

- Journal of Systems and Software, 2021 -

OBSERVATION-BASED APPROXIMATE DEPENDENCY MODELING AND ITS USE FOR PROGRAM SLICING

Seongmin Lee¹, David Binkley², Robert Feldt³, Nicolas Gold⁴, Shin Yoo¹


```
a = 3;
if (b > 0) {
   c = a + 42;
}
```


- Program comprehension
- Software maintenance and evolution
 - Where do we need to change and what are going to be affected by the change
 - Shrink the search space of the source code
 - e.g. fault localization, refactoring, code reuse, etc.

STATIC DEPENDENCY ANALYSIS

```
a = 3;
if (b > 0) {
   c = a + 42;
}
```

STATIC DEPENDENCY ANALYSIS

Formal semantics

```
(Pass \#0) \qquad \text{``tag"} \mapsto \top
(Pass \#1) \qquad \text{``tag"} \mapsto \text{struct} [\text{tagged ["tag", 1], $\pi^1$}]
\pi^1 \qquad = \{\text{``p"} \mapsto \text{obj [ptr [obj [struct [tagged ["tag", 1], $\perp$], noqual]], noqual]}\}
(Pass \#2) \qquad \text{``tag"} \mapsto \text{struct [tagged ["tag", 1], $\pi^2$}]
\pi^2 \qquad = \{\text{``p"} \mapsto \text{obj [ptr [obj [struct [tagged ["tag", 1], $\pi^1$], noqual]], noqual]}\}
```

```
a = 3;
if (b > 0) {
   c = a + 42;
}
```


Static analyzer

STATIC DEPENDENCY ANALYSIS

Formal semantics

```
(Pass \#0) \qquad \text{``tag"} \mapsto \top
(Pass \#1) \qquad \text{``tag"} \mapsto \text{struct} [\text{tagged} [\text{``tag"}, 1], \pi^1]
\pi^1 \qquad = \{\text{``p"} \mapsto \text{obj} [\text{ptr} [\text{obj} [\text{struct} [\text{tagged} [\text{``tag"}, 1], \bot], \text{noqual}]], \text{noqual}]\}
(Pass \#2) \qquad \text{``tag"} \mapsto \text{struct} [\text{tagged} [\text{``tag"}, 1], \pi^2]
\pi^2 \qquad = \{\text{``p"} \mapsto \text{obj} [\text{ptr} [\text{obj} [\text{struct} [\text{tagged} [\text{``tag"}, 1], \pi^1], \text{noqual}]], \text{noqual}]\}
```

```
a = 3;
if (b > 0) {
   c = a + 42;
}
```


Static analyzer


```
s = "Linux"
with open("/tmp/arch.txt", "w") as f:
    f.write(s)
...
with open("/tmp/arch.txt") as f:
    arch = f.read()
```

```
s = "Linux"
with open("/tmp/arch.txt", "w") as f:
    f.write(s)
...
with open("/tmp/arch.txt") as f:
    arch = f.read()
```

```
(Pass \#0) \qquad \text{``tag"} \mapsto \top
(Pass \#1) \qquad \text{``tag"} \mapsto \text{struct} [tagged [\text{``tag"}, 1], \pi^1] \\ \pi^1 \qquad = \{\text{``p"} \mapsto obj [ptr [obj [struct [tagged [\text{``tag"}, 1], \bot], noqual]], noqual]}\}
(Pass \#2) \qquad \text{``tag"} \mapsto \text{struct} [tagged [\text{``tag"}, 1], \pi^2] \\ \pi^2 \qquad = \{\text{``p"} \mapsto obj [ptr [obj [struct [tagged [\text{``tag"}, 1], \pi^1], noqual]], noqual]}\}
```

```
s = "Linux"
with open("/tmp/arch.txt", "w") as f:
    f.write(s)
...
with open("/tmp/arch.txt") as f:
arch = f.read()
```

```
(Pass \#0) \qquad \text{``tag"} \mapsto \top
(Pass \#1) \qquad \text{``tag"} \mapsto \text{struct} [\text{tagged} [\text{``tag"}, 1], \pi^1] \\ \pi^1 \qquad = \{\text{``p"} \mapsto \text{obj} [\text{ptr} [\text{obj} [\text{struct} [\text{tagged} [\text{``tag"}, 1], \bot], \text{noqual}]], \text{noqual}]\}
(Pass \#2) \qquad \text{``tag"} \mapsto \text{struct} [\text{tagged} [\text{``tag"}, 1], \pi^2] \\ \pi^2 \qquad = \{\text{``p"} \mapsto \text{obj} [\text{ptr} [\text{obj} [\text{struct} [\text{tagged} [\text{``tag"}, 1], \pi^1], \text{noqual}]], \text{noqual}]\}
```

```
s = "Linux"
with open("/tmp/arch.txt", "w") as f:
    f.write(s)
...
with open("/tmp/arch.txt") as f:
    arch = f.read()
```

I don't know!

Static analyzer

Various features have no formal semantics

Binary libraries

External database

Multi-lingual program

Various features have no formal semantics

Heavy computation cost

• E.g. pointer analysis

Lack scalability

Various features have no formal semantics

Binary libraries

External database

Multi-lingual program

Inaccurate result!

Heavy computation cost

• E.g. pointer analysis

Lack scalability


```
s = "Linux"
with open("/tmp/arch.txt", "w") as f:
    f.write(s)
...
with open("/tmp/arch.txt") as f:
    arch = f.read()
```

Linux


```
s = "Window"
with open("/tmp/arch.txt", "w") as f:
    f.write(s)
...
with open("/tmp/arch.txt") as f:
    arch = f.read()
```

Linux


```
s = "Window"
with open("/tmp/arch.txt", "w") as f:
    f.write(s)
...
with open("/tmp/arch.txt") as f:
    arch = f.read()
```

Window


```
s = "Window"
with open("/tmp/arch.txt", "w") as f:
    f.write(s)
...
with open("/tmp/arch.txt") as f:
    arch = f.read()
Window
```


- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
    }
    printf("%d\n", sum);
    printf("ORBS: %d\n", i);
}</pre>
```

- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
    }
    printf("%d\n", sum);
    printf("ORBS: %d\n", i);
}</pre>
```



```
"i = 11"
```

- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
    }
    printf("%d\n", sum);
    printf("ORBS: %d\n", i);
}</pre>
```


- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
    }
    printf("%d\n", sum);
    printf("ORBS: %d\n", i);
}</pre>
```


Compilation !=

- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
    }
    printf("%d\n", sum);
    printf("ORBS: %d\n", i);
}</pre>
```


- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
    }
    printf("%d\n", sum);
    printf("ORBS: %d\n", i);
}</pre>
```


- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;

        printf("%d\n", sum);
        printf("ORBS: %d\n", i);
}</pre>
```


- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
    }
    printf("%d\n", sum);
    printf("ORBS: %d\n", i);
}</pre>
```


- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
    }
    printf("%d\n", sum);
    printf("ORBS: %d\n", i);
}</pre>
```


- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
    }
    printf("%d\n", sum);
    printf("ORBS: %d\n", i);
}</pre>
```


- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;

        printf("%d\n", sum);
        printf("ORBS: %d\n", i);
}</pre>
```


- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
        }
        printf("%d\n", sum);
        printf("ORBS: %d\n", i);
}</pre>
```


Compilation !=

- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
    }
    printf("%d\n", sum);
    printf("ORBS: %d\n", i);
}</pre>
```


- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
    }
    printf("%d\n", sum);
    printf("ORBS: %d\n", i);
}</pre>
```


Trajectory preserved!

- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int sum = 0;
    int i = 1;
    while (i < 11) {
        sum = sum + i;
        i = i + 1;
    }

    printf("ORBS: %d\n", i);
}</pre>
```


Trajectory preserved!

- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
int main() {
    int i = 1;
    while (i < 11) {
        i = i + 1;
    }
    printf("ORBS: %d\n", i);
}</pre>
```


Trajectory preserved!

- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

Purely dynamic

- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
checker.java:
class checker {
 public static void main(String[] args) {
     int dots = 0;
     for (int i = 0; i < args[0].length(); ++i) {</pre>
       if (args[0].charAt(i) == '.') {
#include <locale.h>
1 int main(int argc, char **argv) {
 struct lconv *cur_locale = localeconv();
     printf("%s\n", cur_locale->decimal_point);
2 import sys
 3 use_locale = True
 4 currency = "?"
5 if use_locale:
 6 decimal = commands.getoutput('./reader 1')
 7 cmd = ('java checker ' + currency
       + sys.argv[1] + decimal + sys.argv[2])
 print commands.getoutput(cmd)
```

Purely dynamic

Multi-lingual Program

- **Program slicing:** computes a subset of a program such that executing the subset will have the same behavior for a *slicing criterion*
 - Slicing criterion: specified variable at a specified location of interest
 - Trajectory: a sequence of values the slicing criterion has during an execution

```
checker.java:
 ı class checker {
   public static void main(String[] args) {
      for (int i = 0; i < args[0].length(); ++i) {</pre>
       if (args[0].charAt(i) == '.') {
#include <locale.h>
1 int main(int argc, char **argv) {
 struct lconv *cur_locale = localeconv();
      printf("%s\n", cur_locale->decimal_point);
2 import sys
 use_locale = True
 4 currency = "?"
 5 if use_locale:
 6 decimal = commands.getoutput('./reader 1')
 7 cmd = ('java checker ' + currency
       + sys.argv[1] + decimal + sys.argv[2])
 9 print commands.getoutput(cmd)
```

Purely dynamic

Multi-lingual Program

Picture Description Language

SCALABILITY

SCALABILITY

ORIGINAL PROGRAM

DELETE LINES

EXECUTE & OBSERVE

ORIGINAL PROGRAM SLICE

EXPLAINABILITY

ALL PROGRAM ELEMENT $E \ni \{e_1, e_2\} \longrightarrow e_3$

SCALABILITY EXPLAINABILITY ALL PROGRAM ELEMENT $\mathbb{E} \ni \{e_1, e_2\} \longrightarrow e_3$ ORIGINAL SELECT & **DELETE LINES PROGRAM** UPDATE PROGRAM **PROGRAM EXECUTE &** SLICE OBSERVE

Requires a large number of compilations & executions

Another element

SCALABILITY

Requires a large number of compilations & executions

EXPLAINABILITY

PROGRAM ELEMENT $E \Rightarrow \{e_1,e_2\} \rightarrow e_3$

No general dependence / only a single slice

STATIC ANALYSIS

ORBS

STATIC ANALYSIS

ORBS

Observation-based analysis

STATIC ANALYSIS ORBS Observation-based approach E Comparison Comparison

Observation-based analysis

STATIC ANALYSIS

ORBS

MODELING
OBSERVATION-BASED
APPROXIMATE
DEPENDENCY

e1: foo = Foo()

ec: answer = 42

ec: answer =
$$42$$

$$Traj(answer) = 42$$

e1: foo = Foo()

e2: foo.bar = 2

ec: answer = 42

e1: foo = Foo()
e2: foo.bar = 2
ec: answer = 42

e1: foo = Foo()

e2: foo.bar = 2

ec: answer = 42

e1: foo = Foo()
e2: foo.bar = 2

ec: answer = 42

Traj(answer) = 42

INFERENCE PHASE

• Generate a set of "deletions" (partial programs) to observe by deletion generation schemes

• Generate a set of "deletions" (partial programs) to observe by deletion generation schemes

0: remains, 1: deleted

U ₁	U ₂	Из	U 4	U 5	U ₆	U 7	
1	0	0	1	•••	1	0	deletion

• Generate a set of "deletions" (partial programs) to observe by deletion generation schemes

0: remains, 1: deleted

- Generate a set of "deletions" (partial programs) to observe by deletion generation schemes
 - 0: remains, 1: deleted

1-HOT: every single statement

Ui **U**2 U₃ **U**4 Ui-1 • • • original -0 0 0 (no deletion) 0 0 0 0 0 • • • • • • 0

...

2-HOT: 1-HOT + every pair of statements

U1	U ₂	Из	U ₄	•••	U _{i-1}	Ui
•••	• • •	•••	•••	•••	•••	•••
1	1	0	0	•••	0	0
1	0	1	0	•••	0	0
•••	•••	•••	•••	• • •	•••	•••
0	0	0	0	•••	1	1

OBSERVATION PHASE

- Generate a set of "deletions" (partial programs) to observe by deletion generation schemes
 - 0: remains, 1: deleted
- Run the programs, check whether the trajectory changed (0) or not (1) for each variable.

U ₁	U ₂	из	U ₄	•••	U _{i-1}	Ui	Observe	V ₁	V ₂	V 3	•••	Vj
0	0	0	0	•••	0	0	+	1	1	1		1
1	0	0	0	•••	0	0	+	0	0	0	•••	1
0	1	0	0	•••	0	0	+	1	0	1	•••	0
•••	•••	• • •	•••	•••	•••	•••		•••	•••	•••	•••	•••
0	0	0	0	•••	1	1	+	0	0	1	•••	0

U1	U ₂	Uз	U 4	•••	Ui₋1	ui	Observe	V1	V ₂	V 3	•••	Vj
0	0	0	0	•••	0	0	→	1	1	1	•••	1
1	0	0	0	•••	0	0	→	0	0	0	•••	1
0	1	0	0	•••	0	0	→	1	0	1	•••	0
•••	•••	•••	•••	•••	•••	•••			•••	•••	•••	•••
0	0	0	0	•••	1	1	→	0	0	1	•••	0

M:

U ₁	U ₂	U 3	U4	•••	Ui₋1	u i
0	0	1	0	•••	0	1

V₁

STATISTICAL MODEL

STATISTICAL MODEL -> INFER DEPENDENCY

Main hypothesis:

A variable v_k is more likely to be independent of a statement u_i if more observations show that v_k preserves its behavior when u_i is deleted.

1. Once success (0)

If the behavior of v_k is preserved at least once when u_i is deleted, then v_k is independent from u_i .

2. Logistic (L)

2. Logistic (L)

U ₁	U ₂		Ui	Vk
1	0	•	0	0
0	1	•••	0	1
				•••
1	0	•••	0	0

2. Logistic (L)

U ₁	U ₂		Ui	Vk
1	0	•••	0	0
0	1	•••	0	1
				•••
1	0	•••	0	0

Coefficients represent the relative impact on dependence

2. Logistic (L)

U ₁	U ₂		Ui	Vk
1	0	•••	0	0
0	1		0	1
			•••	
1	0	•••	0	0

Coefficients represent the relative impact on dependence

If
$$\beta_i > 0$$
, then $u_i \longrightarrow v_k$

If $\beta_i \le 0$, then $u_i \longrightarrow v_k$

If β_i , the coefficient for u_i of the logistic regression for v_k , is larger than 0, then v_k is independent from u_i .

2. Logistic (L)

U ₁	U ₂		Ui	Vk
1	0	•	0	0
0	1		0	1
				•••
1	0	•••	0	0

Coefficients represent the relative impact on dependence

If
$$\beta_i > 0$$
, then $\mathbf{u}_i \longrightarrow \mathbf{v}_k$

If $\beta_i \leq 0$, then $\mathbf{u}_i \longrightarrow \mathbf{v}_k$

If β_i , the coefficient for u_i of the logistic regression for v_k , is larger than 0, then v_k is independent from u_i .

3. Bayesian (B)

 $Dep \ u_i \rightarrow v_k$: how much does u_k affects when v_k changed

$$\sim P(u_i = 1 \mid v_k = 0) = \frac{P(v_k = 0 \mid u_i = 1)P(u_i = 1)}{P(v_k = 0)}$$

$$\approx P(v_k = 0 \mid u_i = 1) := P(v_k \mid u_i)$$

Vk
0
1
1

$$P(v_k \mid u_i) = 1/2$$

2. Logistic (L)

U ₁	U ₂		Ui	Vk
1	0	•	0	0
0	1		0	1
				•••
1	0	•••	0	0

$$\log \frac{v_k}{1 - v_k}$$

$$= \beta_0 + \beta_1 u_1 + \beta_2 u_2 + \dots + \beta_i u_i$$

Coefficients represent the relative impact on dependence

If
$$\beta_i > 0$$
, then $\mathbf{u}_i \longrightarrow \mathbf{v}_k$

If $\beta_i \leq 0$, then $\mathbf{u}_i \longrightarrow \mathbf{v}_k$

If β_i , the coefficient for u_i of the logistic regression for v_k , is larger than 0, then v_k is independent from u_i .

3. Bayesian (B)

 $Dep \ u_i \rightarrow v_k$: how much does u_k affects when v_k changed

$$\sim P(u_i = 1 \mid v_k = 0) = \frac{P(v_k = 0 \mid u_i = 1)P(u_i = 1)}{P(v_k = 0)}$$

$$\approx P(v_k = 0 \mid u_i = 1) := P(v_k \mid u_i)$$

U ₁	Vk
1	0
0	1
1	1

 $P(v_k \mid u_i) = 1/2$

 μ : average of the probability over units

If
$$\hat{P}(v_k \mid u_i) > \mu$$
, then $u_i \longrightarrow v_k$

If
$$\hat{P}(v_k \mid u_i) \leq \mu$$
, then $\mathbf{u_i} \longrightarrow \mathbf{v_k}$

If the $P(v_k)$ behaves the same $|u_i|$ has been deleted) is larger than the mean, then v_k is independent from u_i .

RQ1. MOAD vs. ORBS

- Efficiency: number of observation needed
- Effectiveness: size of the resulting slice

RQ1. MOAD vs. ORBS

- Efficiency: number of observation needed
- Effectiveness: size of the resulting slice

RQ2. MOAD vs. Static slicing

Difference between slices

Subject

Subject	SLoC	# of statements	# of numeric variables	
mbe *	64	45	16	
mug *	61	44	13	
WC *	46	33	17	
print_tokens	410	388	98	
print_tokens2	387	364	75	
replace	508	465	253	
schedule	283	252	75	
schedule2	276	248	81	
tot_info	314	227	210	
tcas	152	110	62	

Well-known examples where static analysis fails to identify dependency

EFFICIENCY

MOAD with 1-HOT used

► 0.37% of the # of observations

MOAD with 2-HOT used

► 18.6% of the # of observations compared to ORBS.

EFFICIENCY

MOAD with 1-HOT used

► 0.37% of the # of observations

MOAD with 2-HOT used

► 18.6% of the # of observations compared to ORBS.

EFFICIENCY

MOAD with 1-HOT used

► 0.37% of the # of observations

MOAD with 2-HOT used

► 18.6% of the # of observations compared to ORBS.

EFFECTIVENESS

EFFECTIVENESS

For deletion generation scheme,

• 2-HOT < 1-HOT.

EFFECTIVENESS

For deletion generation scheme,

- 2-HOT < 1-HOT.

For inference model,

EFFECTIVENESS

For deletion generation scheme,

• 2-HOT < 1-HOT.

For inference model,

- 0 < L, B

MOAD with 2-HOT, © generate

► 12% larger slices compared to ORBS.

EFFECTIVENESS

For deletion generation scheme,

USING (2-HOT, ONCE SUCCESS), MOAD REQUIRES < 20% OBSERVATIONS THAN ORBS.

AT THE SAME TIME, THE SLICE IS ONLY 12% LARGER THAN ORBS.

MOAD with 2-HOT, © generate

12% larger slices compared to ORBS.

RQ2: MOAD VS. STATIC SLICER

- Static analysis tool: CodeSurfer from Grammatech
 - Miss: # of lines only in the MOAD SLICE
 - Excess: # of lines only in the STATIC SLICE

# of Lines (min-max)	Miss		Excess	
	3 small	Siemens	3 small	Siemens
Backward	0-3	8-24	0-1	9-79
Forward	0-0	0-6	0-1	7-37

ADVANTAGE OF MOAD VS. ORBS

EFFICIENCY

MOAD with 1-HOT used

► **0.37%** of the # of observations MOAD with 2-HOT used

► 18.6% of the # of observations compared to ORBS.

22