
Statistical Reachability Analysis
Seongmin Lee and Marcel Böhme

STATISTICAL METHOD ANALYTICAL METHOD

P (¬in circle)

=
Ar ea (Square) − Ar ea (Circle)

Ar ea (square)

=
(2r)2 − π r2

(2r)2

=
4 − π

4
≈ 0.2146...

r

MODERN SOFTWARES

P (¬in circle)

=
of balls outside the circle

of balls thrown

=
65
303

≈ 0.2145

E.g., Monte Carlo method

The analytic method is useful if
• the target model is exactly known,
• scale/complexity of the target model is small/moderate,
• and the exact quantity is required.

The statistical method is useful
• when the target model is inaccurate/unknown,
• as it performs complexity-agnostic to the model,
• to approximate the quantity.

Analysis of the modern software faces
• an industrial scale huge code base
• heterogenous in-analyzable features,

e.g., 3rd party library/binary
• cross-language/inter-procedural

interface
• a nature of undecidability

More feasible!

 TARGET ANALYSIS:
QUANTITATIVE REACHABILITY

EMPIRICAL EVALUATION TAKEAWAY

RESEARCH GOAL

To investigate the performance of
statistical method vs. analytical method

for program analysis tasks.

Q. What is the probability of reaching a certain
program state?

Many software verification task is answered by the
reaching probability.

• The probability of reaching an erroneous state.

STATISTICAL REACHABILITY ANALYSIS (SRA)

🎯

• : A probability of an arbitrary program execution reaching the target state Pr(s) s ∈ S
Limitation of existing estimators

Black-box estimators are unaware of the semantics of the program.Challenge of SRA

“How can it deal with the unobserved state ?”s
If the target state is unobserved from the samples, the empirical probability is 0,
which may lead to a false positive result.

Existing blackbox estimators

 Given program execution samples for analysis,
1. Laplace estimator

,

where is a smoothing parameter.

2. Good-Turing estimator

,

 where is a number of singleton events (events that happen only once).

O

L ap(s, O) =
|{o ∈ O ∣ R E ACH(o, s)} | + α

|O | + α
α

G oT u(s, n) =

|{o ∈ O ∣ REACH(o, s)} |
|O |

, if cs > 0,
f1(O)
|O |

, otherwise,

f1(O)

STRUCTURE-AWARE SRA

s1: if (pred)
s2: stmt;

s1

... s2

...

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

...

R

...

s1 s2

s3 s4 s5

s6 H

Pr(H) = Pr(R) ×
α

#(R) + 2 × α
×

1
3

×
1
2

Pr(s2) = Pr(s1) ×
α

1,000 + 2 × α

=α=2 1 ×
2

1,004
≈ 0.0020

Pr(s4) = Pr(s3) ×
α

3 + 2 × α

=α=2 0.003 ×
2
10

= 0.0006.

; yet,

•

•)

Pr(s1) ≥ Pr(s2)
L a p (s1, O) = L a p (s2, O)
G oT u (s1, O) = G oT u (s2, O)

To address the limitation, we design a structure-aware estimator that reflects the dependence
relation between the program states.

Structure-aware estimator

• How accurate is the estimated probability?
• How efficient is the estimation?
• Subject programs: 142 Java programs from

Competition on Software Verification 2021
• Baseline: two analytic estimators PSE, Preach

 Evaluation 1. Statistical method vs. Analytic method

Evaluation 2. Black-box vs. Structure-aware

• How fast can the estimator be closer to the
ground-truth reaching probability?

• Subject programs: 5 middle-size (Siemens suite)
+ 5 large-size (open-source) C programs

 Evaluation 1

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Program GT Esti(PSE) T(PSE) Esti(PR) T(PR) Esti(Lap) T(Lap)

ExMIT-T ⇠0 4.7E-10 (O) .866s 7.6E-06 (O) 14.9s 1.0E-06 (O) 0.044s
Exe1-F 0.49 NL (X) - 0.500 (O) 13.5s 0.489 (O) 0.006s
Exe2-F 0.2 NL (X) - 0.125 (X) 14.6s 0.199 (O) 0.003s
Exe4-F 0.25 NL (X) - 0.125 (X) 14.7s 0.248 (O) 0.014s
Exe6-F 1.0 NL (X) - 2.3E-10 (X) 14.8s 0.990 (O) 0.001s
Exe8-F 0.3 NL (X) - 0.500 (X) 14.7s 0.300 (O) 0.005s
Exe10-F 0.25 NL (X) - 0.250 (O) 14.5s 0.250 (O) 0.005s
Exe10-T ⇠0 NL (X) - 1.2E-10 (O) 14.5s 1.0E-06 (O) 0.085s
Exe12-F 0.5 0.500 (O) .934s 0.500 (O) 14.6s 0.501 (O) 0.004s
Exe12-T 0.375 0.250 (X) .966s 0.375 (O) 14.6s 0.376 (O) 0.007s
Exe13-T ⇠0 0 (O) .909s 5.0E-11 (O) 13.7s 1.0E-06 (O) 0.087s
Exe14-T 0.25 0.5 (X) .860s 0.25 (O) 11.9s 0.251 (O) 0.018s
Exe15-T 0.25 0.125 (X) .910s 0.25 (O) 13.1s 0.251 (O) 0.011s
Exe18-F 0.5 NL (X) - 0.500 (O) 14.5s 0.502 (O) 0.011s
Exe19-T 0.25 0.375 (X) .950s 0.245 (O) 14.5s 0.251 (O) 0.015s
Exe20-F 0.25 NL (X) - 0.125 (X) 13.6s 0.249 (O) 0.008s
Exe20-T 0.5 0.500 (O) .903s 0.5 (O) 14.5s 0.500 (O) 0.008s
Exe26-F 0.5 NL (X) - 0.245 (X) 14.7s 0.500 (O) 0.006s
Exe27-F 0.5 0.500 (O) .849s 0.500 (O) 14.7s 0.500 (O) 0.004s
FNEG-T 0 0 (O) .850s 0.25 (X) 14.5s 1.0E-06 (O) 0.045s
LCMP-T 0 0 (O) .832s 0.5 (X) 14.9s 1.0E-06 (O) 0.044s
Simple-F 0 0 (O) .854s TO (X) - 1.0E-06 (O) 0.048s
Simple-T 0 0 (O) .844s TO (X) - 1.0E-06 (O) 0.047s
Suzette-F 0.25 0.250 (O) .910s 4.7E-10 (X) 13.8s 0.249 (O) 0.030s
Suzette-T ⇠0 2.6E-9 (O) .926s 2.6E-09 (O) 14.4s 1.0E-06 (O) 0.084s
Assign-T 0 0 (O) .841s 0.25 (X) 14.6s 1.0E-06 (O) 0.045s
InsertSort2 2.1E-02 TO (X) - 2.5E-11 (X) 15.8s 2.1E-02 (O) 4,904s
RBTree1 0.125 TO (X) - DTMC (X) 14.4s 0.124 (O) 0.002s
assert3 ⇠0 4.7E-10 (O) .847s 2.3E-10 (O) 10.6s 1.0E-06 (O) 0.044s
if_icmp1 0 0 (O) .856s 5.0E-11 (O) 10.5s 1.0E-06 (O) 0.045s
switch1 ⇠0 2.8-09 (O) 1.03s 0.0 (O) 11.9s 1.0E-06 (O) 0.044s
Token2 4.8E-04 NL (X) - TO (X) - 5.2E-04 (O) 0.545s

Table 3: Quantitative reachability estimation for SV-COMP
2021 benchmarks. Esti(·) and T(·) are the probability estimate
and the time spent for the estimator; (TO, NL, DTMC) are the
failure states of the estimation. O/X in the parenthesis after
the value represents whether the estimator succeeds.

for the sampling (program executions). Among the 31 programs,
the average time spent estimating the assertion statements with
feasible reaching probabilities (GT> 10�6) is 0.039 seconds (median:
0.007), and the average number of samples needed (#B) is 9,615
(median: 1,531). To achieve an estimated probability of 10�6 for
the statements infeasible to reach, the Laplace estimator requires
2 ⇥ 106 samples, and the average time spent for it is 0.055 seconds
(median: 0.045). Only InsertSort2 takes 4,904 seconds, mostly on
the sampling process, not the estimation. This is because InsertSort
runs the insertion sort in the worst-case scenario ($ (=2)) for a
random positive integer number length ([1, 231 � 1]) array.

Our result shows that the Laplace estimator can successfully
estimate the reaching probability of all subjects in Table 3 with
high precision, generally, in a short period of time. On the other
hand, PSE and Preach fail to estimate the accurate reaching
probability of nearly half of the subjects.

�alitative Analysis. We further investigate the properties of the
programs that prevent the analytic approach from estimating the
correct reaching probability of the program state.

Token2 (Figure 2a) epitomizes the limitation of the previously
proposed probabilistic reachability analysis. An arbitrary size of
the array signi�cantly increases the domain space (Line 1), whose
complexity becomes squared after the String API split is applied
(Line 2). It is non-trivial and requires manual e�ort to interpret the
semantics of any API call (Line 2). The loop in Lines 4-9 are a typical
example of the path explosion problem; the number of paths to
consider would grow exponentially with the size of the array if the

1 void test(String line) {
2 String [] toks =

line.split(� �);
3 int i = 0;
4 for (String t : toks) {
5 if (i == 3)
6 assert false;
7 ++i;
8 }
9 }

(a) TokenTest02

1 void test(int x, int z) {
2 if(z < 0) return;
3 // instead of int y = 3;
4 int y = call(�./ret3.sh�);
5 z = x - y - 4;
6 if (x < z)
7 assert false;
8 else
9 print(�b4�);
10 }

(b) Exe13-T

1 void test(int i) {
2 if (i >= 1000)
3 if (!(i > 1000))
4 assert false;
5 }

(c) assert3

1 void test(int z) {
2 z = z % 5 - 2;
3 if (z < 0) print(�b1�);
4 else assert false;
5 }

(d) Exe8-F

Figure 2: Simpli�ed pseudocodes of RQ1 subjects.

true branch were not terminating the loop. The non-deterministic
loop iterations (Line 4) also obstructs the scalability/precision of
the analysis as it needs to consider the maximum number of itera-
tions. Finally, the domain of variable i in Line 6 keeps changing at
each loop iteration, which makes branch selectivity-based analysis
di�cult to compute the correct probability. According to the result,
PSE fails to estimate the reaching probability for Token2 due to
the limited support for the String API. Even if the String API is sup-
ported, the path explosion problem would still make the analysis
hardly feasible, as we have seen for the programs InsertSort2 and
RBTree1 in Table 3. Both of the abstract interpretation (interval
and polyhedra) of PReach reaches the timeout limit for Token2.
The ground truth reaching probability of Token2 is

1�
✓
94
95

◆15
� 15⇠1

1
95

✓
94
95

◆14
� 15⇠2

✓
1
95

◆2 ✓ 94
95

◆13
= 4.82674 � 04,

which is the probability of the input string having more than two
spaces. The vanilla PReach without the abstract interpretation fails
to estimate (P̂r = 0.333) the correct reaching probability to the
assertion. Conversely, the Laplace estimator successfully estimates
the probability with less than 1% of log-scale error in a half-second.

By computing the branch selectivity probability and inducing
the path probability using DTMC, PReach avoids the path explosion
problem. However, applying the model counting to each branch
ignores the domain change of variables during execution, which
may lead to a signi�cant inaccuracy in the probability estimation.
For instance, without abstract interpretation, PReach computes
the reaching probability of the assertion in assert3 (Figure 2c) as
0.25 = 1/2 ⇥ 1/2, where 1/2 stands for the branch selectivity for
each branch, yet the true probability is 1/232. Abstract interpre-
tation, the solution by PReach, can partially solve the problem of
domain change. While it can assist the program like assert3, which
still has a uniform distribution after the domain change, it fails to
handle the case of Exe8-F (Figure 2d), where the domain space
becomes non-uniform; the value distribution of variable z at Line 3
in Figure 2d is a non-uniform distribution between [-6, 2], where
-2 has a double probability (2/10) than other values (1/10) due to
the previous instructions. Therefore, while the true probability of

8

Accuracy
• PSE: 15/32
• PReach: 17/32
• SRA: 32/32

Time
• PSE: < 1sec
• PReach: < 1min
• SRA: ~ 0.01sec

 Evaluation 2

Error when 10% of samples needed to reach
• Lap: 1.28 orders of magnitude
• GoTu: 2.41 orders of magnitude
• Struct: 0.91 orders of magnitude

• Considering the semantic information of the
program, the structure-aware statistical
estimation provides a more accurate estimate
than the black-box statistical estimation.

• The statistical methods can successfully
estimate the reaching probability with high
precision, generally in a short period of time.

 On the other hand, the analytical methods often
fail to estimate the accurate reaching probability
due to their scalability issues.

