared to ORBS.

observations

106 -
105 -
104 -
103 -
102 -
101 -}
100 -

1074
106 |
105 |
104

103

102 |
10" |

100

REP

SCHD

RQ1: MOAD VS. ORBS

SCHE2

TOT

TCAS

22

EFFICIENCY

MOAD with 1-HOT used

% 0037% of the # of observations

MOAD with 2-HOT used

- l 8.6% of the # of observations

compared to ORBS.

observations

106 -
105 -
104 -
103 -
102 -
101 -}
100 -

1074
106 |
105 |
104

103

102 |
10" |

100

REP

SCHD

RQ1: MOAD VS. ORBS

SCHE2

TOT

TCAS

22

EFFICIENCY

MOAD with 1-HOT used

% 0037% of the # of observations

MOAD with 2-HOT used

- l 8.6% of the # of observations

compared to ORBS.

)
B,
n
)
=
Vo)

70 %

60 % -

50 %
40 %
30 %
20 %
10 %
0%

70 %
60 %
50 %
40 %
30 %
20 %
10 %
0 %

RQ1: MOAD VS. ORBS

MBE MUG wC

PRNT PRNT2

23

EFFECTIVENESS

)
B,
n
)
=
Vo)

70 %
60 % -
50 %
40 %
30 %
20 %
10 %
0%

70 %
60 %
50 %
40 %
30 %
20 %
10 %
0 %

RQ1: MOAD VS. ORBS

23

EFFECTIVENESS

For deletion generation scheme,

> 2-HOT < 1-HOT.

)
B,
n
)
=
Vo)

70 %
60 %
50 %
40 %
30 %
20 %
10 %
0%

70 %
60 %
50 %
40 %
30 %
20 %
10 %

0 %

RQ1: MOAD VS. ORBS

23

EFFECTIVENESS

For deletion generation scheme,

> 2-HOT < 1-HOT.

For inference model,

& Vg

)
B,
n
)
=
Vo)

70 % -
60 % -
50 % -
40 % -
30 %
20 %
10 %
0%

70 %
60 %
50 %
40 %
30 %
20 %
10 %

0 %

RQ1: MOAD VS. ORBS

e s
1.HOT BB
2-HOT B
MBE MUG WC

23

EFFECTIVENESS

For deletion generation scheme,

> 2-HOT < 1-HOT.

For inference model,

& Vg

MOAD with 2-HOT, O generate

> 12% larger slices

compared to ORBS.

USING (2-HOT, ONCE SUCCESS), MOAD REQUIRES < 20% OBSERVATIONS THAN ORBS.

AT THE SAME TIME, THE SLICE IS ONLY 12% LARGER THAN ORBS.

24

RQ2: MOAD VS. STATIC SLICER

e Static analysis tool: CodeSurfer from Grammatech
* Miss: # of lines only in the MOAD SLICE
* Excess: # of lines only in the STATIC SLICE

of Lines Excess

min-max . .
() Siemens ' Siemens

Backward

Forward

SCALABILITY EXPLAINABILITY

=

. — / —
ORIGINAL SELECT & — —
PROGRAM DELETE LINES
—

LIMITATION OF ORBS

ALL
PROGRAM
ELEMENT

UPDATE —_— :
PROGRAM —_— 7 : ,

H : H
e e PROGRAM b _> e - e _>
=] e 4 - 3
— 7\/7 :

Another element Forward dependency

’ Requires a large number of compilations & executions ‘ No general dependence / only a single slice

fo]

01

0110

0001 O
01101

%=1 Compile & Execute >

ADVANTAGE OF MOAD VS. ORBS

____:__>63

Backward dependency

Forward dependency

100

1. EFFICIENCY === 2. COMPLETENESS

observations

STATIC ANALYSIS ORBS

¢-=I Observation-based

General Kl L
dependence 1° approac

—

Observation-based analysis

G-l

01 €3

:
0110
0001 O
01101

Modeling dependency

9

RQ1: MOAD VS. ORBS

B ORBS B 1-HOoT B 2-HOT

EFFICIENCY

MOAD with 1-HOT used

% 0.37% of the # of observations

MOAD with 2-HOT used

. 1 8.6% of the # of observations
compared to ORBS.

