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Abstract—Static code analysis in Continuous Integration (CI)
environment can significantly improve the quality of a software
system because it enables early detection of defects without any
test executions or user interactions. However, being a conservative
over-approximation of system behaviours, static analysis also
produces a large number of false positive alarms, identification of
which takes up valuable developer time. We present an automated
classifier based on Convolutional Neural Networks (CNNs). We
hypothesise that many false positive alarms can be classified by
identifying specific lexical patterns in the parts of the code that
raised the alarm: human engineers adopt a similar tactic. We
train a CNN based classifier to learn and detect these lexical
patterns, using a total of about 10K historical static analysis
alarms generated by six static analysis checkers for over 27
million LOC, and their labels assigned by actual developers. The
results of our empirical evaluation suggest that our classifier can
be highly effective for identifying false positive alarms, with the
average precision across all six checkers of 79.72%.

Index Terms—False alarms; Static analysis; Classification;
Machine learning;

I. INTRODUCTION

Detecting faults as early as possible is a critical task.

The cost of fixing uncaught faults increases by orders of

magnitude as they escape into the later stages of software

development [1], eventually consuming a daunting portion

of software maintenance cost [2]. Static analysis can be an

effective quality assurance technique, because it can be applied

directly to the source code, without any need to generate test

input [3]–[5] or oracles [6]. Many static analysis techniques

have been developed [7]–[9] and practically applied [10], [11].

Samsung Electronics has adopted static analysis techniques as

part of its Continuous Integration (CI) pipeline [12]. Every

developer commit will go through a range of static analysis

checkers: any warning has to be reviewed, labelled, and stored

by developers into a defect management system.

While the use of static checkers in the CI pipeline is known

to be a highly effective method for identifying source code

defects early in the development life cycle [13], one inherent

limitation of static analysis is amplified particularly in the

context of CI: its conservative over-approximation of program

behaviour. By definition, this can result in a significant number

of false positive alarms. If developers are repeatedly sent

a large number of false positive alarms, there is a risk of

developer habituation to all future warning. Consequently, for

static analysis to be effective, it is critical to reduce the number

of false positive alarms delivered to developers.

While one way of reducing false positive alarms would

be to improve the accuracy of the static analysis itself, we

instead focus on handling of already generated alarms [14], in

particular the classification of false positive alarms. Given that

zero false positive rate is practically infeasible, an a posteriori
classification can always further improve the state of the art

static analysis checkers.

Previous work on classifying static analysis alarms re-

quire either syntactic or structural feature extraction [15],

[16], human assigned true positive likelihood weights for

checkers [17], or user feedback on warning labels [18]. Our

approach is similar to that of Tripp et al. [18], in the sense

that our classifier learns from warning labels assigned by

human developers. However, instead of defining a fixed set of

syntactic features (whose effectiveness may be limited to a set

of features), our classifier learns the lexical patterns correlated

with false positive alarms at the source code token level via

word2vec vector embedding [19] and Convolutional Neural

Networks (CNNs) [20].

Our empirical evaluation of the CNN based classifier uses

a historical static analysis warning datasets containing a total

of about 10k manually labelled alarms, generated by six static

analysis checkers for over 27 million LOC of multiple open

source projects to which Samsung contributes. When trained

with developer assigned labels, our classifier can classify false

positive alarms with 79.72% precision and 51.09% recall on
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average in cross validation studies. The results suggest that

the trained classifier can be used in the CI pipeline to reduce

the number of false positive alarms.

The technical contributions of this paper are as follows:

• We present a language independent classifier for static

analysis alarms that does not require any feature engi-

neering or extraction: it only requires lexical tokenization

and human assigned labels to learn from.

• As a feasibility study, we conduct a large empirical

evaluation of our classifier, using almost 10K alarms gen-

erated by six static checkers. These alarms are collected

from large scale open source projects to which Samsung

contributes.

• Results of our empirical evaluation show that token level

machine learning classification can be feasible. We report

an average of 79.72% precision and 51.09% recall.

II. BACKGROUND

A. Motivation

Integration of automated static analysis into the Continuous

Integration (CI) pipeline has been proven to be an effective

quality assurance method and taken up by many organisa-

tions [13]. Samsung Electronics has also adopted a practice

that all projects should be set up with a set of static analysis

checkers for automated code inspection, which are to be

triggered in a per-release or per-commit basis to detect faults

as early as possible.

However, one inherent limitation of static analysis is par-

ticularly amplified when it is used in the context of CI: the

existence of false positive alarms. Experiences at Samsung

Electronics show that developers receive a non-trivial number

of false positive alarms. Repeated exposures to false positive

alarms can have negative impact on project productivity. Not

only developers’ time is wasted, but the static analysis check-

ers may also lose credibility, eventually resulting in developer

habituation to any alarms.

The defect management system stores all static analysis

results, together with the follow up actions taken by field

engineers (such as bug fix or false positive labelling), in

a database. The original purpose of this database was to

systematically monitor and analyse false positive alarms. Such

analyses can provide input data for better configuration of

off-the-shelf checkers, or case studies for improvements of

in-house static analysis checkers.

The motivation of this work is to investigate whether the

data collected by the defect management system can be used

to automatically classify new static analysis alarms into true

and false positive alarms. Such classification can be used in

different ways to improve the efficiency of static analysis

based quality assurance within Samsung. For example, the

classification results can be delivered to developers along with

the alarms, in order to assist the developer to identify false

positive alarms before preparing revisions. Alternatively, the

classification results can be provided to code reviewers (or

auditors, a role in the defect management system) to assess the

developer response to alarms (see Section II-B for more details

on how static analysis alarms are treated within Samsung).

Initially, we have collected and analysed 56,036 alarm

records, generated from over 27 million LOC in multiple open

source projects to which Samsung contributes. Out of these,

we eliminated duplicate and focus on roughly 10k alarms

generated by six in-house checkers. By focusing on the in-

house checkers, we can have better background information

from Samsung’s field developers.

From the analysis of the collected data, we had two findings:

• We saw that certain checkers repeatedly produce a large

number of false positive alarms. This is mainly because

checkers interpret widely used programming idioms or

domain specific identifiers incorrectly for their analyses.

• However, even for the same checker, we observed that

there can be multiple ways false positive alarms are

generated. Since we do not have the exhaustive list of

such possibilities, it becomes difficult to detect and filter

out false positive alarms with hand crafted rules.

The motivation for machine learning based false positive

alarm classifier is based on three factors. First, the historical

data collected by the defect management system, especially the

developer feedback on historical false positive alarms, renders

itself very well to supervised learning, as they provide the

absolute ground truth. Second, our observation of historical

data suggests that many of false positive alarms can be

classified by lexical patterns, without requiring any feature

engineering that is common to many existing work [15]–[17].

Finally, assuming that our classifier is used in conjunction

with the defect management system, regular (re-)training of

the classifier will allow us to overcome the weakness of rule-

based filtering, i.e. that of having to define multiple new rules

whenever new checkers are introduced, or new ways in which

false positive alarms are generated are discovered.

B. Static Analysis with Defect Management System

Let us look into the current development workflow at

Samsung. Developers are required to run a predetermined set

of static analysis checkers with each commit into the code

repository. This step has been implemented into the develop-

ment workflow by extending existing maintenance framework

based on Gerrit [21]. Previously, Gerrit existed as a gate-

keeping mechanism between local repositories of developers

and the project master repositories: it enforced every commit to

be code-reviewed, and allowed only the project owner to merge

the commit after passing all reviews. The current process adds

defect management system as a new, automated code reviewer.

Figure 1 shows the software development and maintenance

workflow involving defect management system, VCS, CI,

and human developers. Each interaction marked by alphabet

characters in Figure 1 is detailed as follow:

1) A developer pushes a commit to the stationary repository in

the code review system (action a) to request a code review.

2) As the code review system receives a commit, the defect

management system is automatically assigned as an alarm
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Fig. 1: A workflow of defect management system

inspector and takes the revised source code (action b). At

this step, the project manager may assign other developers

as code reviewers as well.

3) After running predefined static analysis checkers on the re-

vised source code (action c), the defect management system

registers all generated alarms as code review results (action

d). If there are any alarms, the code review system forces

the developer to resolve the issues (action d′). Otherwise,

the code review system finds that the commit is ready to

be merged into the master repository.

4) The developer inspects each alarm message via the code

review system (action e). An alarm contains a description

of the target defect pattern and a list of witnesses, which

are source code locations associated with the detected fault.

Each static analysis checker has its own definition of the

witnesses (see examples in Section III-A). A developer can

respond to each alarm (action f ) either by submitting a new

revision that fixes the defect (if the alarm is valid), or by

declaring that the alarm is a false positive.

5) The defect management system automatically collects de-

veloper responses to alarms (action g). It records the alarm

as either true or false positive based on the response (action

h). If a developer declares a warning as a false positive,

the defect management system records the feedback in

the database. If, instead, the developer updates the source

code, the system re-runs static analysis checkers to examine

whether the alarm disappears or not. If the same checker

does not generate the same warning as before, the system

records the alarm as validated as true by the developer. Once

all warnings are resolved, the defect management system

updates its code review, stating that the revision is ready to

be merged into the master repository (action i).
6) Once all code reviewers agree that the commit has no

problem, the project manager merges the commit to the

project master repository (action j).

7) The CI system re-builds whole projects on a regular ba-

sis (action k). Once a new build is finished, the defect

management system automatically takes the new version

(action l) and runs the set of static analysis checkers that

check global properties (action m). These checkers examine

whether any defect has been introduced due to the conflicts

between different modules and packages. If a new alarm

is found, the defect management system tracks the revision

that introduced the alarm, and sends a code review request

to the responsible developer with the new alarm message

via the code review system (actions n and n′).
8) The developer inspects the alarms from the newly built

version and takes an action, starting again from the 1).

Note that a defect management system gathers all data of

the static analysis checkers across all interactions, and stores

the data in a database. The data include all input files, all

generated warning messages, and the labels on each warning

assigned by developers in 4).

III. STATIC ANALYSIS CHECKERS AND FALSE ALARM

PATTERNS

This section describes each of the studied static analysis

checkers, and explains how we generate datapoints for them.

A. Static Analysis Checkers

We study six static analysis checkers in this paper. Here we

explain the workings of each of them, as well as how false

positive alarms can be generated by them.

1) Resource Handle Leak: The Resource Handle Leak

occurs when an allocated resource handle expires before

the release of the resource, resulting in a leak of the allo-

cated resource. Its checker, HANDLE_LEAK, checks for two

cases: functions returning without releasing resource handles

stored in local variables, and functions overwriting local vari-

ables storing resource handles without releasing handles first.

HANDLE_LEAK produces two witnesses, wacquire and wleak

: wacquire points to the instruction that acquires and stores a

handler to a local variable, whereas wleak points to the location

where the handler expires. It employs an interprocedural path-

sensitive analysis to discover corner cases with complicated

execution paths from wacquire to wleak.

However, HANDLE_LEAK can raise false positive alarms if

the underlying static analyses fail. Figure 2 contains two

simplified real world false positive alarms. In Figure 2(a), the

checker generates a false alarm for the path from Line 5, where

the handle is acquired, to the return statement in Line 8, where

the function returns without releasing the allocated resource.

However, this leak is infeasible because dynamic_load()

returns zero only if it fails to acquire a dynamic library. An-

other similar case is described in Figure 2(b). HANDLE_LEAK

concludes that write_profile() returns without closing a file

handle acquired in Line 12. However, this is a false positive

because the call to _close() in Line 18 closes the handler fd.

We conjecture that HANDLE_LEAK generates false alarms

because it fails to predict the exact effect of a function call due

to approximation and abstraction employed by the underlying

static analysis. Simultaneously, we found that many false

positive alarms share similar structural patterns. For example,

the error handling paths (such as one shown in Figure 2(a))

typically start right after the resource acquisition and contain a

debug or logging message. This provides supporting evidence

to our conjecture that false positive alarms can be classified

based on structural lexical patterns.
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(a) A false alarm with a value-sensitive error-handling path

01: int create_file_attr() {
...
05: ret = dynamic_load(&func_handle);

//acquisition
06: if (ret == 0) {
07: debug("loading error\n");
08: return FILE_ERROR; // expiration

(b) A false alarm with a domain-specific resource-release operation

11: int write_profile() {
12: fd = open(fpath, O_RDWR); // acquisition
...
18: _close(fd);
19: return n; } // expiration

Fig. 2: Examples of false alarms from the Resource Handle

Leak checkers

2) Double Free: The Double Free checker, DOUBLE_FREE,

attempts to detect a path where the free operation is invoked

with the same memory address twice. In such a path, the

second free invocation would try to deallocate an invalid

memory address, potentially resulting to a crash. Using an

interprocedural data-flow analysis, the double free checker

raises an alarm if the arguments of two free invocations alias

each other. A double free alarm contains two witnesses, each

pointing to a call site where the call sequence that includes an

invocation of free begins.

01: len = length(node_list)
02: for (i = 0; i < len; i++) {
03: node = get_element_at(node_list, 0);
04: node_list = node_list->next;
05: node_free(node);
06: }

Fig. 3: A Double Free false alarm

However, if the underlying analysis fails to capture aliases

precisely, DOUBLE_FREE may produce false positive alarms.

The example in Figure 3 shows one such case. For this alarm,

the double free checker will place both witnesses on Line 5,

which will executed repeatedly with the loop iteration. If the

checker misses the update to node in Line 3, it will incorrectly

conclude that node is being freed twice.

3) Null Pointer Dereference After Null: The Null Pointer

Dereference checker, DEREF, raises an alarm if it detects

an execution path that first evaluates a pointer p to null

and subsequently uses p. A warning by DEREF has two

contradictory witnesses, wcheck and wref : wcheck points to

an instruction that checks whether a pointer p is null, while

wref points to an instruction that uses p.

Figure 4 shows an example of a false positive alarm gener-

ated by DEREF. The checker decides that obj_list is possibly
null at Line 1, because the if statement at Line 1 explicitly

checks obj_list being null. Based on this, DEREF concludes

that the value of obj_list passed to g_list_append() at Line

5 can be null, because a path can reaches Line 5 after taking

the false branch at Line 1. However, the warning is a false

positive because it is valid to pass null to g_list_append():

the GList library uses null to represent an empty list.

01: if (obj_list)
02: length = g_list_length(obj_list);
03: for (i = length; i < capacity; i++){
04: obj = g_new(obj_t, 1);
05: obj_list = g_list_append(obj_list, obj);
06: }

Fig. 4: A Null Pointer Dereference After Null false alarm

4) Tainted Loop Termination Condition: The Tainted Loop

Termination Condition checker, TAINT_INT.LOOP, checks

whether the termination condition of a loop relies on a tainted

value, such as unvalidated input from environment variables,

files, or networks: such termination condition may cause the

loop to go over the bound, resulting in a buffer overrun. To

detect this, TAINT_INT.LOOP checks whether a value from

unvalidated source (e.g., getenv()) may reach a loop condition

without checking it against lower and upper bounds. If so,

TAINT_INT.LOOP generates two witnesses: wtaint points to

the introduction of the unvalidated value, and wuse points to

the use of the tainted value in a loop termination condition.

TAINT_INT.LOOP may produces a false positive alarm

when the loop itself is free from any harmful behaviour. Fig-

ure 5 shows such an example of this case. TAINT_INT.LOOP

finds that n in Line 4 is a tainted value as it originates from an

external source in Line 1, and is never validated. However, the

loop at Lines 4–5 does not induce any error due to n, because

the loop iterates on arr whose size is the same as n.

01: str = getenv("NUM_DATA");
02: n = strtoul(str, NULL, 10));
03: arr = malloc(sizeof(int) * n);
04: for (i = 0; i < n; i++)
05: arr[i] = receive_data();

Fig. 5: A Tainted Loop Condition false alarm

5) Unintentional Fall Through: The checker for Uninten-

tional Fall Through, FALL_THROUGH, detects a case block

in a switch statement that does not end with a break.

Since fall-through case blocks are often used intentionally,

FALL_THROUGH is designed to skip analysis if the beginning

of a code block is annotated with //fall through. Otherwise,

the checker generates an alarm with two witnesses: wfall

points to the location of the case block without break, and

wswitch points to the beginning of the switch statement.

Currently, apart from the annotation via comments, there

is no way of determining whether a fall-through case block

is intended or not. However, in the pilot study, we observed

that there are lexical patterns developers use to communicate

their intentions regarding fall-through case blocks. Figure 6

shows a simplified code snippet of a false alarm. Here, the

fall-through case blocks at Line 2 and Line 6 are intended

to fall-through to blocks at Line 3 and Line 7, respectively.
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01: switch (opt) {
02: case SET_Opt1: a = val[Opt1];
03: case GET_Opt1: ret = a;
04: break;
05:
06: case SET_Opt2: b = val[Opt2];
07: case GET_Opt2: ret = b;
08: break;

Fig. 6: An Unintentional Fall Through false alarm

The developer has used an empty line to communicate that

the fall-through case blocks are intentional.
6) Unreachable Code: The checker for the Unreachable

Code, UNREACHABLE, marks and reports a statement under

an unsatisfiable condition as unreachable. Based on the data-

flow analysis, UNREACHABLE identifies a branch predicate that

is bound to a specific value. Although the unreachable code

does not induce any illegal behaviour by itself, it is often a

sign of flaws in the control structure.

01: if (!(fp = fopen(filepath))) goto error;
02: if (!(data = get_data(fp))) goto error;
03: if (!(img = get_image(data))) goto error;

...
11: error:
12: if (fp) fclose(fp);
13: if (data) free(data);
14: if (img) free(img);
15: return NULL;

Fig. 7: An Unreachable Code false alarm

However, our manual inspection revealed that many false

positive alarms are generated because developers intentionally

write unreachable code following the defensive programming

principle. Figure 7 shows such a case. UNREACHABLE raises

an alarm for Line 14, because img is always null and conse-

quently free(img) cannot be executed in any case. However,

the developer prefers to keep Line 14 because it is useful

to explicitly release all resource handles within the function

epilogue code block. Our manual inspection revealed that

developers classified other similar alarms as false positives,

so that they can keep defensive error handling or function

epilogue code.

B. Datapoints Extraction

A datapoint is a set of lexical tokens extracted for each

checker alarm based on the witnesses provided by the checker.

We extract source code lines that are supposed to reflect partial

intra-procedural control and data flows. For HANDLE_LEAK,

DEREF, and TAINT_INT.LOOP, we extract ten lines: five

lines starting from the first witness point, and another five

lines leading up to and including the second witness point.

For DOUBLE_FREE, we extract 20 lines in a similar way:

ten lines starting from the null check witness point, and

another ten lines leading up to the free witness point. For

FALL_THROUGH, we extract ten lines surrounding the fall-

through witness point: four preceding lines, the line that

contains the witness point, and five following lines. Finally,

for UNREACHABLE, we take ten lines of source code leading

up to and including the unreachable point.

Note that datapoint definitions are flexible and can be

tuned or modified for each project. For new checkers, the

guideline for datapoint definition is that sufficient lexical

information should be captured, so that humans can make

similar judgement regarding false positive alarms.

IV. VECTOR EMBEDDING AND CLASSIFIER

This section describes how extracted datapoints are embed-

ded into vector forms and used to train CNN based classifiers.

While we only use tokens in datapoints as input to our

classifiers, we need the contexts in which these tokens appear

in order to correctly embed them into vector forms. Given a

set of static analysis checker alarm datapoints, let us define a

code chunk to be a set of all source code lines of all files that

appear in the set of datapoints. First we break down the code

chunk into tokens, which are then normalised. We compute the

word2vec vector embedding [19] of all tokens in the given

code chunk in order to embed to context of each token on

the datapoints. The vector embedding allows us to represent

a single datapoint as a matrix, i.e., a stacking of embedding

vectors, each of which correspond to a normalised token in the

datapoint. Finally, CNN takes the matrices of datapoints as an

input and constructs a model classifying the false alarms.

A. Tokenisation and Normalisation

We use a basic C/C++ lexical tokeniser to break down

source code lines in the given code chunk into tokens. Apart

from separation of individual tokens, we currently do not

perform any lexical analysis. However, we do perform token

normalisation [22] by decomposing snake cases and camel

cases. This is to provide our classifiers with generic termi-

nology, and to avoid overfitting the training of classifiers to

specific sets of identifiers. Finally, when appropriate, we allow

specific whitespace characters as independent tokens. For

example, classifiers for FALL_THROUGH use newline characters

as tokens in order to capture the lexical pattern outlined in

Section III-A5.

B. Word2Vec Embedding

The embedding of tokens into vector forms is performed

by the widely used word2vec embedding technique [19].

Word2vec is a predictive modelling for learning vector

embedding of words in a given corpus. It is essentially a neural

network with a single hidden layer with M nodes, as shown

in Figure 8.

We use the skip-gram model [23], which embeds words

in a corpus into vectors in such a way that each word is

identified by its neighbouring words. Let us sketch out the

process intuitively. Suppose a corpus that contains a set of

words, V . For the ith word wi ∈ V , let N(wi) be the set of

neighbouring words of wi (i.e. all words that appear at most

k words away from wi in V ). First, we encode each word

using the one-hot vector scheme. For wi, we get a vector of
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Fig. 8: A word2vec neural network with a single hidden

layer. For the skip-gram model [23], the input vector �xwi =
(x1, . . . , xV ) for word wi is the one-hot encoding vector for

wi. Intuitively, we train this neural network so that, given �xwi
,

the output �y matches as closely as possible the sum of all one-

hot encoding vectors of words that appear together with wi in

the corpus. When training is finished, we take the hidden layer

weight vector, �h = (h1, . . . , hM ), as the vector representation

for the word wi.

length |V |, �xwi , which is filled with zeros except a single one

at the ith place. Now we train the neural network depicted in

Figure 8, such that when �xwi
is given as input, the output �y

matches the sum of all one-hot embedding vectors of words

in S (i.e. �y =
∑

wj∈N(wi)
�ywj

) as closely as possible. Once

the training is finished, we take the hidden layer weights,
�h = (h1, . . . , hM ), as the vector embedding of wi. This weight

vector can be thought of as a vector that uniquely converts the

one-hot encoding vector form of the original word, �xwi
, to its

neighbours,
∑

wj∈N(wi)
�ywj

. Note that the number of hidden

layer weights is a configurable parameter called embedding

length.

C. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a neural net-

work containing convolution layers [20]. A convolution layer

contains sets of equivalent neurons, often called filters, that

are connected only to a small local region in the input data:

multiple instances of filters are applied to the entire input data,

by moving them at given intervals (called strides). CNNs have

been particularly successful in computer vision [20], [24],

[25], as it can extract out the invariants that are independent

from the absolute position of the data within the input region,

such as translation invariants, rotation invariants, and size

invariants, etc. Our conjecture is that CNNs can be also good at

learning to identify the structural patterns discussed in Section

III-A. The patterns for false positive alarms that we are after

can often be summarised as partial orders between occurrences

of specific tokens that should be size invariant (i.e. specific

tokens can appear at varying distances from each other).

1) CNN Input: The datapoints extracted following the pro-

cess described in Section III-B are converted to lists of tokens

via tokenisation and normalisation. Subsequently, each token

is embedded into a vector form using word2vec method

described in Section IV-B. These vectors are then stacked

together, resulting in one matrix per datapoint. Since every

datapoint has different number of tokens, we add padding

vectors on top of the matrix to make all matrix have same

dimension.

Fig. 9: CNN model

2) Network Architecture: Figure 9 shows the model of the

classifier. In the convolution layer, each 32 filters of which

the height is 16 and the width is equal to the word2vec
embedding size, moves through the input matrix with stride

1 × 1. The one-dimension vector, retrieved from convolution

and Leaky Rectified Linear Unit (LeakyReLU) layer [26],

is passed into max-pooling (which forwards the maximum

activation value with 4×1 filter, 2×1 stride) and drop-out layer

(which drops a predetermined percentage of randomly chosen

nodes during the training in order to avoid overfitting) [27],

before being fed into a fully-connected layer with 16 nodes.

We use the sigmoid activation function in the final output node,

with binary cross-entropy loss for classification between true

and false positive labels.

D. Validation Method

We aim to investigate how accurate the CNN classifiers

can be and whether it can achieve a level of accuracy that

is practically beneficial. To answer these questions, we train

CNN based classifiers using historical static analysis alarms

and developer assigned labels that show whether the given

label was actually false positive. The empirical study uses

the standard ten-fold cross validation method to evaluate the

results of training: for each checker, the set of all alarms is

divided into 10 equally sized subsets. Subsequently, a single

instance of classifier is trained using nine of the subsets, and

validated using the remaining one subset, resulting in ten

independent evaluations. For each such fold, we compute the

traditional evaluation metrics for classifiers: precision, recall,

F1, and the accuracy metric.

Note that we consistently use terminology based on the

nature of static analysis alarms, and not on the results of

our classification: a false positive alarm means that a static

analysis checker raised an alarm against a code without any

defect. Consequently, precision and recall can be defined as

follows:
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TABLE I: Studied Static Analysis Checkers and Their Warning

Dataset Size

Category Checker Alarms TP FP FP Ratio

Call Sequence
HANDLE_LEAK 1,610 1,334 276 17%
DOUBLE_FREE 733 622 111 15%

Dataflow
DEREF 2,101 1,919 182 9%
TAINT_INT.LOOP 584 430 154 26%

Control Flow
FALL_THROUGH 1,680 1,559 121 7%
UNREACHABLE 3,163 3,010 153 5%

Total 9,871 8,874 997 10%

precision =
|{ Actual FP alarms } ∩ { Predicted FP alarms }|

|{ Predicted FP alarms }|
recall =

|{ Actual FP alarms } ∩ { Predicted FP alarms }|
|{ Actual FP alarms }|

E. Data Sources

We use static analysis alarm data from multiple open source

projects to which Samsung Electronics has contributed over

the last two years. Samsung maintains the same CI pipeline

for these open source projects, and collect alarms in a defect

management system. During this two year period, the defect

management system stored a total of 56,036 alarms that have

been closed (i.e. either fixed or labelled as false positives) for

these projects. After removing duplicates, we obtained 9,871

alarms, about 10% of which are labelled as false positives.

These alarms were generated for over 27 million lines of

C/C++ code. Table I presents the breakdown to individual

checkers.

V. EXPERIMENTAL SETUP

A. Configuration and Environment

We use the embedding size of 128 with word2vec. We

use the skip-gram window size of one (i.e. we only con-

sider adjacent tokens). Word2vec embedding algorithm has

been implemented using TensorFlow [28], version 1.3, and

Python version 3.6.0. The CNN classifier has the network

architecture presented in Section IV-C. We use dropout rate

of 0.8 and train the classifier for 150 epochs, using the mini-

batch size of 10. We use the adam stochastic optimiser for the

gradient descent optimisation [29]. All hyperparameters have

been empirically tuned based on trials. The CNN classifier has

been implemented using Keras [30], version 2.0 (using the

TensorFlow backend), and Python version 3.6.0.

All experiments have been performed on Ubuntu 14.04

LTS, running on Intel Core i7-6700K with 32GB RAM. The

TensorFlow backend used NVidia CUDA 8.0, running on

NVidia GTX1080 GPU with 12GB memory.

VI. RESULTS & DISCUSSIONS

A. Classification Effectiveness and Efficiency

Table II reports average evaluation metric values across

the ten-fold cross validation, along with the overall average

across all six checkers. Figure 10 shows the distribution of

evaluation metrics more clearly. The average precision across

all six checkers is 79.72%, and the average recall across all

six checkers is 51.09%. The cross validation mean precision

is over 80% for three checkers (HANDLE_LEAK, DEREF, and

TAINT_INT.LOOP); the cross validation mean precision is

over 75% for five checkers (above three plus DOUBLE_FREE

and UNREACHABLE). The highest cross validation mean pre-

cision is 86% for DEREF checker. Recall metric values are

lower than those of precision, at around 50% on average

with the lowest from UNREACHABLE at 31.41%. This suggests

that certain false positive alarms either exhibit difficult-to-

learn lexical patterns, or even lack one. However, from the

point of developer effort reduction, we consider precision to

be the more important metric for our use case, i.e. either

assisting developers to quickly filter out false positive alarms

or assisting code reviewers to understand developer commits

more efficiently.

Figure 11 shows the correlation between the size of alarm

datasets and the time it takes to train classifiers up to epoch

150. The training time increases linearly as the number of

alarms increases. We performed linear regression analysis and

obtained the following results: [time] ∼ 0.031[# of alarms] +
9.611. The adjusted R2 is 0.88, and the p–value is less than

2.2e−16.

All training finished within 100 seconds. Considering that

we use a single consumer grade GPU for training, we cau-

tiously suggest from the observed data that regular (re)training

of classifier neural nets would be feasible even within the

context of continuous integration.

B. Discussion

Here we discuss potential issues and shortcomings observed

in the results, and plan the future work.

1) Trivial Overfitting: One potential risk in every machine

learning application is overfitting. In our case, there is the

risk of the classifier learning to simply connect existence of

specific tokens to prediction of false positive alarm labels.

We intentionally designed our CNN to be as minimal as

possible (see Section IV-C) to avoid overfitting. However, to

investigate whether such trivial overfitting to specific tokens

is actually happening, we undertook a small case study using

the HANDLE_LEAK dataset.

Figure 12 shows the distribution of token occurrences in the

code chunk for HANDLE_LEAK: the x axis represents the token

id sorted by number of token occurrences, and the y axis shows

the accumulative number of tokens in the HANDLE_LEAK

checker code chunk that belong to the subset up to the xth

token in the descending order of occurrence frequency. The

corpus contains 4,987,049 tokens, of which there are 24,633

unique types. The distribution of token occurrences is heavily

skewed with a significant long tail: the top 1,232 tokens

(marked by the vertical red line) account for the 90% of all

tokens in the corpus (marked by the horizontal red line).

With such a long tailed distribution, we conjecture that any

tokens that may produce trivial overfitting will be in the tail

region. Based on this, we trained multiple instances of our

classifier for the HANDLE_LEAK checker, but using only the
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Fig. 10: Boxplots of precision, recall, F1, and accuracy metric from ten-fold cross validation of classifier training for each

studied static analysis checkers. Median precision is over 75% for five out of six checkers, while median recall is over 50%

for four out of six studied checkers.

TABLE II: Average accuracy results of ten-fold cross validation for 6 checkers

Checker
Precision Recall F1 Accuracy Avg. # of Predicted / Actual

Mean Var. Mean Var. Mean Var. Mean Var. TP Alarms FP Alarms

HANDLE_LEAK 81.80% 186.65 49.74% 90.54 61.24% 90.06 89.27% 7.15 143.9 / 133.4 17.1 / 27.6
DOUBLE_FREE 79.39% 293.09 57.50% 289.36 64.84% 229.52 90.99% 10.57 65.0 / 62.2 8.3 / 11.1
DEREF 85.70% 144.97 55.53% 53.56 66.87% 48.30 95.24% 1.08 198.1 / 191.9 12.0 / 18.2
TAINT_INT.LOOP 85.98% 101.06 73.95% 137.50 78.66% 47.64 89.50% 9.38 44.9 / 43.0 13.5 / 15.4
FALL_THROUGH 67.99% 108.47 44.42% 332.34 52.28% 293.16 94.64% 1.43 160.3 / 155.9 7.7 / 12.1
UNREACHABLE 77.48% 399.67 31.41% 216.05 43.20% 290.30 96.20% 0.84 310.0 / 301.0 6.3 / 15.3

Average 79.72% - 51.09% - 61.18% - 92.64% - - -
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Fig. 11: Linear regression model for alarm dataset size and

classifier training time: the training time increases linearly as

more alarms are processed.

top k tokens as the vocabulary, with values of k ranking

from 2,000 to 24,000 at the interval of 2,000. Figure 13

shows how average precision and recall from ten-fold cross

validation of instances change as vocabulary sizes decreases.

While there are fluctuations, the precision level does not drop

much below 80%, while maintaining similar levels of recall

values, even when we train with less than 10% of the full

corpus vocabulary. Manual inspection of different vocabulary

sets reveals that key tokens for the HANDLE_LEAK checker,

such as fopen and errno, are indeed within the top 2,000

most frequent tokens. The result of this case study suggests

that our classifiers are indeed learning structural patterns that

consist of very frequently used tokens, rather than simply
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Fig. 12: Accumulative number of token occurrences in the

HANDLE_LEAK code chunk

remembering the connections between source code specific

identifiers and alarm labels.

2) Scopes of Datapoints: The quality of our results are

strictly dependent on input fed into the classifiers. There

are multiple decision points on how to define datapoints

for checker alarms. Without customising the static analysis

checkers to extract more precise information about each alarm,

datapoint definitions may remain arbitrary to some degree.

For example, DOUBLE_FREE provides call sequence informa-

tion from the witness call sites to the actual invocation of

free. However, we only included the target function in our

datapoints (1) including the entire call sequence may create

inhibitively large datapoints, and (2) inclusion of entire call

sequences may introduce noises.

While more checker specific input may yield better results,

our aim is to be as checker agnostic as possible. By being

checker agnostic, we can lower the adoption cost for our
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Fig. 13: Change of average cross validation precision and

recall of HANDLE_LEAK classifier with varying vocabulary

sizes: reducing the vocabulary size does not significantly

damage the results of training.

classifiers (one only needs labelled historical alarm data to

train classifiers) and become more flexible in terms of which

static analysis checkers are used by the organisation.

3) Integration of Classifier to CI Pipeline: Based on our

results, we propose two different ways of integrating our

classifier to the current CI system.

1. Post-processor: The CI system can adopt our classifier as

a post-processor for the static analysis checkers, by placing it

between action c and d in Figure 1. With the post-processing

approach, we expect to reduce the number of false positive

alarms developers have to handle. However, there is the risk

of losing true positive alarms, as the precision is not 100%.

2. Alarm Review Assistance: Another application would

be simply to provide the classification results for the code

reviewers to peruse, so that they can double-check develop-

ers responses to generated alarms more easily. This can be

achieved by placing a classifier before action j in Figure 1.

This approach will assist code reviewers not to miss any true

positive alarms incorrectly rejected by developers.

VII. THREATS TO VALIDITY

Threats to internal validity concern the extent to which the

observed results from the empirical evaluation warrants our

claims, such as selection biases or implementation correctness.

Our datasets have been collected from an internal defect

management system, without any selection criteria other than

that selected static analysis checkers should contain sufficient

number of warnings in the database. We plan to widen the

scope of our study in the future, so that we can reduce any

unintended and indirect selection biases in the choice of static

analysis checkers. Human validation results of static analysis

warnings not only are highly expensive to produce but also

can be very sensitive information. Our classifiers have been

implemented using widely studied neural network frameworks

including Keras [30] and TensorFlow [28].

Threats to external validity concerns the extent to which

our empirical evaluation results generalise. Since supervised

learning results are directly dependent on the training data used

for learning, our results are specific to the warnings generated,

observed, and validated within Samsung. As with any other

data driven research, our results may include a certain level of

overfitting to the used training data. Furthermore, we accept

developer assigned labels to be the ground truth: there is

a possibility that the labels reflect preferences of Samsung

engineers, instead of the absolute ground truth about the

checker alarms. The question of generalisability can only be

answered by future work that consider more data.

Threats to construct validity concerns how accurately the

measurements we take are actually correlated to what they

claim to measure. We assess the level of any threats to

construct validity to be low, as all evaluation metrics we use

are standard evaluation metrics for classification and are based

on absolute counting of predicted labels.

VIII. RELATED WORK

There are various existing attempt to process results from

static analysis checkers so that developers can benefit from

the produced warnings without suffering from a large number

of false positives. Jung et al. applied a Bayesian statistical

analysis to buffer overrun alarms generated from 5.3 million

LOC of a commercial system and could filter out about

75% of false positive alarms [15]. However, their technique

requires extraction of syntactic symptoms, such as whether

loops exist before or after the location of alarms, etc. Yoon

et al. applied Support Vector Machines (SVMs) to filter

out false positive alarms [16], which were generated by

a commercial static analysis tool called Sparrow [31].

Yoon et al. also depended on count-based features, such as

occurrences of conditional and loop statements or null expres-

sions. EFindBugs, developed by Shen et al. [17], prioritise

static analysis checker alarms generated by the widely studied

FindBugs checker [32], [33]. EFindBugs requires humans

to manually assign quantitative likelihood of reporting true

positive for each studied checker, using a sample warnings

produced against a reference target project (Shen et al. used

JDK). These defect likelihood weights are compiled into scores

for each defect type detected by FindBugs and used to rank

alarms. Flynn et al. generated a classification model which

identifies false positive alerts on SEI CERT Coding Rule [34]

using both of the features from the result of a static analysis

and the data of CERT [35]. ALETHEIA, developed by Tripp et

al. [18], is probably the closest to our approach. as it asks user

feedback on a small sample of generated alarms to establish

the ground truths. These are fed into a range of classifiers, all

of which depend on extracted features.

Our approach differs from all of the above because we

do not require any feature engineering or extraction. The

input to our classifier is simply the lexical tokens from the

source code lines pointed by the static analysis warnings. This

eliminated any need to define new sets of features for new

static analysis checkers: as long as the identification of false

positive cases can be achieved based on lexical information (as

we have shown in Section III for some checkers), our classifier

can learn to recognise the false positive alarms without any

features.
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IX. CONCLUSION

We introduce a Convolutional Neural Network based clas-

sifier that can identify false positive static analysis checker

alarms, without any need to define and extract complicated

features. The classifier is trained and validated using a large

historical dataset from multiple open source projects to which

Samsung contributes. Out of an alarm database generated from

27 million LOC by six different checkers, we extract about 10k

static analysis checker alarms, with true/false positive labels

manually assigned by developers, for training and validation.

Results of cross validation show that our classifier achieved

an average precision of 79.72% and average recall of 51.09%.

When used as aides for filtering out false positive static

analysis checker alarms, we argue that high precision can

have a positive impact despite low recall, as it will directly

results in savings in developer time. Future work includes

evaluation using a wider range of checkers and a larger set of

alarms, as well as hyperoptimisation of classifier architecture

and integration of classifiers into the current CI pipeline.
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