MOBS: Multi-Operator Observation-Based Slicing using
Lexical Approximation of Program Dependence

Seongmin Leet, David Binkley*, Nicolas Gold$, Syed IslamV, Jens Krinke$, Shin Yoot

1:KAIST, Republic of Korea #:Loyola University Baltimore, USA

ORBS
+ Purely dynamic & Language Independent slicing
+ Makes a series of deletions of code lines, which
1) leaves the code (still) compilable, and
2) preserves the trajectory of the slicing criterion.
- Approximates the program dependence via observations of test executions.

Scalability Issue

- Compilation & execution every time it attempts to delete

7200 SeC / 220 Ilnes * Guava escape package

Lexical Similarity based ORBS

- Represents code lines as numeric vectors using IR-based methods.
- Vector Space Model (VSM) and Latent Dirichlet Allocation (LDA)
« Attempts to delete lexically similar lines at once.

LS Deletion

[vp' sim(p,p’) < 7]

<= Line to consider for
deletion (p)

Advantages on Efficiency

» No limit to the number of lines that can be deleted simultaneously.
+ Can delete non-consecutive lines.
+ Makes only 1 deletion attempt at each code line in an iteration.

MOBS: Multi-Operator ORBS

- Window and LS deletion operators have different characteristics.
- Window Deletion: more precise / LS Deletion: more efficient

- MOBS stochastically selects the next deletion operator to use from the
pool of both window and LS deletion operators.

Selection Strategies

Fixed Operator Selection
(FOS)

Rolling Operator Selection
(ROS)

+ Uniform
- Applicability (Success rate)
+ Affect (# of deletable lines)

[Prcn(D) = @ x P(D)]

Experimental Results

Achieves both effectiveness and efficiency

MOBS with ROS selection strategy performs the best

Deletes 87% lines in 33% time w.r.t ORBS

§:University College London, UK

B

V:University of East London, UK

Window Deletion

[‘v’p’ (Loc, — Loc,) < 5]

<= Line to consider for
deletion (p)

Experimental Results

+ 12 slicing criteria from Java and C benchmarks
- Java : Apache commons-cli, commons-csv, Guava
- C : Siemens suite

- NCLOC : 208 ~ 2,081

Guava-escape criterion3

8000

@ Deletions
@ Time
<& SPD

O Compilations
I Executions
@ Deletions

o CPD

X EPD

6000
600

Compilations
4000
Executions
Deletions(line)

400
Time(sec)

2000
200

VSM LDA VSM LDA
ORBS ORBS ORBS oRpBS ORBS

VSM: 459%™ 63.1% %% 49.5% "%
LDA: 59.9%°T% 65.9% % 62.2% "™

replace criterion1

120

Deleted Lines

E3 MOBS-UNI
E9 MOBS-APP
E3 MOBS-AFF
E9 MOBS-ROS
£5 ORBS

4 5 6 S L
Iteration Iteration

Conclusion

+ We present a generalization of ORBS that can use a wide range of deletion
operators instead of the original deletion window only.

- We introduce lexical deletion operators that exploit lexical similarities
between source code lines to improve the efficiency of ORBS.

- We propose MOBS that can significantly improve the efficiency by using
multiple deletion operators.

ACKNOWLEDGEMENT - This research was supported by Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (No. 2017M3C4A7068179).

