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Abstract 
We present Python General Framework for Genetic Improvement (PYGGI, pronounced ˈpɪgɪ), a lightweight 

general framework for Genetic Improvement (GI). It is designed to be a simple and easy to configure GI tool for 

multiple programming languages such as Java, C, or Python. Through two case studies, we show that PYGGI can 

modify source code of a given program either to improve non-functional properties or to automatically repair 

functional faults. 

 

 

1. INTRODUCTION 
Genetic Improvement (GI) is an emerging research field that aims 

to apply meta-heuristic optimisation techniques (such as Genetic 
Programming) to software systems in order to automatically improve 
its functional and non-functional properties [1]. 

It is still a young and emerging field and, as such, lacks 
framework support for researchers and practitioners alike. Existing 
work mostly relies upon provisional and, more importantly, language-
specific implementations. For example, the recently introduced Gin [2] 
is implemented for a specific target language and instruments only a 
single source file at once. Consequently, one has to directly modify the 
source code of Gin itself to apply it to projects that consist of multiple 
files, not to mention projects that are implemented in more than one 
programming language. 

In this paper, we introduce Python General framework for Genetic 
Improvement (PYGGI), which is designed as a configurable and easy 
to use GI framework. The initial release includes line-based code 
modification operators (similar to those used by the widely studied 
automatic program repair tool, GenProg [3]) and a simple local search 
heuristic. We plan to extend PYGGI so that it supports more 
sophisticated search heuristics and modification operators. Using the 
initial version of PYGGI, we present two proof-of-concept case studies: 
genetic improvement of non-functional properties, and automated 
program repair. Considering that Python is widely regarded as a high 
productivity language that is ideal for fast prototyping, we anticipate 
that PYGGI will help researchers and practitioners to quickly 
implement and evaluate their future GI ideas, while writing as few lines 
of code as possible. 
 
2. OVERALL ARCHITECTURE 

PYGGI manipulates target source code files that are specified by a 
configuration file, and observes the impact of manipulation by running 
a test script written by the user. The test script should print output in 
the predefined, PYGGI-recognisable format. Modifications of the 

original program source code is represented as a patch. For current 
implementation, PYGGI only uses code lines found in the program 
under improvement as the ingredients of patches it generates. This is 
achieved by our choice of modification operators, which are deletion, 
copying, and replacement. Our operator set is similar to the widely 
studied automated bug patch tool, GenProg [2].  

 
2.1 PYGGI CLASSES 
 

 
Figure 1 Class Diagram of PYGGI 

 
Program encapsulates the original source code. Currently, PYGGI 

stores the source code as a list of code lines, as lines are the only 
supported unit of modifications. For modifications at other granularity 
levels, this class needs to process and store the source code accordingly 
(for example, by parsing and storing the AST).  

Patch is a sequence of edits: deletion, copying, and replacement. 
During search iteration, PYGGI modifies the source code of the target 
program by applying a candidate patch. Subsequently, it runs the test 
script to collect dynamic information, such as the execution time or any 
other user-provided properties, via the predefined format that PYGGI 
recognises. Finally, the fitness value of the patch is calculated using the 
user-provided fitness function, written in Python. 
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An Edit class defines an atomic edit operator, such as deletion, 
copying, and replacement. It is possible for the user to define new edit 
operators by writing custom classes. 

TestResult stores the result of the test suite executions on the 
original or patched source code.  It records whether compilation 
succeeded, the elapsed execution time, as well as any other user-
defined test results.  

 
2.2 LOCAL SEARCH ALGORITHM 

 

Figure 2 Local search algorithm 
 

Figure 2 presents the local search heuristic currently provided by 
PYGGI. It starts from a randomly generated candidate solution and 
iteratively moves to its neighbouring solution with a better fitness value 
by making small local changes to the candidate solution.  
 
3. CASE STUDY 

This section describes two case studies that use a small benchmark 
program, triangle, which has been widely studied in automated test 
data generation [4] as well as in GI [1, 5]. It takes as input three 
integers, each of which represents a length of the sides of a triangle: it 
outputs the type of triangle that can be formed. Table 1 shows the test 
suite for the program. 

As we described in Section 2.2, the base GI algorithm in both case 
studies is local search. The local change was either adding a random 
edit to the tail of an edit sequence or removing one random edit from 
an edit sequence. The random edit is chosen from the three operators: 

line deletion, copying, and replacement. The experiments were 
conducted on a PC with Intel Core i7-7700 CPU and 32GB memory 
running Ubuntu 16.04. 

 
Table 1 The original test suite for Triangle 

Type Test cases 

Invalid (1, 2, 9), (-1, 1, 1), (1, -1, 1), (1, 1, -1), (100, 80, 10000) 

Equilateral (1, 1, 1), (100, 100, 100), (99, 99, 99) 

Isosceles 
(100, 90, 90), (1000, 900, 900), (3, 2, 2), (30, 16, 16),  

+ (2, 2, 1) 

Scalene (5, 4, 3), (1000, 900, 101), (3, 20, 21), (999, 501, 600) 

 
3.1 IMPROVING NON-FUNCTIONAL PROPERTIES 

First, we present a proof of concept that PYGGI can use a non-
functional property as a fitness function for its local search. For this, 
we inject a statement that intentionally delays execution into the 
benchmark program and check whether PYGGI can correctly remove 
this when execution time is given as the property to improve. PYGGI 
successfully deletes the line delay();, which calls another method 
that makes the current thread sleep for 50 milliseconds. The search 
finishes either after evaluating 1,000 candidate patches or when the 
fitness value falls below a threshold, in this case, 100 milliseconds. 
Figure 3 shows the patch generated by PYGGI.  

The experiment was repeated 50 times: PYGGI successfully 
generated correct patches within 1,000 fitness evaluations for all 50 
runs. Table 2 reports the average Number of Patches Searched (NPS) 
(i.e. number of candidate patches considered until the solution was 
found), and time elapsed until the solution is found.  
 
 7: public static TriangleType classifyTriangle(int a, int b, int c){  
 8: 
 9:     delay(); 
/* Patch 1 */ 
        - delay(); 
10: 
11:     // Sort the sides so that a <= b <= c  
12:     if (a > b) {  
13:         int tmp = a;  
14:         a = b; 

Figure 3 sample/Triangle_delay/Triangle.java 
 

Table 2 Experimental results for Section 3.1 (50 repetitions) 
 NPS Time Elapsed(s) 

Average 102.7 70.8 

Standard deviation 98.0 59.5 

 
3.2 AUTOMATED PROGRAM REPAIR 

The second case study investigates automated program repair. We 
inject a fault by replacing int tmp = a; with int tmp = b;: 
the resulting program does not pass all test cases. Since the original 
line is available from other parts of the triangle program, this fault 
can be repaired using the current implementation of PYGGI. Unlike the 

Algorithm 1 Pseudocode for Local Search

Input

Program, P ,

Random Neighbour Selection, N ,

Fitness Function, F ,

Patch Validator, V ,

Termination Criterion, E,

1: bestPatch [ ] . empty patch

2: bestF itness F (apply(P, bestPatch))
3: i 0

4: while true do

5: i i+ 1

6: if E(i, bestPatch) then
7: break

8: end if

9: patch N(bestPatch)
10: if ¬V (patch) then
11: continue

12: end if

13: fitness F (apply(P, patch))
14: if ¬isBetter(fitness, bestF itness) then
15: continue

16: end if

17: bestPatch patch
18: bestF itness fitness
19: end while

20: return bestPatch

1
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execution time, the functional behaviour of the triangle program is 
deterministic, and test results remain the same for the same patch. 
Consequently, we modified the local search to maintain a tabu list, 
preventing the search from revisiting a patch that has already been 
evaluated before. The fitness function is the number of passing test 
cases; the search terminates when a plausible patch [6], i.e., a patch that 
makes all test cases pass, is found or after one hour is passed.  
 
 13:             
 14: if (a > c) {  
 15:     int tmp = b; // original: int tmp = a; 
/* Patch 1: Correct patch */ 
          - int tmp = b; 

+ int tmp = a; 
/* Patch 2: Plausible but incorrect patch */ 
          + } else if (a == b && b == c) { 
 16:     a = c; 
          - a = c; 
 17:     c = tmp; 
 18: } 
 19:             
 20: if (b > c) {  

Figure 4 Generated Patches for triangle Fault 
 
Table 2 Experimental results for Section 3.2 (50 repetitions) 

 NPS Time Elapsed(s) 

Average 915.8 454.9 

Standard Deviation 585.5 87.6 

 
PYGGI generates two plausible patches during initial repair, which 

are listed in Figure 4. Note that the patch 2 is plausible but semantically 
incorrect, whereas the patch 1 is correct. We manually generated a new 
test input, (2, 2, 1), that can differentiate the original and the buggy 
program. When the new input is added to the test suite, PYGGI avoids 
overfitting to the plausible patch. We repeat the program repair run for 
50 times using the updated test suite, the results of which is shown in 
Table 3. PYGGI succeeds for all 50 runs, after evaluating about 900 
candidate patches in 7.5 minutes on average. 

 
4. DISCUSSIONS 

The initial implementation of PYGGI uses physical lines as the 
unit of patches. However, we note that certain faults may require finer-
grained modifications, and plan to investigate AST-level edit operators. 

Existing Generate and Validate techniques are susceptible to 
plausible repairs, i.e. overfitting to insufficient test suites [7]. PYGGI is 
not exempt from this inherent limitation, as in the case of the plausible 
patch we described in Section 3.2. Future work will consider the use of 
automated test data generation to reduce the risk of insufficient test 
cases and overfitting. 

Finally, the initial implementation of PYGGI does not use any 
fault localisation technique for functional improvements. Use of fault 
localisation can reduce the size of fault space, which will increase both 
the effectiveness and efficiency of PYGGI’s functional improvement. 

5. CONLUSION & FUTURE WORK 
We introduce PYGGI, a Python General framework for Genetic 

Improvement. Its initial version is capable of improving a non-
functional property or repairing a bug inside a program, using a local 
search algorithm. We conduct and report results of two proof-of-
concept case studies. Future work will consider AST-level code 
manipulations, fault localisation, and orchestration of automated test 
data generation and automated program repair. 
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