
[]

[]

MOBS: Multi-Operator Observation-Based Slicing using
Lexical Approximation of Program Dependence
Seongmin Lee†, David Binkley‡, Nicolas Gold§, Syed Islam∇, Jens Krinke§, Shin Yoo†

ORBS
Window Deletion• Purely dynamic & Language Independent slicing

• Makes a series of deletions of code lines, which  
1) leaves the code (still) compilable, and  
2) preserves the trajectory of the slicing criterion.

• Approximates the program dependence via observations of test executions.

Code

Line to consider for
deletion (p)

Scalability Issue
• Compilation & execution every time it attempts to delete

• Deletion Candidate (p’)

7200 sec / 220 lines * Guava escape package

Lexical Similarity based ORBS

LS Deletion

• Represents code lines as numeric vectors using IR-based methods.
- Vector Space Model (VSM) and Latent Dirichlet Allocation (LDA)

• Attempts to delete lexically similar lines at once.

Advantages on Efficiency
• No limit to the number of lines that can be deleted simultaneously.
• Can delete non-consecutive lines.
• Makes only 1 deletion attempt at each code line in an iteration.

Experiment ResultsMOBS: Multi-Operator ORBS
• Window and LS deletion operators have different characteristics.

- Window Deletion: more precise / LS Deletion: more efficient
• MOBS stochastically selects the next deletion operator to use from the

pool of both window and LS deletion operators. ●

●

●

●

●

●

●

●

●

40
80

12
0

16
0

1 2 3 4 5 6

Iteration

D
el

et
ed

 L
in

es

MOBS−UNI
MOBS−APP
MOBS−AFF
MOBS−ROS
ORBS

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

1000
2000

1 2 3 4 5 6

Iteration

Tim
e (sec.)

replace criterion1

Conclusion
• We present a generalization of ORBS that can use a wide range of deletion

operators instead of the original deletion window only.
• We introduce lexical deletion operators that exploit lexical similarities

between source code lines to improve the efficiency of ORBS.
• We propose MOBS that can significantly improve the efficiency by using

multiple deletion operators.

Selection Strategies
Fixed Operator Selection

(FOS)
Rolling Operator Selection

(ROS)

[]
• Uniform

• Applicability (Success rate)

• Affect (# of deletable lines)

Experimental Results

Deletes 87% lines in 33% time w.r.t ORBS

Achieves both effectiveness and efficiency

W−
OR
BS

VS
M(
γ :
0.9
)

LD
A(γ
: 0
.9,
n:5
00
)0

20
00

40
00

60
00

80
00

0
10
0

20
0

30
0

40
0

50
0

C
om

pi
la
tio
ns

Ex
ec
ut
io
ns

●

●

●

18.8

7.99

12.57

1.27

0.72 0.72

●

Compilations
Executions
Deletions
CPD
EPD

W−
OR
BS

VS
M(
γ :
0.9
)

LD
A(γ
: 0
.9,
n:5
00
)0

20
0

40
0

60
0

80
0

0
20
00

40
00

60
00

80
00

10
00
0

D
el
et
io
ns
(li
ne
)

Ti
m
e(
se
c)23.29

10.01

15.79

Deletions
Time
SPD

guava−escape criterion3: W− and VSM−, LDA−ORBSGuava-escape criterion3

ORBS VSM 
ORBS

LDA 
ORBS ORBS VSM 

ORBS
LDA 

ORBS

Experimental Results
• 12 slicing criteria from Java and C benchmarks

- Java : Apache commons-cli, commons-csv, Guava
- C : Siemens suite
- NCLOC : 208 ~ 2,081

45.9%comp
delVSM: 63.1% 49.5%exec

del
time

del

Code

• MOBS with ROS selection strategy performs the best

59.9%comp
delLDA: 65.9% 62.2%exec

del
time

del

• Deletion Candidate (p’)

ACKNOWLEDGEMENT - This research was supported by Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (No. 2017M3C4A7068179).

†:KAIST, Republic of Korea ‡:Loyola University Baltimore, USA §:University College London, UK ∇:University of East London, UK

Line to consider for
deletion (p)

