
[                   ]

[                   ]

MOBS: Multi-Operator Observation-Based Slicing using  
Lexical Approximation of Program Dependence
Seongmin Lee†, David Binkley‡, Nicolas Gold§, Syed Islam∇, Jens Krinke§, Shin Yoo†

ORBS
Window Deletion• Purely dynamic & Language Independent slicing 

• Makes a series of deletions of code lines, which  
1) leaves the code (still) compilable, and  
2) preserves the trajectory of the slicing criterion. 

• Approximates the program dependence via observations of test executions.

Code

Line to consider for 
deletion (p)

Scalability Issue
• Compilation & execution every time it attempts to delete

• Deletion Candidate (p’)

7200 sec / 220 lines * Guava escape package

Lexical Similarity based ORBS

LS Deletion

• Represents code lines as numeric vectors using IR-based methods. 
- Vector Space Model (VSM) and Latent Dirichlet Allocation (LDA) 

• Attempts to delete lexically similar lines at once.

Advantages on Efficiency
• No limit to the number of lines that can be deleted simultaneously. 
• Can delete non-consecutive lines. 
• Makes only 1 deletion attempt at each code line in an iteration.

Experiment ResultsMOBS: Multi-Operator ORBS
• Window and LS deletion operators have different characteristics. 

- Window Deletion: more precise / LS Deletion: more efficient 
• MOBS stochastically selects the next deletion operator to use from the 

pool of both window and LS deletion operators. ●
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Conclusion
• We present a generalization of ORBS that can use a wide range of deletion 

operators instead of the original deletion window only. 
• We introduce lexical deletion operators that exploit lexical similarities 

between source code lines to improve the efficiency of ORBS. 
• We propose MOBS that can significantly improve the efficiency by using 

multiple deletion operators.

Selection Strategies
Fixed Operator Selection 

(FOS)
Rolling Operator Selection 

(ROS)
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• Uniform 

• Applicability (Success rate) 

• Affect (# of deletable lines)

Experimental Results

Deletes 87% lines in 33% time w.r.t ORBS

Achieves both effectiveness and efficiency
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Experimental Results
• 12 slicing criteria from Java and C benchmarks 

- Java : Apache commons-cli, commons-csv, Guava 
- C : Siemens suite 
- NCLOC : 208 ~ 2,081
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• MOBS with ROS selection strategy performs the best
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• Deletion Candidate (p’)
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