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PROGRAM DEPENDENCY ANALYSIS

* Program comprehension
» Software maintenance and evolution
= 3;
?f s o * Where do we need to change and
1f (b >8) o what are going to be affected by the change

C = a + 42;
* Shrink the search space of the source code

G  e.g. fault localization, refactoring,
code reuse, etc.
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if (b > 0) {

C = a + 42;
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Formal | esw
semantics

(Pass #2)

a = 3;
if (b > 0) {
C = a + 42;

struct [tagged [“tag”, 1], 7]
{“p” — obj [ptr [obj [struct [tagged [“tag”,1], L], noqual]], noqual] }

struct [tagged [“tag”, 1], 7°]
{ “p” — obj [ptr [obj [struct [tagged [“tag”, 1], n'], noqual]], noqual] }
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(Pass #0) “tag” —» T

(Pass #1) “tag” w— struct [tagged [“tag”,1], 7]

't = {“p” — obj [ptr[obj [struct [tagged [“tag”, 1], L], noqual]|, noqual] }
(Pass #2) “tag” > struct [tagged [“tag”, 1], 7’|

w2 = {“p” — obj [ptr[obj [struct [tagged [“tag”, 1], 7], noqual]], noqual] }

s = “Linux”

with open(“/tmp/arch.txt”, “w”) as f:
f.write(s)

with open(“/tmp/arch.txt”) as f:
arch = f.read()




(Pass #0)

(Pass #1)

struct [tagged [“tag”, 1], 7]
{ “p” — obj [ptr [obj [struct [tagged [“tag”, 1], L], noqual]|, noqual] }

struct [tagged [“tag”, 1], 7°]
{ “p” — obj [ptr [obj [struct [tagged [“tag”, 1], n'], noqual]], noqual] }

s = “Linux”
with open(“/tmp/arch.txt”,
f.write(s)

with open(“/tmp/arch.txt”)
arch = f.read()

“w”) as f:

as

f:

| don’t know!

Static analyzer
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Various features have no

formal semantics

Stack

“tag” > struct[tagged [“tag”,1], 7]
! = {“p” — obj [ptr [obj [struct [tagged [“tag”,1], L], noqual]|, noqua
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Various features have no

formal semantics

LIMITATION OF STATIC DEPENDENCE ANALYSIS

1010101
0101010
1010101
0101010

=)

—

Java
48

(Pass #0) tag” — T
...................................................................................................................... * I I A I' I
“ 99 , » 1
Bosh)  ag’ o strcttagged [ag”, 1)) Binary Externa Multi-lingua
't = {“p” — obj [ptr [obj [struct [tagged [“tag”,1], L], noqual]|, noqual] }
.................................................................................................................................................. 2 >
P g o ot agsd (128" 1) ) libraries database program
w2 = {“p” — obj [ptr [obj [struct [tagged [“tag”, 1], =], noqual]], noqual] }
Stack Heap
( String] ) String [ char(]
| V| [1 char(] value = ’ {J','h''0",'n}
\ J & J \
String[] args = ( Employee ) String ( char[]
name = char[] value = {’5','5''5",-",'"1",'2",'-''3",'4",'5'} o
— ' H mputation t
N —— : eavy computation Cos
Employee el = 1Add — tring char] =
emal eSS > charf] value = > {j')o''h",n''@",'c'...y","",'c''0",'m"} L
yearOfBirth = 0 . ) C a C sca a ’ ’ y
Employee e2 = Employee ) String char(] ® E N 't | 1
o e e .g. pO INter analysis
~———
} ssh =
---------------- ————
_Employee €3 = | emailAddress = null \ String char(]
yearOBirth = 1974 char[] value = > (4,5,6,-,7,8,-,9,0,17}




OBSERVATIONAL KNOWLEDGE




OBSERVATIONAL KNOWLEDGE

s = “Linux”
with open(“/tmp/arch.txt”, “w”) as f:
f.write(s)

with open(“/tmp/arch.txt”) as f:
arch = f.read()
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s = “Window”
with open(“/tmp/arch.txt”, “w”) as f:
f.write(s)

with open(“/tmp/arch.txt”) as f:
arch = f.read()




OBSERVATIONAL KNOWLEDGE

s = “Window”
with open(“/tmp/arch.txt”, “w”) as f:
f.write(s)

with open(“/tmp/arch.txt”) as f:
arch = f.read()
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s = “Window”
with open(“/tmp/arch.txt”, “w”) as f:
f.write(s)

with open(“/tmp/arch.txt”) as f:
arch = f.read()
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* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution
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OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the
same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

Purely dynamic




OBSERVATION BASED SLICING (ORBS)

* Program slicing: computes a subset of a program such that executing the subset will have the

same behavior for a slicing criterion

- Slicing criterion: specified variable at a specified location of interest

- Trajectory: a sequence of values the slicing criterion has during an execution

checker.java:
1 class checker {
»  public static void main(String[] args) {
int dots = 0;
for (int i = 0; i < args[0].length(); ++i) {
if (args[0].charAt(i) == ".") {
++dots;
}
8 }
o 1}
reader.c:
1 #include <locale.h>
» int main(int argc, char **argv) {
3 struct lconv *cur_locale = localeconv();

printf("%s\n", cur_locale->decimal_point);

6

7 }
glue.py:

1 import commands

> import sys

3 use_locale = True

4 currency = "?"

s 1f use_locale:

¢ decimal = commands.getoutput(’./reader 1’)

7 cmd = (’java checker ’ + currency

+ sys.argv[1l] + decimal + sys.argv[2])

o print commands.getoutput (cmd)

Purely dynamic

Multi-lingual
Program
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* Program slicing: computes a subset of a program such that executing the subset will have the
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int dots = 0;
for (int i = 0; i < args[0].length(); ++i) {
if (args[0].charAt(i) == ".") {
++dots;
}
8 }
o 1}
reader.c:
1 #include <locale.h>
» int main(int argc, char **argv) {
3 struct lconv *cur_locale = localeconv();

printf("%s\n", cur_locale->decimal_point);

6

7 }
glue.py:

1 import commands

> import sys

3 use_locale = True

4 currency = "?"
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SCALABILITY

EXPLAINABILITY
ALL

PROGRAM

ELEMENT

& E S {e1,e2} — e;
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PROGRAM — ? : 7
® : ®
PROGRAM : ﬁ
, [ meba, oy E
OBSERVE — i :

Another element Forward dependency

ORIGINAL SELECT &
PROGRAM DELETE LINES

Requires a large number of compilations & executions

No general dependence / only a single slice
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=g Compile & Execute
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ec: answer = 42

Preserved! ij(answe r‘) = 42
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el: fec—="tecit
e2: foo.bar =

ec. answer
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el: fee——=Faols
e2 COmpilatiOn Error! e?2: foo.bar =

ec. answer
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* Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

<

HEHEHEE
N Ul - W N =

;

int sum = 9;

et ]

A 4

while (i < 11) {

sum = sum + 1i;
i =i 1

}

printf(“%d\n”, sum);

printf(“%d\n”, 1);

A

DELETION GENERATION SCHEME
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* Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

g

HEHEHEE
N Ul - W N =

4

et ]

AL

while (i < 11) {

sum = sum + 1i;
i =i 1

}

printf(“%d\n”, sum);

printf(“%d\n”, 1);

e i
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DELETION GENERATION SCHEME

0: remains, 1: deleted

1 e 1

0

&= deletion




<

HEHEHEE
N Ul - W N =

4
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\

R

DELETION GENERATION SCHEME

H
1]

while (1 < 11) {

sum = sum + 1i;
i+ 1

printf(“%d\n”, sum);

printf(“%d\n”, 1);

14

* Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

0: remains, 1: deleted

int main() {

it = 1

while (i < 11) {

printf(“%d\n”, 1i);

&= deletion




DELETION GENERATION SCHEME

* Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

* 0: remains, 1: deleted

1-HOT : every single statement 2-HOT : 1-HOT + every pair of statements

Uy e Ui-1 (VH

original @ | 0 0 0 0 0 0
ey B | oo | - 00 S DN o | o | | o |0
0 | 1 b | 6 | .+ 0 |0 1 0 | 1 o.| =1 o0 |.o
0-.[- 0. o= 0 0 | 1 o [0 F©0 |0 1 1

15




* Generate a set of “deletions” (partial programs) to observe by deletion generation schemes

* 0: remains, 1: deleted

* Run the programs, check whether the trajectory changed (9) or not (1) for each variable.

OBSERVATION PHASE

16




STATISTICAL MODEL
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STATISTICAL MODEL — INFER DEPENDENCY

* Main hypothesis:

A variable v, is more likely to be independent of a statement u; if

more observations show that v, preserves its behavior when u. is deleted.

17




INFERENCE MODEL
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INFERENCE MODEL

1. Once success (Q)

Deleted

Behavior preserved
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INFERENCE MODEL

2. Logistic (L) 3. Bayesian (B)

19




INFERENCE MODEL

2. Logistic (L) 3. Bayesian (B)
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INFERENCE MODEL

2. Logistic (L) 3. Bayesian (B)

Vi

1=(- 0] .. O] 0 log1
o [ - lEp | * = o

.‘ Y. .‘-.‘ RN
= Po w08 Bpo@ + - £ iR

Coefficients represent the
relative impact on dependence
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INFERENCE MODEL

2. Logistic (L) 3. Bayesian (B)

Vi

1=(- 0] .. O] 0 10g1
o [ - lEp | * = o

.‘ e .‘-.‘ RN
= Po w08 Bpo@ + - £ iR

Coefficients represent the
relative impact on dependence

It >0, then u; —d&» vy

If <0, then y, — @ vy

19




INFERENCE MODEL

2. Logistic (L) 3. Bayesian (B)

Vi Dep u; — v, : how much does u, affects when v, changed P 0
o .. o] o log : % o o | 1
— )V V, = I/ll' i l/tl- =
0 1 1 * .0156‘ .“.‘ “.‘ NP(l/tl:1|Vk:O): k P(Vk:()) 1 1
1 0 0 %) 3 'BO _l‘".B-]FI 410',8_2112 2 _E.ﬂ"kui F P, =0]u=1) =Py | w) 4

Coefficients represent the Py, Fuyp= 12
relative impact on dependence

It >0, then u; —d&» vy

If <0, then y, — @ vy

If 5, the coefficient for u; of the logistic regression for v, is larger than 0,

then v, is independent from u..

19




2. Logistic (L)

log

Vi

1 — Vi
.“.‘ .“.‘ “.‘
= Po wp\ B0 + -+ P,

Coefficients represent the
relative impact on dependence

It >0, then u; —d&» vy

is independent from ..

If <0, then y, — @ vy

If 5, the coefficient for u; of the logistic regression for

, is larger than O,

19

3. Bayesian (B3)

INFERENCE MODEL

Dep u; — v, : how much does u, affects when v, changed P
Py =0 u; = DP(; = 1) 2
~ Pl = 1] v, = 0) = =
£ay 0
~Pyv,=0|u=1) =P, | u) &
PO, | ) = 172

: average of the probability over units
M g y

It }A’(vk | u;) > u , then Ui + Vk

It P |u) <p,then y, == vy

If the P(1, behaves the same | i; has been deleted) is larger than the mean,

then v, Is independent from u..
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1-HOT

2-HOT




EVALUATION

1-HOT VS

2-HOT

RQ1. MOAD vs. ORBS

e Efficiency: number of observation needed

 Effectiveness: size of the resulting slice




EVALUATION

- — ey

Backward element

Forward dependency

1-HOT VS

2-HOT

RQ1. MOAD vs. ORBS RQ2. MOAD vs. Static slicing

o Efficiency: number of observation needed » Difference between slices

 Effectiveness: size of the resulting slice




EVALUATION

* Subject

Subject SLoC # of statements # of numeric variables

mbe * 64 45 16

Well-known examples
mug * ‘ 61 44 13| where static analysis fails

I e - - t? identify dependency
print tokens 410 388 98"‘

print_ tokens?2 ‘ 387 364 75

replace ‘ 508 465 253

schedule ‘ 283 252 75

schedule2 ‘ 276 248 81

tot_info ‘ 314 227 210

tcas ‘ 152 110 62

2]




# observations

106 -
105 -
104 -
103 -
102 -
101 -}
100 -

1074
106 |
105 |
104

103

102 |
10" |

100

REP

SCHD

RQ1: MOAD VS. ORBS

SCHE2

TOT

TCAS

22

EFFICIENCY

MOAD with 1-HOT used

% 0037% of the # of observations

MOAD with 2-HOT used

- l 8.6% of the # of observations

compared to ORBS.
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RQ1: MOAD VS. ORBS

MBE MUG wC
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EFFECTIVENESS
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RQ1: MOAD VS. ORBS

e s
1.HOT BB
2-HOT B
MBE MUG WC

23

EFFECTIVENESS

For deletion generation scheme,

> 2-HOT < 1-HOT.

For inference model,

& Vg

MOAD with 2-HOT, O generate

> 12% larger slices

compared to ORBS.




USING (2-HOT, ONCE SUCCESS), MOAD REQUIRES < 20% OBSERVATIONS THAN ORBS.

AT THE SAME TIME, THE SLICE IS ONLY 12% LARGER THAN ORBS.

24



RQ2: MOAD VS. STATIC SLICER

e Static analysis tool: CodeSurfer from Grammatech
* Miss: # of lines only in the MOAD SLICE
* Excess: # of lines only in the STATIC SLICE

# of Lines Excess

min-max . .
( ) Siemens ' Siemens

Backward

Forward




SCALABILITY EXPLAINABILITY

=

. — / —
ORIGINAL SELECT & — —
PROGRAM DELETE LINES
—

LIMITATION OF ORBS

ALL
PROGRAM
ELEMENT

UPDATE —_— :
PROGRAM —_— 7 : ,

H : H
e e PROGRAM b _> e - e _>
=] e 4 - 3
— 7\/7 :

Another element Forward dependency

’ Requires a large number of compilations & executions ‘ No general dependence / only a single slice

fo]

01

0110

0001 O
01101

%=1 Compile & Execute >

ADVANTAGE OF MOAD VS. ORBS

____:__>63

Backward dependency

Forward dependency

100

1. EFFICIENCY === 2. COMPLETENESS

# observations

STATIC ANALYSIS ORBS

¢-=I Observation-based

General Kl L
dependence 1° approac

—

Observation-based analysis

G-l

01 €3

:
0110
0001 O
01101

Modeling dependency

9

RQ1: MOAD VS. ORBS

B ORBS B 1-HOoT B 2-HOT

EFFICIENCY

MOAD with 1-HOT used

% 0.37% of the # of observations

MOAD with 2-HOT used

. 1 8.6% of the # of observations
compared to ORBS.




