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ABSTRACT

Program dependence is a fundamental concept to many software

engineering tasks, yet the traditional dependence analysis struggles

to cope with common modern development practices such as multi-

lingual implementations and use of third-party libraries. While

Observation-based Slicing (ORBS) solves these issues and produces

an accurate slice, it has a scalability problem due to the need to

build and execute the target program multiple times. We would like

to propose a radical change of perspective: a useful dependence

analysis needs to be scalable even if it approximates the dependency.

Our goal is a scalable approximate program dependence analysis

via estimating the likelihood of dependence. We claim that 1) using

external information such as lexical analysis or a development his-

tory, 2) learning dependence model from partial observations, and

3) merging static, and observation-based approach would assist the

proposition. We expect that our technique would introduce a new

perspective of program dependence analysis into the likelihood of

dependence. It would also broaden the capability of the dependence

analysis towards large and complex software.
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1 PROBLEM AND RESEARCH STATEMENT

Understanding dependencies between program elements is a fun-

damental task in software engineering [18]. Program dependence

analysis provides a basis for many software engineering tasks, in-

cluding program comprehension [23], software testing [4], main-

tenance [10], refactoring [9], security [14], and debugging [13];

hence, it often acts as a prelude for other tasks. While, traditionally,

program dependency analysis is done in a static approach based

on the dependence graph [11], it suffers from various issues. Static

dependency analysis is not capable of handling a multi-lingual sys-

tem, a system tightly coupled with the external libraries or other
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systems such as databases and web services. In those cases, one

gets the result containing lots of false positives or no result at all.

Observation-based slicing (ORBS) [5] considers the dependency

relation from a different perspective. If a program element, e1, be-
haves the same when another program element, e2, is deleted, ORBS
determines that e1 is independent of e2. ORBS generates a program
slice for a given program element by iteratively deleting other pro-

gram elements while observing the behavior of the target program

element. If the behavior changes, ORBS rolls back the deletion.

ORBS moves on to other program elements and repeats, until there

is no deletable program element. ORBS’s purely dynamic approach

solves the issue of the static dependence analysis and generates the

slice without false positive. Yet, it requires lots of compilations and

executions, making it not scalable.

While it is promising that ORBS provides accurate dependence

information, the lack of scalability makes ORBS not suitable for the

role of an informant for other tasks that applied to a large system.

Therefore, program dependence analysis for a large and complex

systems is still an open issue. Here, we argue that it would be much

applicable if the analysis scales, even if the result approximates the

program dependence.

2 GOAL AND RESEARCH HYPOTHESIS

The goal we propose is a scalable approximate program dependence

analysis. Instead of scrutinizing every dependence through obser-

vations with ‘true’ or ‘false,’ we aim to estimate the likelihood of

the existence of a dependence relationship using various external

information and applying statistical methods. Compared to the

classical Boolean representation, representing the dependence as a

likelihood has the advantage of being able to sort the program ele-

ment for the postprocessing performed in tasks such as debugging

or automated program repair. Our main hypothesis is that we can

approximate the program dependence without using traditional

static analysis.

We first consider whether the lexical similarity (e.g., two lines

that both include the string tax_rate) can provide a useful approx-
imation to the dependence information [17]. For example, a source

line, l1, might assign the variable tax_rate, which is subsequently
used in l2: tax = tax_rate * sale. The dependence between l1
and l2 might be estimated with the lexical connection between l1
and l2 (i.e., the common occurrence of the words ‘tax’ and ‘rate’).
We evaluate the performance of the lexical analysis on dependence

approximation with its application of program slicing.

While a complete set of observations can produce a dependence

model without any false positive, we investigate whether we can

learn a dependence model from the partial observations. By setting

the location of modification of the program as an independent

variable and the observation as a dependent variable, we can model

the dependency relation with the various statistical models.
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While ORBS showed that observing the runtime behavior can

be a good indicator of the dependence, the cost of compilations

and executions remains a heavy burden. We suggest that, without

actually running the test for artificially changed programs, we can

extract the observations from the program’s development history

with the result of the regression test. Mining the observations from

history, rather than generating them, would significantly reduce

the cost of compilations and executions.

Finally, wewill investigatewhethermerging static and observation-
based approach can increase the scalability of the program depen-

dence analysis. When static dependence analysis builds a depen-

dency graph, it may not know the existence of some of the edges due

to the limitation of the static analysis. Instead of drawing the edges

for safe analysis, we will discover their existence by modeling the

dependencies with the observation-based approach. Focusing on

what each approach performs well, the whole program dependence

analysis may become scalable.

3 PROPOSED RESEARCH AND

PRELIMINARY RESULTS

The planned thesis will consist of four parts. The first [17] and the

second [16] part have already been published; there are ongoing

collaborations for the third and the fourth part.

3.1 Evaluating lexical approximation of

program dependence

Wefirst try the lexical analysis as a way to approximate the program

dependence. The main claim here is that the lexical similarity be-

tween the source code lines may be a good proxy for the functional

similarity [20]. Developers often name an identifier or a method us-

ing words that are associated with the functionality it implements.

In addition, a lexical analysis preserves the language-agnostic na-

ture, as the observation-based approach does.

We use two methods to analyze the source code lexically. The

first method is the Vector Space Model (VSM), which has been used

in Information Retrieval (IR) to calculate the distances between a

collection of text documents and a query [21]. The second method

is Latent Dirichlet Allocation (LDA), which models a collection of

documents using two probability distributions: each document is

represented as a probability distribution of topics where each topic

is a probability distribution over the words in the vocabulary [6].

These two lexical models represent each code line as a numerical

vector. The similarity between the code lines is computed by the

cosine similarity between the corresponding numerical vectors.

We evaluate the performance of whether a lexical analysis can

approximate the program dependence with its application of pro-

gram slicing. The original ORBS uses a bounded deletion window

operator that iteratively attempts to delete a few consecutive lines

together (we call the operator “window-deletion” and the original

ORBS “W-ORBS” ). Assuming that we know several code lines func-

tionally related to each other, if one of the lines can be deleted from

the slice, we may safely delete other lines. Hence, we develop two

lexical deletion operators that try to delete a set of lines, whose

similarities between them are above a certain threshold, together.

We name each of the lexical deletion operator as vsm-deletion and

lda-deletion according to which lexical model it uses. If the lexical

model could approximate the functionality well, the lexical deletion

operator would delete a large number of lines together, which will

increase the efficiency of the slicing.

We compare VSM- and LDA- to W-ORBS on 24 slicing criteria

from six C programs in Siemens suite [12] and three real-world

open source Java project: commons-cli, commons-csv from Apache

Commons Project, and guava. The result shows that, while the

lexical deletion operator deletes fewer lines, it uses significantly

fewer compilations and executions, reducing wall clock time. The

lexical deletion operators using either the lexical model are highly

attractive in terms of their per-deleted-line efficiency.

A small and efficient deletion by the lexical deletion operators

shows that the lexical analysis could approximate the partial de-

pendence of the program. The result motivates us to apply lexical

deletion operators, which efficiently perform in certain parts of

the program, together with the window-deletion, which generally

performs in detail, to achieve both efficiency and effectiveness. To

study the range of possibilities, we introduce MOBS:Multi-operator

Observational Slicing, which selectively applies multiple deletion

operators while slicing concerning the probability distribution over

the deletion operators [17]. Based on the experiment result per-

formed on the same slicing criteria with above, MOBS could be

both effective and efficient, being capable of deleting an average

of 69% of the number of lines deleted by W-ORBS, while requiring

only 36% of wall clock execution time required by W-ORBS.

Through the research, we show that lexical analysis could ap-

proximate the partial dependence of the program. The result of

VSM-, LDA-ORBS, and MOAD demonstrates that we could increase

the scalability of the program dependence analysis via approximate

dependence information.

3.2 Learning approximate dependence from

partial observations

While ORBS generates the 1-minimal slice [5] with no false positive,

all the compilations and executions spent are only used to figure out

the dependency relation for a single slicing criterion, and cannot

be reused. Thus, it takes a huge amount of effort to analyze the

dependency relation on multiple program elements. Hence, rather

than focusing on generating an exact slice for a single program

element, we investigate approximate dependence analysis on the

entire program by learning from partial observations.

Our technique, called MOAD (Modeling Observation-based Ap-

proximate Dependence) [16], reformulates program dependence

as the likelihood that one program element is dependent on an-

other, instead of the classical Boolean relationship.MOADgenerates

various partial programs by deleting program elements from the

original program. Running each of the partial programs with its

test cases, MOAD observes the impact of the deletions on various

program points. From the observations, MOAD infers a program

dependence model that explains the dependency relation between

the modification point and the observation point.

In detail, for an input program, MOAD indexes the program

elements (e.g., statements) as candidates for the deletion. Partially

deleted programs are constructed by deleting one or more program

elements. We made two deletion schema, 1-hot and 2-hot, that

generates a set of modified programs. 1-hot deletes every program
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element one at a time. In addition to what 1-hot deleted, 2-hot also

deletes every pair of the program elements. All variables in every

position in the program become the observation points of MOAD.

While running the modified programs, MOAD records whether

each of the variable shows the same behavior with the original

program or not, and saves the data for training the dependency

model.

We introduce three different inference models for program de-

pendence. Once Success model determines that the variable is in-

dependent of the deleted program element if the behavior of the

variable preserved at least once in the training data. The second

inference model, Logistic, trains a logistic regression model using

the deletion of each program element as the dependent variable and

the behavior of the variable as the independent variable. Then, each

learned coefficient represents the relative impact of the program

element on the variable. The model infers the dependence with

the sign of the coefficient. The third inference model is Bayesian

model. The probability of a variable behaves the same under the

condition of specific program elements that have been deleted in-

dicates how the variable is independent of the program element.

The model estimates the probability with the frequency of such

behavior preservation, and infers the dependence by whether the

probability is less than the average over all program elements.

We evaluate MOAD by its application to program slicing. We

investigate the number of observations needed, the size of the slices,

and the difference of the slices compared to ORBS slice over ten C

programs, which are widely used on program slicing study.

In terms of efficiency, the result shows that the 1-hot scheme

requires multiple orders of magnitude fewer observations compared

to what ORBS needed. Also, the 2-hot scheme uses less than 20%

of observations compared to ORBS. While the cost significantly

reduced by MOAD, the size of the slices generated by MOAD is 45%

larger than ORBS’s slice, on average. Among three inferencemodels,

the best result is shown by the Once Success model; on average,

the size of the slice using 2-hot scheme data is only 16% larger than

the ORBS’s slice. Further analysis has shown that the Once Success

model generates not only the smallest slice but also the most similar

slice considering the number of missed or excessively deleted lines

compared to ORBS’s slice.

Through the research, we show that, the dependency relation in

the program could be approximated through learning the statistical

model using the subset of the observations.

3.3 Observing information from the history

The fundamental principle of the observation-based approach is

that we can model the program dependence using the information

of the change of the program and the corresponding behavioral

change. Our previous two research focus on the dependence anal-

ysis on the program of the present. To do so, we need to make

various artificial changes to the program and observe the effects.

Every observation of artificial changes needs a compilation and an

execution; hence, it burdens the observation-based approach.

We propose that, instead of compiling and executing the changed

program of the present, we can observe the behavioral difference

from the change of the result of the regression testing performed

during the development process. Here, every intermediate version

of the program in the development history becomes an observation

candidate, and every change between two consecutive program

versions becomes a cause of the behavioral difference. If, after a

change, there is a test whose result is different from what it was

before, it indicates that the code under the test depends on what just

have changed. Gathered observations from the regression testing

can be used to approximate the program dependence.

Using the intermediate version of the program as an observation

candidate gives an advantage in terms of efficiency. The artificial

changes, such as deleting a random code line or statement made

by ORBS, ignore the syntax of the program. Thus, most of them

produce a compilation error or a runtime error, which leads to a

waste of effort. In contrast, the intermediate version of the program

in the development history is usually required to be compilable and

executable before it pushed to the repository.

There are some issues to be considered when using the infor-

mation of the development history for dependence analysis. First,

we need a test case that covers the change of the source code to

observe its effect. In case of a bug fix, the test case that reveals the

bug covers the fix. Existing test cases may not cover the change

that adds a new feature to the program immediately. If the test case

that covers the new feature is introduced later in the development

history, we may use it. If there is no such test case, we may use an

automated test case generation technique to generate the test case

that covers the new feature.

It is a well-known problem that the huge or tangled code change

can debase the code review system. Similarly, a huge and tangled

code change creates another issue that makes it difficult to figure

out which part of the change causes the observed difference of the

program behavior. We may use existing untangling code change

techniques [8] to split the code change by the purpose. the effect of

each of the split changes can be observed through running the test

regarding them as consecutive individual changes.

While using the result of the regression testing reduces the cost

of compilation and execution, it also restricts the observation to

the pass and failure of the regression test. If there are not enough

observations due to the restriction, we may use an automated test

case generation technique to create and execute the necessary test

case, and fill in the insufficient observation.

3.4 Merging static and observation-based

approach

Although static analysis can analyze the large-scale source code

without the program compilation and execution, it cannot be ap-

plied (or have large false positives) if the source code is inaccessible

or the semantic is unknown, in case of another programming lan-

guage. The observation-based approach resolves this by verifying

dependencies only through the observation of run-time informa-

tion without static modeling. We propose to combine these two

complementary approaches to create a dependence model.

As a related work, ‘dynamic’ slicing is a concept introduced by

Korel and Laski [15]. It slices the program while preserving the

behavior on a subset of inputs. While the original work suggests

several algorithms to compute dynamic slices, the majority of the

subsequent work on dynamic slicing ‘defines’ dynamic slicing based

on the algorithms [1, 7]. To the author’s knowledge, although many
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approaches exist [2, 3, 19, 22], all approaches are not capable of

slicing multi-lingual programs or systems with third-party libraries.

Given the source code, our proposed technique would identify

the program point, which we call a hidden point, where the depen-

dency modeling is unavailable for static analysis, such as calling a

method in an external library. For each variable used in a hidden

point, we use ORBS to generate the backward slice. The statements

inside the backward slices are the statements that affect the variable;

thus, they might also affect the hidden point. To observe the effect

of the hidden point, we apply MOAD, specifically for the hidden

point. Every partial observation made byMOADwill at least modify

the hidden point, which reveals which statements are not affected

by the hidden point. The information of the forward and backward

dependencies of the hidden points complete the dependence model

by filling in the gaps in the dependence model of static analysis.

We propose three steps to evaluate our technique. First, we select

a few points in the program with the ground truth dependency.

Regarding them as hidden points, we perform an observation-based

approach to figure out how well it can identify the dependency for

a specific point in the program. Then, we merge the information

from the observation-based approach and the dependence graph

from the static analysis to generate the overall dependence model

of the program and compare it with the ground truth. After the

verification of the technique for the known program, we will apply

to the real-world open-source program for empirical evaluation.

4 TIMELINE FOR COMPLETION

We expect to complete the proposed work within two years. During

the first year, we will focus on searching the software development

data used for observation. We will target an open-source repository

that 1) has been developed in the long-term, and also 2) has a

regression test. Once we find several candidate repositories, we

will extract the observation, and do the initial program dependence

analysis. If it is required, wewill perform an untangling code change

technique on tangled code changes. Based on the initial result, we

will further discuss whether any additional observation is needed.

The second year will be spent merging static and observation-

based approach. We will first concentrate on selecting the bench-

mark program and the static analysis tool to cooperate with. Then,

the main issue of the development is to figure out which form of

dependency relation could two analysis compatible with. We will

apply the merged analysis on the benchmark, and discuss the result.

5 ANTICIPATED CONTRIBUTIONS

We propose a scalable approximate program dependence analysis.

We investigate various approaches that can significantly increase

the scalability, while they may approximate the dependence. Our

research will enables dependence analysis on large and complex

software, which existing program dependence analysis is incapable

of. Since the dependence analysis serves as the cornerstone of other

software engineering tasks, our research may broaden the appli-

cability of program comprehesion, software testing, maintenance,

refactoring, security, and debugging.

Our research also aims to achieve a breakthrough in the program

dependence analysis itself. Representing the program dependence

with the likelihood makes it possible to order the program elements

considering the relative dependence on another program element.

This will allow prioritizing the program elements for other software

techniques that need to select program elements considering the

dependencies, such as software debugging or automated program

repair; hence, it will enhance the efficiency of the techniques.
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