
Evaluating lexical approximation of
program dependence
Seongmin Lee, David Binkley, Nicolas Gold, Syed Islam, Jens Krinke, Shin Yoo
Journal of Systems and Software

/10

Naturalness of source code

2

/10

Naturalness of source code

2

Code lines handing the logging function
contains the word ‘log’

• Java

• Python

/10

Naturalness of source code

2

Code lines handing the logging function
contains the word ‘log’

• Java

• Python

On the Naturalness of Software

Abram Hindle, Earl T. Barr, Zhendong Su
Dept. of Computer Science

University of California at Davis
Davis, CA 95616 USA

{ajhindle,barr,su}@cs.ucdavis.edu

Mark Gabel
Dept. of Computer Science

The University of Texas at Dallas
Richardson, TX 75080 USA
mark.gabel@utdallas.edu

Premkumar Devanbu
Dept. of Computer Science

University of California at Davis
Davis, CA 95616 USA

devanbu@cs.ucdavis.edu

Abstract—Natural languages like English are rich, complex,

and powerful. The highly creative and graceful use of languages

like English and Tamil, by masters like Shakespeare and

Avvaiyar, can certainly delight and inspire. But in practice,

given cognitive constraints and the exigencies of daily life, most

human utterances are far simpler and much more repetitive

and predictable. In fact, these utterances can be very usefully

modeled using modern statistical methods. This fact has led

to the phenomenal success of statistical approaches to speech

recognition, natural language translation, question-answering,

and text mining and comprehension.

We begin with the conjecture that most software is also

natural, in the sense that it is created by humans at work,

with all the attendant constraints and limitations—and thus,

like natural language, it is also likely to be repetitive and

predictable. We then proceed to ask whether a) code can

be usefully modeled by statistical language models and b)

such models can be leveraged to support software engineers.

Using the widely adopted n-gram model, we provide empirical

evidence supportive of a positive answer to both these questions.

We show that code is also very repetitive, and in fact even more

so than natural languages. As an example use of the model,

we have developed a simple code completion engine for Java

that, despite its simplicity, already improves Eclipse’s built-in

completion capability. We conclude the paper by laying out a

vision for future research in this area.

Keywords-language models; n-gram; natural language pro-

cessing; code completion; and code suggestion

I. INTRODUCTION

The word “natural” in the title of this paper refers to the
fact that code, despite being written in an artificial language
(like C or Java) is a natural product of human effort. This use
of the word natural derives from the field of natural language
processing, where the goal is to automatically process texts in
natural languages, such as English and Tamil, for tasks such
as translation (to other natural languages), summarization,
understanding, and speech recognition.

The field of natural language processing (“NLP”, see
Sparck-Jones [1] for a brief history) went through several
decades of rather slow and painstaking progress, beginning
with early struggles with dictionary and grammar-based

Abram Hindle is now with University of Alberta, Edmonton.
Mark Gabel was at UC Davis when this work was done.

efforts in the 1960s. In the ’70s and ’80s, the field was re-
animated with ideas from logic and formal semantics, which
still proved too cumbersome to perform practical tasks at
scale. Both these approaches essentially dealt with NLP from
first principles—addressing language, in all its rich theoretical
glory, rather than examining corpora of actual utterances, i.e.,
what people actually write or say. In the 1980s, a fundamental
shift to corpus-based, statistically rigorous methods occurred.
The availability of large, on-line corpora of natural language
text, including “aligned” text with translations in multiple
languages,1 along with the computational muscle (CPU speed,
primary and secondary storage) to estimate robust statistical
models over very large data sets has led to stunning progress
and widely-available practical applications, such as statistical
translation used by translate.google.com.2 We argue that
an essential fact underlying this modern, exciting phase of
NLP is natural language may be complex and admit a great
wealth of expression, but what people write and say is largely
regular and predictable.

Our central hypothesis is that the same argument applies
to software:

Programming languages, in theory, are complex,
flexible and powerful, but the programs that real people
actually write are mostly simple and rather repetitive,
and thus they have usefully predictable statistical proper-
ties that can be captured in statistical language models
and leveraged for software engineering tasks.

We believe that this is a general, useful and practical notion
that, together with the very large publicly available corpora
of open-source code, will enable a new, rigorous, statistical
approach to a wide range of applications, in program analysis,
error checking, software mining, program summarization, and
code searching. This paper is the first step in what we hope

1This included the Canadian Hansard (parliamentary proceedings), and
similar outputs from the European parliament.

2Indeed, a renowned pioneer of the statistical approach, Fred Jelenik, is
reputed to have exclaimed: “Every time a linguist leaves our group, the
performance of our speech recognition goes up!!!” See http://en.wikiquote.
org/wiki/Fred_Jelinek.

978-1-4673-1067-3/12/$31.00 c� 2012 IEEE ICSE 2012, Zurich, Switzerland837

Like a natural language,
a source code is also repetitive and predictable.

A Statistical Semantic Language Model for Source Code

Tung Thanh Nguyen

tung@iastate.edu

Anh Tuan Nguyen

anhnt@iastate.edu

Hoan Anh Nguyen

hoan@iastate.edu

Tien N. Nguyen

tien@iastate.edu

Electrical and Computer Engineering Department

Iowa State University

Ames, IA 50011, USA

ABSTRACT

Recent research has successfully applied the statistical n-
gram language model to show that source code exhibits a
good level of repetition. The n-gram model is shown to have
good predictability in supporting code suggestion and com-
pletion. However, the state-of-the-art n-gram approach to
capture source code regularities/patterns is based only on
the lexical information in a local context of the code units.
To improve predictability, we introduce SLAMC, a novel sta-
tistical semantic language model for source code. It incorpo-
rates semantic information into code tokens and models the
regularities/patterns of such semantic annotations, called se-

memes, rather than their lexemes. It combines the local con-
text in semantic n-grams with the global technical concerns/
functionality into an n-gram topic model, together with pair-
wise associations of program elements. Based on SLAMC,
we developed a new code suggestion method, which is empir-
ically evaluated on several projects to have relatively 18–68%
higher accuracy than the state-of-the-art approach.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms

Algorithms, Documentation, Experimentation, Measurement

Keywords

Statistical Semantic Language Model, Code Completion

1. INTRODUCTION

Previous research has shown that source code in program-
ming languages exhibits a good level of repetition [5, 8].
Studying 420 million LOCs in 6,000 software projects in
SourceForge, Gabel et al. [5] reported syntactic redundancy

at the levels of granularity from 6–40 tokens. For example, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

for loop such as“for (int i = 0; i < n; i++)”or a printing state-
ment “System.out.println(...)” occur frequently in many source
files. Hindle et al. [8] found that such code regularities/-
patterns can be captured by the n-gram statistical language
model [15] via training on existing codebases. The model is
then leveraged to support code suggestion and completion 1.

The state-of-the-art statistical n-gram language model for
capturing such code repetitions/patterns and code sugges-
tion relies on the lexical information and local context of code
tokens [8]. Lexical analysis is performed on source code to
break it into tokens. The sequences of the tokens, called
n-grams, are collected with di↵erent sizes. For a token, only
its textual representation, called lexeme, is extracted. The
n-grams with high occurrence counts correspond to highly
frequent code, called code regularities/patterns.

Using only lexical information, the n-gram model focuses
on capturing code patterns at the lexical level. However,
source code written in programming languages has well-
defined semantics. Programming patterns at the higher lev-
els of abstraction would be useful for code suggestion/compl-
etion as well. For example, let us consider two simple statem-
ents“int len = str.length()”and“int l = s.length()”, when len and
l are of the same type int, and str and s are of the same type
String. Both of them are the instances of the same pattern
of getting the length of a String object and assigning it to an

int variable. It could not be captured at the lexical level due
to the di↵erences of lexemes (e.g. str versus s, len versus l).

Furthermore, such lexical n-grams can provide only the lo-
cal context. However, several programming regularities/pat-
terns might involve program elements that scatter apart and
cannot be captured within n-grams with reasonable sizes.
The first kind of such patterns includes the pairs of program

tokens that are required to occur together due to the syntactic
rules of a programming language (e.g. the pair of try/catch
in Java) or due to the usage specification of a software li-
brary (e.g. lock and unlock in the mutual exclusion library).
Let us call it pairwise association among tokens.

The second kind of such patterns involves multiple co-

occurring tokens that often come together to realize the same

technical functionality/concerns. The API elements such as
methods and data types that are used to implement certain
functionality/concerns will appear together more frequently
in the files related to those concerns. For example, in a
source file relevant to file I/O functionality, the related APIs
such as File, fopen, fread, etc would be more likely to occur

1
Code completion refers to completing a partially typed-in token.

Code suggestion means the suggestion of a complete code token

following a code portion [8].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00
http://dx.doi.org/10.1145/2491411.2491458

532

On the “Naturalness” of Buggy Code

Baishakhi Ray§
⇤

Vincent Hellendoorn†⇤ Saheel Godhane†

Zhaopeng Tu\ Alberto Bacchelli‡ Premkumar Devanbu†

§
University of Virginia

†
University of California, Davis

\
Huawei Technologies Co. Ltd.

rayb@virginia.edu {vjhellendoorn,srgodhane,ptdevanbu}@ucdavis.edu tuzhaopeng@gmail.com

‡
Delft University of Technology

A.Bacchelli@tudelft.nl

ABSTRACT
Real software, the kind working programmers produce by the kLOC
to solve real-world problems, tends to be “natural”, like speech or
natural language; it tends to be highly repetitive and predictable.
Researchers have captured this naturalness of software through sta-
tistical models and used them to good effect in suggestion engines,
porting tools, coding standards checkers, and idiom miners. This
suggests that code that appears improbable, or surprising, to a good
statistical language model is “unnatural” in some sense, and thus
possibly suspicious. In this paper, we investigate this hypothesis.
We consider a large corpus of bug fix commits (ca. 7,139), from 10
different Java projects, and focus on its language statistics, evaluat-
ing the naturalness of buggy code and the corresponding fixes. We
find that code with bugs tends to be more entropic (i.e. unnatural),
becoming less so as bugs are fixed. Ordering files for inspection
by their average entropy yields cost-effectiveness scores compara-
ble to popular defect prediction methods. At a finer granularity,
focusing on highly entropic lines is similar in cost-effectiveness
to some well-known static bug finders (PMD, FindBugs) and or-
dering warnings from these bug finders using an entropy measure
improves the cost-effectiveness of inspecting code implicated in
warnings. This suggests that entropy may be a valid, simple way
to complement the effectiveness of PMD or FindBugs, and that
search-based bug-fixing methods may benefit from using entropy
both for fault-localization and searching for fixes.

1. INTRODUCTION
Our work begins with the observation by Hindle et al [22], that

“natural" code in repositories is highly repetitive, and that this rep-
etition can be usefully captured by language models originally de-
veloped in the field of statistical natural language processing (NLP).
Following this work, language models have been used to good ef-
fect in code suggestion [22, 48, 53, 15], cross-language porting [38,
37, 39, 24], coding standards [2], idiom mining [3], and code de-
obfuscation [47]. Since language models are useful in these tasks,
⇤Baishakhi Ray and Vincent Hellendoorn are both first authors, and
contributed equally to the work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’16, May 14 - 22, 2016, Austin, TX, USA
c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3900-1/16/05. . . $15.00
DOI: http://dx.doi.org/10.1145/2884781.2884848

they are capturing some property of how code is supposed to be.
This raises an interesting question: What does it mean when a code
fragment is considered improbable by these models?

Language models assign higher naturalness to code (tokens, syn-
tactic forms, etc.) frequently encountered during training, and lower
naturalness to code rarely or never seen. In fact, prior work [7]
showed that syntactically incorrect code is flagged as improbable
by language models. However, by restricting ourselves to code that
occurs in repositories, we still encounter unnatural, yet syntacti-
cally correct code; why? We hypothesize that unnatural code is
more likely to be wrong, thus, language models actually help zero-
in on potentially defective code.

This notion appears plausible; highly experienced programmers
can often intuitively zero-in on “funny-looking" code, when trying
to diagnose a failure. If statistical language models could capture
this capability, then they could be a useful adjunct in a variety of
settings: they could improve defect prediction; help provide an im-
proved priority ordering for static analysis warnings; improve the
performance of fault-localization algorithms; or even recommend
“more natural" code to replace buggy code.

To investigate this phenomenon, we consider a large corpus of
7,139 bug fix commits from 10 different projects and focus on its
language statistics, evaluating the naturalness of defective code and
whether fixes increase naturalness. Language models can rate prob-
abilities of linguistic events at any granularity, even at the level of
characters. We focus on line-level defect analysis, giving far finer
granularity of prediction than typical statistical defect prediction
methods, which most often operate at the granularity of files or
modules. In fact, this approach is more commensurate with static
analysis or static bug-finding tools, which also indicate potential
bugs at line-level. For this reason, we also investigate our lan-
guage model approach in contrast and in conjunction with two well-
known static bug finders (namely, PMD [10] and FindBugs [14]).

Overall, our results corroborate our initial hypothesis that code
with bugs tends to be more unnatural. In particular, the main find-
ings of this paper are:

1. Buggy code is rated as significantly more “unnatural” (im-
probable) by language models.

2. This unnaturalness drops significantly when buggy code is
replaced by fix code.

3. Furthermore, we find that above effects are substantially stron-
ger when:

• the buggy code fragment is shorter (fewer lines), and
• the bug is “short-lived", viz. more quickly fixed.

4. Using cost-sensitive measures, inspecting “unnatural” code
indicated by language models works quite well: Performance
is comparable to that of static bug finders FindBugs and PMD.

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

 428

/10

Naturalness of source code

2

Code lines handing the logging function
contains the word ‘log’

• Java

• Python

On the Naturalness of Software

Abram Hindle, Earl T. Barr, Zhendong Su
Dept. of Computer Science

University of California at Davis
Davis, CA 95616 USA

{ajhindle,barr,su}@cs.ucdavis.edu

Mark Gabel
Dept. of Computer Science

The University of Texas at Dallas
Richardson, TX 75080 USA
mark.gabel@utdallas.edu

Premkumar Devanbu
Dept. of Computer Science

University of California at Davis
Davis, CA 95616 USA

devanbu@cs.ucdavis.edu

Abstract—Natural languages like English are rich, complex,

and powerful. The highly creative and graceful use of languages

like English and Tamil, by masters like Shakespeare and

Avvaiyar, can certainly delight and inspire. But in practice,

given cognitive constraints and the exigencies of daily life, most

human utterances are far simpler and much more repetitive

and predictable. In fact, these utterances can be very usefully

modeled using modern statistical methods. This fact has led

to the phenomenal success of statistical approaches to speech

recognition, natural language translation, question-answering,

and text mining and comprehension.

We begin with the conjecture that most software is also

natural, in the sense that it is created by humans at work,

with all the attendant constraints and limitations—and thus,

like natural language, it is also likely to be repetitive and

predictable. We then proceed to ask whether a) code can

be usefully modeled by statistical language models and b)

such models can be leveraged to support software engineers.

Using the widely adopted n-gram model, we provide empirical

evidence supportive of a positive answer to both these questions.

We show that code is also very repetitive, and in fact even more

so than natural languages. As an example use of the model,

we have developed a simple code completion engine for Java

that, despite its simplicity, already improves Eclipse’s built-in

completion capability. We conclude the paper by laying out a

vision for future research in this area.

Keywords-language models; n-gram; natural language pro-

cessing; code completion; and code suggestion

I. INTRODUCTION

The word “natural” in the title of this paper refers to the
fact that code, despite being written in an artificial language
(like C or Java) is a natural product of human effort. This use
of the word natural derives from the field of natural language
processing, where the goal is to automatically process texts in
natural languages, such as English and Tamil, for tasks such
as translation (to other natural languages), summarization,
understanding, and speech recognition.

The field of natural language processing (“NLP”, see
Sparck-Jones [1] for a brief history) went through several
decades of rather slow and painstaking progress, beginning
with early struggles with dictionary and grammar-based

Abram Hindle is now with University of Alberta, Edmonton.
Mark Gabel was at UC Davis when this work was done.

efforts in the 1960s. In the ’70s and ’80s, the field was re-
animated with ideas from logic and formal semantics, which
still proved too cumbersome to perform practical tasks at
scale. Both these approaches essentially dealt with NLP from
first principles—addressing language, in all its rich theoretical
glory, rather than examining corpora of actual utterances, i.e.,
what people actually write or say. In the 1980s, a fundamental
shift to corpus-based, statistically rigorous methods occurred.
The availability of large, on-line corpora of natural language
text, including “aligned” text with translations in multiple
languages,1 along with the computational muscle (CPU speed,
primary and secondary storage) to estimate robust statistical
models over very large data sets has led to stunning progress
and widely-available practical applications, such as statistical
translation used by translate.google.com.2 We argue that
an essential fact underlying this modern, exciting phase of
NLP is natural language may be complex and admit a great
wealth of expression, but what people write and say is largely
regular and predictable.

Our central hypothesis is that the same argument applies
to software:

Programming languages, in theory, are complex,
flexible and powerful, but the programs that real people
actually write are mostly simple and rather repetitive,
and thus they have usefully predictable statistical proper-
ties that can be captured in statistical language models
and leveraged for software engineering tasks.

We believe that this is a general, useful and practical notion
that, together with the very large publicly available corpora
of open-source code, will enable a new, rigorous, statistical
approach to a wide range of applications, in program analysis,
error checking, software mining, program summarization, and
code searching. This paper is the first step in what we hope

1This included the Canadian Hansard (parliamentary proceedings), and
similar outputs from the European parliament.

2Indeed, a renowned pioneer of the statistical approach, Fred Jelenik, is
reputed to have exclaimed: “Every time a linguist leaves our group, the
performance of our speech recognition goes up!!!” See http://en.wikiquote.
org/wiki/Fred_Jelinek.

978-1-4673-1067-3/12/$31.00 c� 2012 IEEE ICSE 2012, Zurich, Switzerland837

Like a natural language,
a source code is also repetitive and predictable.

A Statistical Semantic Language Model for Source Code

Tung Thanh Nguyen

tung@iastate.edu

Anh Tuan Nguyen

anhnt@iastate.edu

Hoan Anh Nguyen

hoan@iastate.edu

Tien N. Nguyen

tien@iastate.edu

Electrical and Computer Engineering Department

Iowa State University

Ames, IA 50011, USA

ABSTRACT

Recent research has successfully applied the statistical n-
gram language model to show that source code exhibits a
good level of repetition. The n-gram model is shown to have
good predictability in supporting code suggestion and com-
pletion. However, the state-of-the-art n-gram approach to
capture source code regularities/patterns is based only on
the lexical information in a local context of the code units.
To improve predictability, we introduce SLAMC, a novel sta-
tistical semantic language model for source code. It incorpo-
rates semantic information into code tokens and models the
regularities/patterns of such semantic annotations, called se-

memes, rather than their lexemes. It combines the local con-
text in semantic n-grams with the global technical concerns/
functionality into an n-gram topic model, together with pair-
wise associations of program elements. Based on SLAMC,
we developed a new code suggestion method, which is empir-
ically evaluated on several projects to have relatively 18–68%
higher accuracy than the state-of-the-art approach.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms

Algorithms, Documentation, Experimentation, Measurement

Keywords

Statistical Semantic Language Model, Code Completion

1. INTRODUCTION

Previous research has shown that source code in program-
ming languages exhibits a good level of repetition [5, 8].
Studying 420 million LOCs in 6,000 software projects in
SourceForge, Gabel et al. [5] reported syntactic redundancy

at the levels of granularity from 6–40 tokens. For example, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

for loop such as“for (int i = 0; i < n; i++)”or a printing state-
ment “System.out.println(...)” occur frequently in many source
files. Hindle et al. [8] found that such code regularities/-
patterns can be captured by the n-gram statistical language
model [15] via training on existing codebases. The model is
then leveraged to support code suggestion and completion 1.

The state-of-the-art statistical n-gram language model for
capturing such code repetitions/patterns and code sugges-
tion relies on the lexical information and local context of code
tokens [8]. Lexical analysis is performed on source code to
break it into tokens. The sequences of the tokens, called
n-grams, are collected with di↵erent sizes. For a token, only
its textual representation, called lexeme, is extracted. The
n-grams with high occurrence counts correspond to highly
frequent code, called code regularities/patterns.

Using only lexical information, the n-gram model focuses
on capturing code patterns at the lexical level. However,
source code written in programming languages has well-
defined semantics. Programming patterns at the higher lev-
els of abstraction would be useful for code suggestion/compl-
etion as well. For example, let us consider two simple statem-
ents“int len = str.length()”and“int l = s.length()”, when len and
l are of the same type int, and str and s are of the same type
String. Both of them are the instances of the same pattern
of getting the length of a String object and assigning it to an

int variable. It could not be captured at the lexical level due
to the di↵erences of lexemes (e.g. str versus s, len versus l).

Furthermore, such lexical n-grams can provide only the lo-
cal context. However, several programming regularities/pat-
terns might involve program elements that scatter apart and
cannot be captured within n-grams with reasonable sizes.
The first kind of such patterns includes the pairs of program

tokens that are required to occur together due to the syntactic
rules of a programming language (e.g. the pair of try/catch
in Java) or due to the usage specification of a software li-
brary (e.g. lock and unlock in the mutual exclusion library).
Let us call it pairwise association among tokens.

The second kind of such patterns involves multiple co-

occurring tokens that often come together to realize the same

technical functionality/concerns. The API elements such as
methods and data types that are used to implement certain
functionality/concerns will appear together more frequently
in the files related to those concerns. For example, in a
source file relevant to file I/O functionality, the related APIs
such as File, fopen, fread, etc would be more likely to occur

1
Code completion refers to completing a partially typed-in token.

Code suggestion means the suggestion of a complete code token

following a code portion [8].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00
http://dx.doi.org/10.1145/2491411.2491458

532

On the “Naturalness” of Buggy Code

Baishakhi Ray§
⇤

Vincent Hellendoorn†⇤ Saheel Godhane†

Zhaopeng Tu\ Alberto Bacchelli‡ Premkumar Devanbu†

§
University of Virginia

†
University of California, Davis

\
Huawei Technologies Co. Ltd.

rayb@virginia.edu {vjhellendoorn,srgodhane,ptdevanbu}@ucdavis.edu tuzhaopeng@gmail.com

‡
Delft University of Technology

A.Bacchelli@tudelft.nl

ABSTRACT
Real software, the kind working programmers produce by the kLOC
to solve real-world problems, tends to be “natural”, like speech or
natural language; it tends to be highly repetitive and predictable.
Researchers have captured this naturalness of software through sta-
tistical models and used them to good effect in suggestion engines,
porting tools, coding standards checkers, and idiom miners. This
suggests that code that appears improbable, or surprising, to a good
statistical language model is “unnatural” in some sense, and thus
possibly suspicious. In this paper, we investigate this hypothesis.
We consider a large corpus of bug fix commits (ca. 7,139), from 10
different Java projects, and focus on its language statistics, evaluat-
ing the naturalness of buggy code and the corresponding fixes. We
find that code with bugs tends to be more entropic (i.e. unnatural),
becoming less so as bugs are fixed. Ordering files for inspection
by their average entropy yields cost-effectiveness scores compara-
ble to popular defect prediction methods. At a finer granularity,
focusing on highly entropic lines is similar in cost-effectiveness
to some well-known static bug finders (PMD, FindBugs) and or-
dering warnings from these bug finders using an entropy measure
improves the cost-effectiveness of inspecting code implicated in
warnings. This suggests that entropy may be a valid, simple way
to complement the effectiveness of PMD or FindBugs, and that
search-based bug-fixing methods may benefit from using entropy
both for fault-localization and searching for fixes.

1. INTRODUCTION
Our work begins with the observation by Hindle et al [22], that

“natural" code in repositories is highly repetitive, and that this rep-
etition can be usefully captured by language models originally de-
veloped in the field of statistical natural language processing (NLP).
Following this work, language models have been used to good ef-
fect in code suggestion [22, 48, 53, 15], cross-language porting [38,
37, 39, 24], coding standards [2], idiom mining [3], and code de-
obfuscation [47]. Since language models are useful in these tasks,
⇤Baishakhi Ray and Vincent Hellendoorn are both first authors, and
contributed equally to the work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’16, May 14 - 22, 2016, Austin, TX, USA
c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3900-1/16/05. . . $15.00
DOI: http://dx.doi.org/10.1145/2884781.2884848

they are capturing some property of how code is supposed to be.
This raises an interesting question: What does it mean when a code
fragment is considered improbable by these models?

Language models assign higher naturalness to code (tokens, syn-
tactic forms, etc.) frequently encountered during training, and lower
naturalness to code rarely or never seen. In fact, prior work [7]
showed that syntactically incorrect code is flagged as improbable
by language models. However, by restricting ourselves to code that
occurs in repositories, we still encounter unnatural, yet syntacti-
cally correct code; why? We hypothesize that unnatural code is
more likely to be wrong, thus, language models actually help zero-
in on potentially defective code.

This notion appears plausible; highly experienced programmers
can often intuitively zero-in on “funny-looking" code, when trying
to diagnose a failure. If statistical language models could capture
this capability, then they could be a useful adjunct in a variety of
settings: they could improve defect prediction; help provide an im-
proved priority ordering for static analysis warnings; improve the
performance of fault-localization algorithms; or even recommend
“more natural" code to replace buggy code.

To investigate this phenomenon, we consider a large corpus of
7,139 bug fix commits from 10 different projects and focus on its
language statistics, evaluating the naturalness of defective code and
whether fixes increase naturalness. Language models can rate prob-
abilities of linguistic events at any granularity, even at the level of
characters. We focus on line-level defect analysis, giving far finer
granularity of prediction than typical statistical defect prediction
methods, which most often operate at the granularity of files or
modules. In fact, this approach is more commensurate with static
analysis or static bug-finding tools, which also indicate potential
bugs at line-level. For this reason, we also investigate our lan-
guage model approach in contrast and in conjunction with two well-
known static bug finders (namely, PMD [10] and FindBugs [14]).

Overall, our results corroborate our initial hypothesis that code
with bugs tends to be more unnatural. In particular, the main find-
ings of this paper are:

1. Buggy code is rated as significantly more “unnatural” (im-
probable) by language models.

2. This unnaturalness drops significantly when buggy code is
replaced by fix code.

3. Furthermore, we find that above effects are substantially stron-
ger when:

• the buggy code fragment is shorter (fewer lines), and
• the bug is “short-lived", viz. more quickly fixed.

4. Using cost-sensitive measures, inspecting “unnatural” code
indicated by language models works quite well: Performance
is comparable to that of static bug finders FindBugs and PMD.

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

 428

Program dependency analysis

Can we approximate the program semantics via
lexical information of the source code?

/10

Observation-Based Slicing (ORBS)

• Purely dynamic program slicing technique

• Use code-level modification & runtime information

3

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“ORBS: %d\n”, i);
}

“ORBS: Language-Independent Program Slicing”, Binkley et al., FSE14

• Thus, it can work on

• multi-lingual programs, or

• programs with third party libraries.

/10

Observation-Based Slicing (ORBS)

• Purely dynamic program slicing technique

• Use code-level modification & runtime information

3

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“ORBS: %d\n”, i);
}

“ORBS: Language-Independent Program Slicing”, Binkley et al., FSE14

• Thus, it can work on

• multi-lingual programs, or

• programs with third party libraries.

/10

Observation-Based Slicing (ORBS)

• Purely dynamic program slicing technique

• Use code-level modification & runtime information

3

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“ORBS: %d\n”, i);
}

“ORBS: Language-Independent Program Slicing”, Binkley et al., FSE14

• Thus, it can work on

• multi-lingual programs, or

• programs with third party libraries.

/10

Observation-Based Slicing (ORBS)

• Purely dynamic program slicing technique

• Use code-level modification & runtime information

3

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“ORBS: %d\n”, i);
}

Is the value
preserved?

“ORBS: Language-Independent Program Slicing”, Binkley et al., FSE14

• Thus, it can work on

• multi-lingual programs, or

• programs with third party libraries.

/10

Observation-Based Slicing (ORBS)

• Purely dynamic program slicing technique

• Use code-level modification & runtime information

3

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“ORBS: %d\n”, i);
}

Is the value
preserved?

Delete it

Yes

“ORBS: Language-Independent Program Slicing”, Binkley et al., FSE14

• Thus, it can work on

• multi-lingual programs, or

• programs with third party libraries.

/10

Observation-Based Slicing (ORBS)

• Purely dynamic program slicing technique

• Use code-level modification & runtime information

3

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“ORBS: %d\n”, i);
}

Is the value
preserved?

Delete it

Rollback

Yes

No

“ORBS: Language-Independent Program Slicing”, Binkley et al., FSE14

• Thus, it can work on

• multi-lingual programs, or

• programs with third party libraries.

/10

Observation-Based Slicing (ORBS)

• Purely dynamic program slicing technique

• Use code-level modification & runtime information

3

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“ORBS: %d\n”, i);
}

Is the value
preserved?

Delete it

Rollback

Yes

No

“ORBS: Language-Independent Program Slicing”, Binkley et al., FSE14

• Thus, it can work on

• multi-lingual programs, or

• programs with third party libraries.

/10

Observation-Based Slicing (ORBS)

• Purely dynamic program slicing technique

• Use code-level modification & runtime information

3

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“ORBS: %d\n”, i);
}

Is the value
preserved?

Delete it

Rollback

Yes

No

“ORBS: Language-Independent Program Slicing”, Binkley et al., FSE14

• Thus, it can work on

• multi-lingual programs, or

• programs with third party libraries.

/10

Observation-Based Slicing (ORBS)

• Purely dynamic program slicing technique

• Use code-level modification & runtime information

3

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“ORBS: %d\n”, i);
}

Is the value
preserved?

Delete it

Rollback

Yes

No

“ORBS: Language-Independent Program Slicing”, Binkley et al., FSE14

• Thus, it can work on

• multi-lingual programs, or

• programs with third party libraries.

/10

Observation-Based Slicing (ORBS)

• Purely dynamic program slicing technique

• Use code-level modification & runtime information

3

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“ORBS: %d\n”, i);
}

Is the value
preserved?

Delete it

Rollback

Yes

No

“ORBS: Language-Independent Program Slicing”, Binkley et al., FSE14

Window-Deletion

• Thus, it can work on

• multi-lingual programs, or

• programs with third party libraries.

/10

• Scalability issue

• Takes around 7,200 seconds to delete 220 lines.
⇒ 0.03 del/s = 32.7 s/del
(* ‘escape’ package in Guava)

Observation-Based Slicing (ORBS)

• Purely dynamic program slicing technique

• Use code-level modification & runtime information

3

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“ORBS: %d\n”, i);
}

Is the value
preserved?

Delete it

Rollback

Yes

No

“ORBS: Language-Independent Program Slicing”, Binkley et al., FSE14

Window-Deletion

• Thus, it can work on

• multi-lingual programs, or

• programs with third party libraries.

/10

Lexical deletion operator

4

Logger logger = Logger.getLogger(…);

logger.log(Level.SEVER, “…”);

logger.log(Level.WARNING, “…”);

...

...

...

...

/10

Lexical deletion operator

4

Logger logger = Logger.getLogger(…);

logger.log(Level.SEVER, “…”);

logger.log(Level.WARNING, “…”);

...

...

...

...

/10

Lexical deletion operator

4

Logger logger = Logger.getLogger(…);

logger.log(Level.SEVER, “…”);

logger.log(Level.WARNING, “…”);

...

...

...

...

0.8

0.85

/10

Lexical deletion operator

4

Logger logger = Logger.getLogger(…);

logger.log(Level.SEVER, “…”);

logger.log(Level.WARNING, “…”);

...

...

...

...

0.8

0.85

/10

Lexical deletion operator

4

Logger logger = Logger.getLogger(…);

logger.log(Level.SEVER, “…”);

logger.log(Level.WARNING, “…”);

...

...

...

...

0.8

0.85

Shares the functionality

/10

Lexical deletion operator

4

Logger logger = Logger.getLogger(…);

logger.log(Level.SEVER, “…”);

logger.log(Level.WARNING, “…”);

...

...

...

...

0.8

0.85

• Two language model to calculate the similarity

• Vector Space Model (VSM)

• Latent Dirichlet Allocation (LDA)

• Advantage of the lexical deletion operators:

• Can delete an arbitrary number of similar lines in
a single deletion

• Can delete non-consecutive lines

• Still, language agnostic

/10

ORBS vs. LS-ORBS
• Benchmarks: 18 slicing criteria from Java and C programs

• Java: apache commons csv, cli, and guava library

• C: Siemens suite

5

W−
ORBS

5 i
ter

s

LD
A−

ORBS

3 i
ter

s

VSM−
ORBS

3 i
ter

s

0
20

00
40

00
60

00
80

00

0
10

0
20

0
30

0
40

0
50

0

C
om

pi
le

s

Ex
ec

ut
es

●

●
●

18.87

7 5.79

1.27

0.83 0.76

●

Compiles
Execcutes
Deletes
CPD
EPD

W−
ORBS

5 i
ter

s

LD
A−

ORBS

3 i
ter

s

VSM−
ORBS

3 i
ter

s

0
20

0
40

0
60

0
80

0

0
20

00
40

00
60

00
80

00
12

00
0

D
el

et
es

(li
ne

)

Ti
m

e(
se

c)33.33

15.82 13.96

Deletes
Time
SPD

guava−escape 3: W−ORBS and LDA−ORBS, VSM−ORBS

LS-ORBS achieves / uses

👍 45% # of compilations,

👍 70% # of executions,

👎 38% # of deleted lines,

👍 64% time taken per deleted line

compared to ORBS.

Lexical deletion
operator

/10

When are lexical deletion operators
effective / ineffective?

6

18 S. Lee, D. Binkley and N. Gold et al. / The Journal of Systems and Software 160 (2020) 110459

Fig. 11. Number of deleted characterized lines.

Fig. 12. Average number of non-stop word tokens on a deleted line.
aka 6 as a benchmark program. Misaka is a CFFI-based binding
for Hoedown, a fast markdown processing library written in C.
The project consists of ten C files from Hoedown, which performs
text parsing, and five Python files that wrap the C functions to
produce a Python module. Misaka has a rich test suite contain-
ing 92 test cases written in Python that focus on evaluating the
linkage between the Python and C functions, rather than the Hoe-
down library itself. The test suite consists of two unit tests that test
the input arguments and 39 integration tests that test the binding
of the C functions to Python methods. The remaining 41 system-
level tests involve 41 different markdown text files and their cor-
responding HTML files.

We consider six slicing criteria for misaka , in an attempt to
cover as diverse a set of functionalities as possible. We select slic-
ing criteria in the C code, which are eventually reached from the
Python test scripts through the CFFI binding. The first slicing crite-
rion (crit-1) involves a variable tracking the index of the beginning
of each line in a buffer while rendering a regular markdown doc-
ument. The second slicing criterion (crit-2) targets the size of the

6 https://misaka.61924.nl

text to render. The third slicing criterion (crit-3) is a variable con-
taining the maximum size of the custom stack before it is changed
by a method that grows the stack to a given size. The fourth slicing
criterion (crit-4) targets the size of misaka ’s renderer object while
allocating a regular HTML renderer. The fifth slicing criterion (crit-
5) is a temporary variable which discriminates the starting index
of the row from the padding when parsing a markdown table row.
The last slicing criterion (crit-6) is the index of the beginning of a
markdown link in the method that calculates the index of the end
of the markdown link.

We ran W-ORBS, VSM-ORBS, and LDA-ORBS on the six slicing
criteria using a threshold of 0.9 for γ with both Dvsm and Dlda ,
and n = 500 topics for Dlda . We also ran ROS-MOBS ten times
for each slicing criteria. The results for VSM-ORBS and LDA-ORBS
when compared to W-ORBS shows a similar trend to those of the
previous experiments. On average for all slicing criterion, VSM-
ORBS and LDA-ORBS slice the code 2.82 times and 2.31 times faster
than W-ORBS while they delete 32.1% and 33.5% of lines that W-
ORBS could delete, respectively.

Table 9 shows the result comparing W-ORBS and ROS-MOBS,
and box plots in Fig. 13 show the ratio between two. In Fig. 13 , the
red box plot on the left represents how many times ROS-MOBS run
faster compare to W-ORBS, and the blue box plot on the right rep-
resents the ratio of the number of deleted lines by ROS-MOBS to
the number of deleted lines by W-ORBS. According to the result,
crit-1 shows good performance from MOBS, where it deletes 71%
of the lines deleted by W-ORBS while executing 2.6 times faster.
MOBS shows poor performance on crit-4 and crit-5 . For crit-5 it is
only 1.4 times faster while for crit-4 the timing is essentially the
same with the average speed up of 1.01. For these slices it deletes
48% and 57% of the lines deleted by W-ORBS, respectively. We in-
vestigated this difference in performance. The main cause is the
size of the slice. For slicing criterion crit-4 , the size of the ren-
derer object calculated by simply calling sizeof method on the
object, has no control or data dependence between the surround-
ing source code. The dependency chains reaching crit-4 are also
simple and shallow, making most of the code easy to delete in
early stages of W-ORBS and MOBS. The small number of remain-
ing lines reduce MOBS’s advantage of fewer deletion attempts on a
single line when compared to W-ORBS. Similarly, the dependence
of crit-5 is limited. It focuses solely on parsing the markdown ta-
ble, which is a local function of the program, and has little depen-
dence on other parsing methods in the program; thus, its slice size
is the second smallest among all slicing criteria. On the other hand,

Syntactic structures in source code is challenging
to the lexical deletion operators

Multi-line statements Declarations18 S. Lee, D. Binkley and N. Gold et al. / The Journal of Systems and Software 160 (2020) 110459

Fig. 11. Number of deleted characterized lines.

Fig. 12. Average number of non-stop word tokens on a deleted line.
aka 6 as a benchmark program. Misaka is a CFFI-based binding
for Hoedown, a fast markdown processing library written in C.
The project consists of ten C files from Hoedown, which performs
text parsing, and five Python files that wrap the C functions to
produce a Python module. Misaka has a rich test suite contain-
ing 92 test cases written in Python that focus on evaluating the
linkage between the Python and C functions, rather than the Hoe-
down library itself. The test suite consists of two unit tests that test
the input arguments and 39 integration tests that test the binding
of the C functions to Python methods. The remaining 41 system-
level tests involve 41 different markdown text files and their cor-
responding HTML files.

We consider six slicing criteria for misaka , in an attempt to
cover as diverse a set of functionalities as possible. We select slic-
ing criteria in the C code, which are eventually reached from the
Python test scripts through the CFFI binding. The first slicing crite-
rion (crit-1) involves a variable tracking the index of the beginning
of each line in a buffer while rendering a regular markdown doc-
ument. The second slicing criterion (crit-2) targets the size of the

6 https://misaka.61924.nl

text to render. The third slicing criterion (crit-3) is a variable con-
taining the maximum size of the custom stack before it is changed
by a method that grows the stack to a given size. The fourth slicing
criterion (crit-4) targets the size of misaka ’s renderer object while
allocating a regular HTML renderer. The fifth slicing criterion (crit-
5) is a temporary variable which discriminates the starting index
of the row from the padding when parsing a markdown table row.
The last slicing criterion (crit-6) is the index of the beginning of a
markdown link in the method that calculates the index of the end
of the markdown link.

We ran W-ORBS, VSM-ORBS, and LDA-ORBS on the six slicing
criteria using a threshold of 0.9 for γ with both Dvsm and Dlda ,
and n = 500 topics for Dlda . We also ran ROS-MOBS ten times
for each slicing criteria. The results for VSM-ORBS and LDA-ORBS
when compared to W-ORBS shows a similar trend to those of the
previous experiments. On average for all slicing criterion, VSM-
ORBS and LDA-ORBS slice the code 2.82 times and 2.31 times faster
than W-ORBS while they delete 32.1% and 33.5% of lines that W-
ORBS could delete, respectively.

Table 9 shows the result comparing W-ORBS and ROS-MOBS,
and box plots in Fig. 13 show the ratio between two. In Fig. 13 , the
red box plot on the left represents how many times ROS-MOBS run
faster compare to W-ORBS, and the blue box plot on the right rep-
resents the ratio of the number of deleted lines by ROS-MOBS to
the number of deleted lines by W-ORBS. According to the result,
crit-1 shows good performance from MOBS, where it deletes 71%
of the lines deleted by W-ORBS while executing 2.6 times faster.
MOBS shows poor performance on crit-4 and crit-5 . For crit-5 it is
only 1.4 times faster while for crit-4 the timing is essentially the
same with the average speed up of 1.01. For these slices it deletes
48% and 57% of the lines deleted by W-ORBS, respectively. We in-
vestigated this difference in performance. The main cause is the
size of the slice. For slicing criterion crit-4 , the size of the ren-
derer object calculated by simply calling sizeof method on the
object, has no control or data dependence between the surround-
ing source code. The dependency chains reaching crit-4 are also
simple and shallow, making most of the code easy to delete in
early stages of W-ORBS and MOBS. The small number of remain-
ing lines reduce MOBS’s advantage of fewer deletion attempts on a
single line when compared to W-ORBS. Similarly, the dependence
of crit-5 is limited. It focuses solely on parsing the markdown ta-
ble, which is a local function of the program, and has little depen-
dence on other parsing methods in the program; thus, its slice size
is the second smallest among all slicing criteria. On the other hand,

■ ORBS
■ LS-ORBS

■ ORBS
■ LS-ORBS

/10

When are lexical deletion operators
effective / ineffective?

6

18 S. Lee, D. Binkley and N. Gold et al. / The Journal of Systems and Software 160 (2020) 110459

Fig. 11. Number of deleted characterized lines.

Fig. 12. Average number of non-stop word tokens on a deleted line.
aka 6 as a benchmark program. Misaka is a CFFI-based binding
for Hoedown, a fast markdown processing library written in C.
The project consists of ten C files from Hoedown, which performs
text parsing, and five Python files that wrap the C functions to
produce a Python module. Misaka has a rich test suite contain-
ing 92 test cases written in Python that focus on evaluating the
linkage between the Python and C functions, rather than the Hoe-
down library itself. The test suite consists of two unit tests that test
the input arguments and 39 integration tests that test the binding
of the C functions to Python methods. The remaining 41 system-
level tests involve 41 different markdown text files and their cor-
responding HTML files.

We consider six slicing criteria for misaka , in an attempt to
cover as diverse a set of functionalities as possible. We select slic-
ing criteria in the C code, which are eventually reached from the
Python test scripts through the CFFI binding. The first slicing crite-
rion (crit-1) involves a variable tracking the index of the beginning
of each line in a buffer while rendering a regular markdown doc-
ument. The second slicing criterion (crit-2) targets the size of the

6 https://misaka.61924.nl

text to render. The third slicing criterion (crit-3) is a variable con-
taining the maximum size of the custom stack before it is changed
by a method that grows the stack to a given size. The fourth slicing
criterion (crit-4) targets the size of misaka ’s renderer object while
allocating a regular HTML renderer. The fifth slicing criterion (crit-
5) is a temporary variable which discriminates the starting index
of the row from the padding when parsing a markdown table row.
The last slicing criterion (crit-6) is the index of the beginning of a
markdown link in the method that calculates the index of the end
of the markdown link.

We ran W-ORBS, VSM-ORBS, and LDA-ORBS on the six slicing
criteria using a threshold of 0.9 for γ with both Dvsm and Dlda ,
and n = 500 topics for Dlda . We also ran ROS-MOBS ten times
for each slicing criteria. The results for VSM-ORBS and LDA-ORBS
when compared to W-ORBS shows a similar trend to those of the
previous experiments. On average for all slicing criterion, VSM-
ORBS and LDA-ORBS slice the code 2.82 times and 2.31 times faster
than W-ORBS while they delete 32.1% and 33.5% of lines that W-
ORBS could delete, respectively.

Table 9 shows the result comparing W-ORBS and ROS-MOBS,
and box plots in Fig. 13 show the ratio between two. In Fig. 13 , the
red box plot on the left represents how many times ROS-MOBS run
faster compare to W-ORBS, and the blue box plot on the right rep-
resents the ratio of the number of deleted lines by ROS-MOBS to
the number of deleted lines by W-ORBS. According to the result,
crit-1 shows good performance from MOBS, where it deletes 71%
of the lines deleted by W-ORBS while executing 2.6 times faster.
MOBS shows poor performance on crit-4 and crit-5 . For crit-5 it is
only 1.4 times faster while for crit-4 the timing is essentially the
same with the average speed up of 1.01. For these slices it deletes
48% and 57% of the lines deleted by W-ORBS, respectively. We in-
vestigated this difference in performance. The main cause is the
size of the slice. For slicing criterion crit-4 , the size of the ren-
derer object calculated by simply calling sizeof method on the
object, has no control or data dependence between the surround-
ing source code. The dependency chains reaching crit-4 are also
simple and shallow, making most of the code easy to delete in
early stages of W-ORBS and MOBS. The small number of remain-
ing lines reduce MOBS’s advantage of fewer deletion attempts on a
single line when compared to W-ORBS. Similarly, the dependence
of crit-5 is limited. It focuses solely on parsing the markdown ta-
ble, which is a local function of the program, and has little depen-
dence on other parsing methods in the program; thus, its slice size
is the second smallest among all slicing criteria. On the other hand,

Syntactic structures in source code is challenging
to the lexical deletion operators

Multi-line statements Declarations18 S. Lee, D. Binkley and N. Gold et al. / The Journal of Systems and Software 160 (2020) 110459

Fig. 11. Number of deleted characterized lines.

Fig. 12. Average number of non-stop word tokens on a deleted line.
aka 6 as a benchmark program. Misaka is a CFFI-based binding
for Hoedown, a fast markdown processing library written in C.
The project consists of ten C files from Hoedown, which performs
text parsing, and five Python files that wrap the C functions to
produce a Python module. Misaka has a rich test suite contain-
ing 92 test cases written in Python that focus on evaluating the
linkage between the Python and C functions, rather than the Hoe-
down library itself. The test suite consists of two unit tests that test
the input arguments and 39 integration tests that test the binding
of the C functions to Python methods. The remaining 41 system-
level tests involve 41 different markdown text files and their cor-
responding HTML files.

We consider six slicing criteria for misaka , in an attempt to
cover as diverse a set of functionalities as possible. We select slic-
ing criteria in the C code, which are eventually reached from the
Python test scripts through the CFFI binding. The first slicing crite-
rion (crit-1) involves a variable tracking the index of the beginning
of each line in a buffer while rendering a regular markdown doc-
ument. The second slicing criterion (crit-2) targets the size of the

6 https://misaka.61924.nl

text to render. The third slicing criterion (crit-3) is a variable con-
taining the maximum size of the custom stack before it is changed
by a method that grows the stack to a given size. The fourth slicing
criterion (crit-4) targets the size of misaka ’s renderer object while
allocating a regular HTML renderer. The fifth slicing criterion (crit-
5) is a temporary variable which discriminates the starting index
of the row from the padding when parsing a markdown table row.
The last slicing criterion (crit-6) is the index of the beginning of a
markdown link in the method that calculates the index of the end
of the markdown link.

We ran W-ORBS, VSM-ORBS, and LDA-ORBS on the six slicing
criteria using a threshold of 0.9 for γ with both Dvsm and Dlda ,
and n = 500 topics for Dlda . We also ran ROS-MOBS ten times
for each slicing criteria. The results for VSM-ORBS and LDA-ORBS
when compared to W-ORBS shows a similar trend to those of the
previous experiments. On average for all slicing criterion, VSM-
ORBS and LDA-ORBS slice the code 2.82 times and 2.31 times faster
than W-ORBS while they delete 32.1% and 33.5% of lines that W-
ORBS could delete, respectively.

Table 9 shows the result comparing W-ORBS and ROS-MOBS,
and box plots in Fig. 13 show the ratio between two. In Fig. 13 , the
red box plot on the left represents how many times ROS-MOBS run
faster compare to W-ORBS, and the blue box plot on the right rep-
resents the ratio of the number of deleted lines by ROS-MOBS to
the number of deleted lines by W-ORBS. According to the result,
crit-1 shows good performance from MOBS, where it deletes 71%
of the lines deleted by W-ORBS while executing 2.6 times faster.
MOBS shows poor performance on crit-4 and crit-5 . For crit-5 it is
only 1.4 times faster while for crit-4 the timing is essentially the
same with the average speed up of 1.01. For these slices it deletes
48% and 57% of the lines deleted by W-ORBS, respectively. We in-
vestigated this difference in performance. The main cause is the
size of the slice. For slicing criterion crit-4 , the size of the ren-
derer object calculated by simply calling sizeof method on the
object, has no control or data dependence between the surround-
ing source code. The dependency chains reaching crit-4 are also
simple and shallow, making most of the code easy to delete in
early stages of W-ORBS and MOBS. The small number of remain-
ing lines reduce MOBS’s advantage of fewer deletion attempts on a
single line when compared to W-ORBS. Similarly, the dependence
of crit-5 is limited. It focuses solely on parsing the markdown ta-
ble, which is a local function of the program, and has little depen-
dence on other parsing methods in the program; thus, its slice size
is the second smallest among all slicing criteria. On the other hand,

■ ORBS
■ LS-ORBS

■ ORBS
■ LS-ORBS

18 S. Lee, D. Binkley and N. Gold et al. / The Journal of Systems and Software 160 (2020) 110459

Fig. 11. Number of deleted characterized lines.

Fig. 12. Average number of non-stop word tokens on a deleted line.
aka 6 as a benchmark program. Misaka is a CFFI-based binding
for Hoedown, a fast markdown processing library written in C.
The project consists of ten C files from Hoedown, which performs
text parsing, and five Python files that wrap the C functions to
produce a Python module. Misaka has a rich test suite contain-
ing 92 test cases written in Python that focus on evaluating the
linkage between the Python and C functions, rather than the Hoe-
down library itself. The test suite consists of two unit tests that test
the input arguments and 39 integration tests that test the binding
of the C functions to Python methods. The remaining 41 system-
level tests involve 41 different markdown text files and their cor-
responding HTML files.

We consider six slicing criteria for misaka , in an attempt to
cover as diverse a set of functionalities as possible. We select slic-
ing criteria in the C code, which are eventually reached from the
Python test scripts through the CFFI binding. The first slicing crite-
rion (crit-1) involves a variable tracking the index of the beginning
of each line in a buffer while rendering a regular markdown doc-
ument. The second slicing criterion (crit-2) targets the size of the

6 https://misaka.61924.nl

text to render. The third slicing criterion (crit-3) is a variable con-
taining the maximum size of the custom stack before it is changed
by a method that grows the stack to a given size. The fourth slicing
criterion (crit-4) targets the size of misaka ’s renderer object while
allocating a regular HTML renderer. The fifth slicing criterion (crit-
5) is a temporary variable which discriminates the starting index
of the row from the padding when parsing a markdown table row.
The last slicing criterion (crit-6) is the index of the beginning of a
markdown link in the method that calculates the index of the end
of the markdown link.

We ran W-ORBS, VSM-ORBS, and LDA-ORBS on the six slicing
criteria using a threshold of 0.9 for γ with both Dvsm and Dlda ,
and n = 500 topics for Dlda . We also ran ROS-MOBS ten times
for each slicing criteria. The results for VSM-ORBS and LDA-ORBS
when compared to W-ORBS shows a similar trend to those of the
previous experiments. On average for all slicing criterion, VSM-
ORBS and LDA-ORBS slice the code 2.82 times and 2.31 times faster
than W-ORBS while they delete 32.1% and 33.5% of lines that W-
ORBS could delete, respectively.

Table 9 shows the result comparing W-ORBS and ROS-MOBS,
and box plots in Fig. 13 show the ratio between two. In Fig. 13 , the
red box plot on the left represents how many times ROS-MOBS run
faster compare to W-ORBS, and the blue box plot on the right rep-
resents the ratio of the number of deleted lines by ROS-MOBS to
the number of deleted lines by W-ORBS. According to the result,
crit-1 shows good performance from MOBS, where it deletes 71%
of the lines deleted by W-ORBS while executing 2.6 times faster.
MOBS shows poor performance on crit-4 and crit-5 . For crit-5 it is
only 1.4 times faster while for crit-4 the timing is essentially the
same with the average speed up of 1.01. For these slices it deletes
48% and 57% of the lines deleted by W-ORBS, respectively. We in-
vestigated this difference in performance. The main cause is the
size of the slice. For slicing criterion crit-4 , the size of the ren-
derer object calculated by simply calling sizeof method on the
object, has no control or data dependence between the surround-
ing source code. The dependency chains reaching crit-4 are also
simple and shallow, making most of the code easy to delete in
early stages of W-ORBS and MOBS. The small number of remain-
ing lines reduce MOBS’s advantage of fewer deletion attempts on a
single line when compared to W-ORBS. Similarly, the dependence
of crit-5 is limited. It focuses solely on parsing the markdown ta-
ble, which is a local function of the program, and has little depen-
dence on other parsing methods in the program; thus, its slice size
is the second smallest among all slicing criteria. On the other hand,

Lexical deletion operators are effective in
the statements with non-stop words.

Non-stop words in deleted lines

■ ORBS
■ LS-ORBS

/10

When are lexical deletion operators
effective / ineffective?

6

There is a complementary relation between window deletion and lexical deletion.

18 S. Lee, D. Binkley and N. Gold et al. / The Journal of Systems and Software 160 (2020) 110459

Fig. 11. Number of deleted characterized lines.

Fig. 12. Average number of non-stop word tokens on a deleted line.
aka 6 as a benchmark program. Misaka is a CFFI-based binding
for Hoedown, a fast markdown processing library written in C.
The project consists of ten C files from Hoedown, which performs
text parsing, and five Python files that wrap the C functions to
produce a Python module. Misaka has a rich test suite contain-
ing 92 test cases written in Python that focus on evaluating the
linkage between the Python and C functions, rather than the Hoe-
down library itself. The test suite consists of two unit tests that test
the input arguments and 39 integration tests that test the binding
of the C functions to Python methods. The remaining 41 system-
level tests involve 41 different markdown text files and their cor-
responding HTML files.

We consider six slicing criteria for misaka , in an attempt to
cover as diverse a set of functionalities as possible. We select slic-
ing criteria in the C code, which are eventually reached from the
Python test scripts through the CFFI binding. The first slicing crite-
rion (crit-1) involves a variable tracking the index of the beginning
of each line in a buffer while rendering a regular markdown doc-
ument. The second slicing criterion (crit-2) targets the size of the

6 https://misaka.61924.nl

text to render. The third slicing criterion (crit-3) is a variable con-
taining the maximum size of the custom stack before it is changed
by a method that grows the stack to a given size. The fourth slicing
criterion (crit-4) targets the size of misaka ’s renderer object while
allocating a regular HTML renderer. The fifth slicing criterion (crit-
5) is a temporary variable which discriminates the starting index
of the row from the padding when parsing a markdown table row.
The last slicing criterion (crit-6) is the index of the beginning of a
markdown link in the method that calculates the index of the end
of the markdown link.

We ran W-ORBS, VSM-ORBS, and LDA-ORBS on the six slicing
criteria using a threshold of 0.9 for γ with both Dvsm and Dlda ,
and n = 500 topics for Dlda . We also ran ROS-MOBS ten times
for each slicing criteria. The results for VSM-ORBS and LDA-ORBS
when compared to W-ORBS shows a similar trend to those of the
previous experiments. On average for all slicing criterion, VSM-
ORBS and LDA-ORBS slice the code 2.82 times and 2.31 times faster
than W-ORBS while they delete 32.1% and 33.5% of lines that W-
ORBS could delete, respectively.

Table 9 shows the result comparing W-ORBS and ROS-MOBS,
and box plots in Fig. 13 show the ratio between two. In Fig. 13 , the
red box plot on the left represents how many times ROS-MOBS run
faster compare to W-ORBS, and the blue box plot on the right rep-
resents the ratio of the number of deleted lines by ROS-MOBS to
the number of deleted lines by W-ORBS. According to the result,
crit-1 shows good performance from MOBS, where it deletes 71%
of the lines deleted by W-ORBS while executing 2.6 times faster.
MOBS shows poor performance on crit-4 and crit-5 . For crit-5 it is
only 1.4 times faster while for crit-4 the timing is essentially the
same with the average speed up of 1.01. For these slices it deletes
48% and 57% of the lines deleted by W-ORBS, respectively. We in-
vestigated this difference in performance. The main cause is the
size of the slice. For slicing criterion crit-4 , the size of the ren-
derer object calculated by simply calling sizeof method on the
object, has no control or data dependence between the surround-
ing source code. The dependency chains reaching crit-4 are also
simple and shallow, making most of the code easy to delete in
early stages of W-ORBS and MOBS. The small number of remain-
ing lines reduce MOBS’s advantage of fewer deletion attempts on a
single line when compared to W-ORBS. Similarly, the dependence
of crit-5 is limited. It focuses solely on parsing the markdown ta-
ble, which is a local function of the program, and has little depen-
dence on other parsing methods in the program; thus, its slice size
is the second smallest among all slicing criteria. On the other hand,

Syntactic structures in source code is challenging
to the lexical deletion operators

Multi-line statements Declarations18 S. Lee, D. Binkley and N. Gold et al. / The Journal of Systems and Software 160 (2020) 110459

Fig. 11. Number of deleted characterized lines.

Fig. 12. Average number of non-stop word tokens on a deleted line.
aka 6 as a benchmark program. Misaka is a CFFI-based binding
for Hoedown, a fast markdown processing library written in C.
The project consists of ten C files from Hoedown, which performs
text parsing, and five Python files that wrap the C functions to
produce a Python module. Misaka has a rich test suite contain-
ing 92 test cases written in Python that focus on evaluating the
linkage between the Python and C functions, rather than the Hoe-
down library itself. The test suite consists of two unit tests that test
the input arguments and 39 integration tests that test the binding
of the C functions to Python methods. The remaining 41 system-
level tests involve 41 different markdown text files and their cor-
responding HTML files.

We consider six slicing criteria for misaka , in an attempt to
cover as diverse a set of functionalities as possible. We select slic-
ing criteria in the C code, which are eventually reached from the
Python test scripts through the CFFI binding. The first slicing crite-
rion (crit-1) involves a variable tracking the index of the beginning
of each line in a buffer while rendering a regular markdown doc-
ument. The second slicing criterion (crit-2) targets the size of the

6 https://misaka.61924.nl

text to render. The third slicing criterion (crit-3) is a variable con-
taining the maximum size of the custom stack before it is changed
by a method that grows the stack to a given size. The fourth slicing
criterion (crit-4) targets the size of misaka ’s renderer object while
allocating a regular HTML renderer. The fifth slicing criterion (crit-
5) is a temporary variable which discriminates the starting index
of the row from the padding when parsing a markdown table row.
The last slicing criterion (crit-6) is the index of the beginning of a
markdown link in the method that calculates the index of the end
of the markdown link.

We ran W-ORBS, VSM-ORBS, and LDA-ORBS on the six slicing
criteria using a threshold of 0.9 for γ with both Dvsm and Dlda ,
and n = 500 topics for Dlda . We also ran ROS-MOBS ten times
for each slicing criteria. The results for VSM-ORBS and LDA-ORBS
when compared to W-ORBS shows a similar trend to those of the
previous experiments. On average for all slicing criterion, VSM-
ORBS and LDA-ORBS slice the code 2.82 times and 2.31 times faster
than W-ORBS while they delete 32.1% and 33.5% of lines that W-
ORBS could delete, respectively.

Table 9 shows the result comparing W-ORBS and ROS-MOBS,
and box plots in Fig. 13 show the ratio between two. In Fig. 13 , the
red box plot on the left represents how many times ROS-MOBS run
faster compare to W-ORBS, and the blue box plot on the right rep-
resents the ratio of the number of deleted lines by ROS-MOBS to
the number of deleted lines by W-ORBS. According to the result,
crit-1 shows good performance from MOBS, where it deletes 71%
of the lines deleted by W-ORBS while executing 2.6 times faster.
MOBS shows poor performance on crit-4 and crit-5 . For crit-5 it is
only 1.4 times faster while for crit-4 the timing is essentially the
same with the average speed up of 1.01. For these slices it deletes
48% and 57% of the lines deleted by W-ORBS, respectively. We in-
vestigated this difference in performance. The main cause is the
size of the slice. For slicing criterion crit-4 , the size of the ren-
derer object calculated by simply calling sizeof method on the
object, has no control or data dependence between the surround-
ing source code. The dependency chains reaching crit-4 are also
simple and shallow, making most of the code easy to delete in
early stages of W-ORBS and MOBS. The small number of remain-
ing lines reduce MOBS’s advantage of fewer deletion attempts on a
single line when compared to W-ORBS. Similarly, the dependence
of crit-5 is limited. It focuses solely on parsing the markdown ta-
ble, which is a local function of the program, and has little depen-
dence on other parsing methods in the program; thus, its slice size
is the second smallest among all slicing criteria. On the other hand,

■ ORBS
■ LS-ORBS

■ ORBS
■ LS-ORBS

18 S. Lee, D. Binkley and N. Gold et al. / The Journal of Systems and Software 160 (2020) 110459

Fig. 11. Number of deleted characterized lines.

Fig. 12. Average number of non-stop word tokens on a deleted line.
aka 6 as a benchmark program. Misaka is a CFFI-based binding
for Hoedown, a fast markdown processing library written in C.
The project consists of ten C files from Hoedown, which performs
text parsing, and five Python files that wrap the C functions to
produce a Python module. Misaka has a rich test suite contain-
ing 92 test cases written in Python that focus on evaluating the
linkage between the Python and C functions, rather than the Hoe-
down library itself. The test suite consists of two unit tests that test
the input arguments and 39 integration tests that test the binding
of the C functions to Python methods. The remaining 41 system-
level tests involve 41 different markdown text files and their cor-
responding HTML files.

We consider six slicing criteria for misaka , in an attempt to
cover as diverse a set of functionalities as possible. We select slic-
ing criteria in the C code, which are eventually reached from the
Python test scripts through the CFFI binding. The first slicing crite-
rion (crit-1) involves a variable tracking the index of the beginning
of each line in a buffer while rendering a regular markdown doc-
ument. The second slicing criterion (crit-2) targets the size of the

6 https://misaka.61924.nl

text to render. The third slicing criterion (crit-3) is a variable con-
taining the maximum size of the custom stack before it is changed
by a method that grows the stack to a given size. The fourth slicing
criterion (crit-4) targets the size of misaka ’s renderer object while
allocating a regular HTML renderer. The fifth slicing criterion (crit-
5) is a temporary variable which discriminates the starting index
of the row from the padding when parsing a markdown table row.
The last slicing criterion (crit-6) is the index of the beginning of a
markdown link in the method that calculates the index of the end
of the markdown link.

We ran W-ORBS, VSM-ORBS, and LDA-ORBS on the six slicing
criteria using a threshold of 0.9 for γ with both Dvsm and Dlda ,
and n = 500 topics for Dlda . We also ran ROS-MOBS ten times
for each slicing criteria. The results for VSM-ORBS and LDA-ORBS
when compared to W-ORBS shows a similar trend to those of the
previous experiments. On average for all slicing criterion, VSM-
ORBS and LDA-ORBS slice the code 2.82 times and 2.31 times faster
than W-ORBS while they delete 32.1% and 33.5% of lines that W-
ORBS could delete, respectively.

Table 9 shows the result comparing W-ORBS and ROS-MOBS,
and box plots in Fig. 13 show the ratio between two. In Fig. 13 , the
red box plot on the left represents how many times ROS-MOBS run
faster compare to W-ORBS, and the blue box plot on the right rep-
resents the ratio of the number of deleted lines by ROS-MOBS to
the number of deleted lines by W-ORBS. According to the result,
crit-1 shows good performance from MOBS, where it deletes 71%
of the lines deleted by W-ORBS while executing 2.6 times faster.
MOBS shows poor performance on crit-4 and crit-5 . For crit-5 it is
only 1.4 times faster while for crit-4 the timing is essentially the
same with the average speed up of 1.01. For these slices it deletes
48% and 57% of the lines deleted by W-ORBS, respectively. We in-
vestigated this difference in performance. The main cause is the
size of the slice. For slicing criterion crit-4 , the size of the ren-
derer object calculated by simply calling sizeof method on the
object, has no control or data dependence between the surround-
ing source code. The dependency chains reaching crit-4 are also
simple and shallow, making most of the code easy to delete in
early stages of W-ORBS and MOBS. The small number of remain-
ing lines reduce MOBS’s advantage of fewer deletion attempts on a
single line when compared to W-ORBS. Similarly, the dependence
of crit-5 is limited. It focuses solely on parsing the markdown ta-
ble, which is a local function of the program, and has little depen-
dence on other parsing methods in the program; thus, its slice size
is the second smallest among all slicing criteria. On the other hand,

Lexical deletion operators are effective in
the statements with non-stop words.

Non-stop words in deleted lines

■ ORBS
■ LS-ORBS

/10

MOBS: Multi-operator ORBS

7

/10

W1 W2 W3 VSM LDA

[Deletion Operators]

MOBS: Multi-operator ORBS

7

/10

W1 W2 W3 VSM LDA

[Deletion Operators]

MOBS: Multi-operator ORBS

7

/10

W1 W2 W3 VSM LDA

[Deletion Operators]

MOBS: Multi-operator ORBS

7

/10

W1 W2 W3 VSM LDA

[Deletion Operators]
Operator selection using probability distribution

MOBS: Multi-operator ORBS

7

/10

W1 W2 W3 VSM LDA

[Deletion Operators]
Operator selection using probability distribution

MOBS: Multi-operator ORBS

7

Uniform distribution

/10

W1 W2 W3 VSM LDA

[Deletion Operators]
Operator selection using probability distribution

MOBS: Multi-operator ORBS

7

Uniform distribution Fixed distribution based on
applicability / effect of D.O

/10

W1 W2 W3 VSM LDA

[Deletion Operators]
Operator selection using probability distribution

MOBS: Multi-operator ORBS

7

Uniform distribution Fixed distribution based on
applicability / effect of D.O

Adaptive distribution

/10

Result

8

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

/10

Result

8

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

MOAD achieves / uses

‣ 69% # of deleted lines,

‣ 2.8X faster

compared to ORBS.

/10

Result

8

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

MOAD achieves / uses

‣ 69% # of deleted lines,

‣ 2.8X faster

compared to ORBS.

of deleted lines

Efficiency

LS-ORBS

ORBS

MOBS

/10

Example. Multi-lingual deletion

9

• Misaka(http://misaka.61924.nl)

- A Python binding for Hoedown,
a markdown parsing C library.

- Programming language:
C, Python

NCLOC FILES TC

 C 4360 10

 Python 473 5

 Total 4833 15 92

http://misaka.61924.nl/

/10

Example. Multi-lingual deletion

9

• Misaka(http://misaka.61924.nl)

- A Python binding for Hoedown,
a markdown parsing C library.

- Programming language:
C, Python

NCLOC FILES TC

 C 4360 10

 Python 473 5

 Total 4833 15 92

┌ callbacks.py (125) > result = renderer.blockhtml(text)

└ hoedown/html.c (635) > renderer->blockhtml = NULL;

• Both LDA and VSM Deletion operator

┌ callbacks.py (97) > elif align_bit == TABLE_ALIGN_LEFT:

| callbacks.py (98) > align = ‘left'

└ hoedown/html.c (393) > case HOEDOWN_TABLE_ALIGN_LEFT:

• VSM Deletion operator

┌ api.py (29) > lib.hoedown_buffer_puts(ib, text.encode('utf-8'))

| hoedown/document.c (2490) > hoedown_buffer_free(text);

└ hoedown/html_smartypants.c (195) > hoedown_buffer_putc(ob, text[0]);

• LDA Deletion operator

http://misaka.61924.nl/

/1010

Thank you.

/1011

