

PYGGI: Python General Framework for Genetic Improvement

Gabin An
agb94@kaist.ac.kr

Jinhan Kim
jinhankim@kaist.ac.kr

Seongmin Lee
bohrok@kaist.ac.kr

Shin Yoo
shin.yoo@kaist.ac.kr

KAIST, Republic of Korea

Abstract
We present Python General Framework for Genetic Improvement (PYGGI, pronounced ˈpɪgɪ), a lightweight

general framework for Genetic Improvement (GI). It is designed to be a simple and easy to configure GI tool for

multiple programming languages such as Java, C, or Python. Through two case studies, we show that PYGGI can

modify source code of a given program either to improve non-functional properties or to automatically repair

functional faults.

1. INTRODUCTION
Genetic Improvement (GI) is an emerging research field that aims

to apply meta-heuristic optimisation techniques (such as Genetic
Programming) to software systems in order to automatically improve
its functional and non-functional properties [1].

It is still a young and emerging field and, as such, lacks
framework support for researchers and practitioners alike. Existing
work mostly relies upon provisional and, more importantly, language-
specific implementations. For example, the recently introduced Gin [2]
is implemented for a specific target language and instruments only a
single source file at once. Consequently, one has to directly modify the
source code of Gin itself to apply it to projects that consist of multiple
files, not to mention projects that are implemented in more than one
programming language.

In this paper, we introduce Python General framework for Genetic
Improvement (PYGGI), which is designed as a configurable and easy
to use GI framework. The initial release includes line-based code
modification operators (similar to those used by the widely studied
automatic program repair tool, GenProg [3]) and a simple local search
heuristic. We plan to extend PYGGI so that it supports more
sophisticated search heuristics and modification operators. Using the
initial version of PYGGI, we present two proof-of-concept case studies:
genetic improvement of non-functional properties, and automated
program repair. Considering that Python is widely regarded as a high
productivity language that is ideal for fast prototyping, we anticipate
that PYGGI will help researchers and practitioners to quickly
implement and evaluate their future GI ideas, while writing as few lines
of code as possible.

2. OVERALL ARCHITECTURE

PYGGI manipulates target source code files that are specified by a
configuration file, and observes the impact of manipulation by running
a test script written by the user. The test script should print output in
the predefined, PYGGI-recognisable format. Modifications of the

original program source code is represented as a patch. For current
implementation, PYGGI only uses code lines found in the program
under improvement as the ingredients of patches it generates. This is
achieved by our choice of modification operators, which are deletion,
copying, and replacement. Our operator set is similar to the widely
studied automated bug patch tool, GenProg [2].

2.1 PYGGI CLASSES

Figure 1 Class Diagram of PYGGI

Program encapsulates the original source code. Currently, PYGGI

stores the source code as a list of code lines, as lines are the only
supported unit of modifications. For modifications at other granularity
levels, this class needs to process and store the source code accordingly
(for example, by parsing and storing the AST).

Patch is a sequence of edits: deletion, copying, and replacement.
During search iteration, PYGGI modifies the source code of the target
program by applying a candidate patch. Subsequently, it runs the test
script to collect dynamic information, such as the execution time or any
other user-provided properties, via the predefined format that PYGGI
recognises. Finally, the fitness value of the patch is calculated using the
user-provided fitness function, written in Python.

2017년 한국소프트웨어종합학술대회 논문집

536

An Edit class defines an atomic edit operator, such as deletion,
copying, and replacement. It is possible for the user to define new edit
operators by writing custom classes.

TestResult stores the result of the test suite executions on the
original or patched source code. It records whether compilation
succeeded, the elapsed execution time, as well as any other user-
defined test results.

2.2 LOCAL SEARCH ALGORITHM

Figure 2 Local search algorithm

Figure 2 presents the local search heuristic currently provided by
PYGGI. It starts from a randomly generated candidate solution and
iteratively moves to its neighbouring solution with a better fitness value
by making small local changes to the candidate solution.

3. CASE STUDY

This section describes two case studies that use a small benchmark
program, triangle, which has been widely studied in automated test
data generation [4] as well as in GI [1, 5]. It takes as input three
integers, each of which represents a length of the sides of a triangle: it
outputs the type of triangle that can be formed. Table 1 shows the test
suite for the program.

As we described in Section 2.2, the base GI algorithm in both case
studies is local search. The local change was either adding a random
edit to the tail of an edit sequence or removing one random edit from
an edit sequence. The random edit is chosen from the three operators:

line deletion, copying, and replacement. The experiments were
conducted on a PC with Intel Core i7-7700 CPU and 32GB memory
running Ubuntu 16.04.

Table 1 The original test suite for Triangle

Type Test cases

Invalid (1, 2, 9), (-1, 1, 1), (1, -1, 1), (1, 1, -1), (100, 80, 10000)

Equilateral (1, 1, 1), (100, 100, 100), (99, 99, 99)

Isosceles
(100, 90, 90), (1000, 900, 900), (3, 2, 2), (30, 16, 16),

+ (2, 2, 1)

Scalene (5, 4, 3), (1000, 900, 101), (3, 20, 21), (999, 501, 600)

3.1 IMPROVING NON-FUNCTIONAL PROPERTIES

First, we present a proof of concept that PYGGI can use a non-
functional property as a fitness function for its local search. For this,
we inject a statement that intentionally delays execution into the
benchmark program and check whether PYGGI can correctly remove
this when execution time is given as the property to improve. PYGGI
successfully deletes the line delay();, which calls another method
that makes the current thread sleep for 50 milliseconds. The search
finishes either after evaluating 1,000 candidate patches or when the
fitness value falls below a threshold, in this case, 100 milliseconds.
Figure 3 shows the patch generated by PYGGI.

The experiment was repeated 50 times: PYGGI successfully
generated correct patches within 1,000 fitness evaluations for all 50
runs. Table 2 reports the average Number of Patches Searched (NPS)
(i.e. number of candidate patches considered until the solution was
found), and time elapsed until the solution is found.

 7: public static TriangleType classifyTriangle(int a, int b, int c){
 8:
 9: delay();
/* Patch 1 */
 - delay();
10:
11: // Sort the sides so that a <= b <= c
12: if (a > b) {
13: int tmp = a;
14: a = b;

Figure 3 sample/Triangle_delay/Triangle.java

Table 2 Experimental results for Section 3.1 (50 repetitions)
 NPS Time Elapsed(s)

Average 102.7 70.8

Standard deviation 98.0 59.5

3.2 AUTOMATED PROGRAM REPAIR

The second case study investigates automated program repair. We
inject a fault by replacing int tmp = a; with int tmp = b;:
the resulting program does not pass all test cases. Since the original
line is available from other parts of the triangle program, this fault
can be repaired using the current implementation of PYGGI. Unlike the

Algorithm 1 Pseudocode for Local Search

Input

Program, P ,

Random Neighbour Selection, N ,

Fitness Function, F ,

Patch Validator, V ,

Termination Criterion, E,

1: bestPatch [] . empty patch

2: bestF itness F (apply(P, bestPatch))
3: i 0

4: while true do

5: i i+ 1

6: if E(i, bestPatch) then
7: break

8: end if

9: patch N(bestPatch)
10: if ¬V (patch) then
11: continue

12: end if

13: fitness F (apply(P, patch))
14: if ¬isBetter(fitness, bestF itness) then
15: continue

16: end if

17: bestPatch patch
18: bestF itness fitness
19: end while

20: return bestPatch

1

2017년 한국소프트웨어종합학술대회 논문집

537

execution time, the functional behaviour of the triangle program is
deterministic, and test results remain the same for the same patch.
Consequently, we modified the local search to maintain a tabu list,
preventing the search from revisiting a patch that has already been
evaluated before. The fitness function is the number of passing test
cases; the search terminates when a plausible patch [6], i.e., a patch that
makes all test cases pass, is found or after one hour is passed.

 13:
 14: if (a > c) {
 15: int tmp = b; // original: int tmp = a;
/* Patch 1: Correct patch */
 - int tmp = b;

+ int tmp = a;
/* Patch 2: Plausible but incorrect patch */
 + } else if (a == b && b == c) {
 16: a = c;
 - a = c;
 17: c = tmp;
 18: }
 19:
 20: if (b > c) {

Figure 4 Generated Patches for triangle Fault

Table 2 Experimental results for Section 3.2 (50 repetitions)

 NPS Time Elapsed(s)

Average 915.8 454.9

Standard Deviation 585.5 87.6

PYGGI generates two plausible patches during initial repair, which

are listed in Figure 4. Note that the patch 2 is plausible but semantically
incorrect, whereas the patch 1 is correct. We manually generated a new
test input, (2, 2, 1), that can differentiate the original and the buggy
program. When the new input is added to the test suite, PYGGI avoids
overfitting to the plausible patch. We repeat the program repair run for
50 times using the updated test suite, the results of which is shown in
Table 3. PYGGI succeeds for all 50 runs, after evaluating about 900
candidate patches in 7.5 minutes on average.

4. DISCUSSIONS

The initial implementation of PYGGI uses physical lines as the
unit of patches. However, we note that certain faults may require finer-
grained modifications, and plan to investigate AST-level edit operators.

Existing Generate and Validate techniques are susceptible to
plausible repairs, i.e. overfitting to insufficient test suites [7]. PYGGI is
not exempt from this inherent limitation, as in the case of the plausible
patch we described in Section 3.2. Future work will consider the use of
automated test data generation to reduce the risk of insufficient test
cases and overfitting.

Finally, the initial implementation of PYGGI does not use any
fault localisation technique for functional improvements. Use of fault
localisation can reduce the size of fault space, which will increase both
the effectiveness and efficiency of PYGGI’s functional improvement.

5. CONLUSION & FUTURE WORK
We introduce PYGGI, a Python General framework for Genetic

Improvement. Its initial version is capable of improving a non-
functional property or repairing a bug inside a program, using a local
search algorithm. We conduct and report results of two proof-of-
concept case studies. Future work will consider AST-level code
manipulations, fault localisation, and orchestration of automated test
data generation and automated program repair.

6. ACKNOWLEDGEMENT

This research was supported by the MSIT (Ministry of Science and
ICT), Korea, under the National Program for Excellence in SW
supervised by the IITP (Institute for Information & communications
Technology Promotion) (2016-0-00018). This research was supported
by Next-Generation Information Computing Development Program
through the National Research Foundation of Korea(NRF) funded by
the Ministry of Science, ICT (No. 2017M3C4A7068179).

7. REFERENCES
[1] J. Petke, S. Haraldsson, M. Harman, W. Langdon, D. White, and J.
Woodward. Genetic improvement of software: a comprehensive survey.
IEEE Transactions on Evolutionary Computation, PP(99):1–1, 2017.
[2] D. R. White. GI in No Time. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pages 1549–1550.
ACM, 2017.
[3] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest. Automatically
finding patches using genetic programming. In Proceedings of the 31st
IEEE International Conference on Software Engineering (ICSE ’09),
pages 364–374, Vancouver, Canada, 16-24 May 2009. IEEE.
[4] P. McMinn. IGUANA: Input generation using automated novel
algorithms. A plug and play research tool. Technical Report CS-07-14,
Department of Computer Science, University of Sheffield, 2007.
[5] D. White, A. Arcuri, and J. Clark. Evolutionary improvement of
programs. IEEE Transactions on Evolutionary Computation, 15(4):515
–538, August 2011.
[6] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch
plausibility and correctness for generate- and-validate patch generation
systems. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA 2015, pages 24–36, New York,
NY, USA, 2015. ACM.
[7] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. Is the cure
worse than the disease? overfitting in automated program repair. In
Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, pages 532–543, New York,
NY, USA, 2015. ACM.

2017년 한국소프트웨어종합학술대회 논문집

538

	PYGGI: Python General Framework for Genetic Improvement

