
The Journal of Systems & Software 179 (2021) 110988

a

b

c

d

f
B
g
a
(
a
(
p
b
l
b
l
w

(
s

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Observation-based approximate dependencymodeling and its use for
program slicing✩

Seongmin Lee a,∗, David Binkley b, Robert Feldt c, Nicolas Gold d, Shin Yoo a

KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
Loyola University Baltimore, 4501 North Charles Street, Baltimore, MD 21210, USA
Chalmers University of Technology, Chalmersplatsen 4, 412 96 Göteborg, Sweden
University College London, Gower St, London WC1E 6BT, UK

a r t i c l e i n f o

Article history:
Received 24 September 2020
Received in revised form 15 March 2021
Accepted 30 April 2021
Available online 3 May 2021

Keywords:
Dependency analysis
Program slicing
Model learning
MOAD

a b s t r a c t

While dependency analysis is foundational to much program analysis, many techniques have limited
scalability and handle only monolingual systems. We present a novel dependency analysis technique
that aims to approximate program dependency from a relatively small number of perturbed executions.
Our technique, MOAD (Modeling Observation-based Approximate Dependency), reformulates program
dependency as the likelihood that one program element is dependent on another (instead of a
Boolean relationship). MOAD generates program variants by deleting parts of the source code and
executing them while observing the impact. MOAD thus infers a model of program dependency that
captures the relationship between the modification and observation points. We evaluate MOAD using
program slices obtained from the resulting probabilistic dependency models. Compared to the existing
observation-based backward slicing technique, ORBS, MOAD requires only 18.6% of the observations,
while the resulting slices are only 12% larger on average. Furthermore, we introduce the notion of the
observation-based forward slices. Unlike ORBS, which inherently computes backward slices, MOAD’s
model’s dependences can be traversed in either direction allowing us to easily compute forward slices.
In comparison to the static forward slice, MOAD only misses deleting 0–6 lines (median 0), while
excessively deleting 0–37 lines (median 8) from the slice.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Understanding dependency between program elements is a
undamental task in software engineering (Livadas and Roy, 1992;
aah et al., 2010). It provides a basis for many software en-
ineering tasks including program comprehension (Zhifeng Yu
nd Rajlich, 2001), software testing (Binkley, 1997), maintenance
Gallagher, 1989; Hajnal and Forgács, 2012), refactoring (Ettinger
nd Verbaere, 2004), security (Karim et al., 2019), and debugging
Jiang et al., 2017). The traditional static approach based on de-
endence graphs (Horwitz et al., 1990) has been widely adopted
ut suffers from issues such as its inability to easily handle multi-
ingual systems (combining analyses for multiple languages can
e quite complex) and limited scalability (partial analysis of a
arge system is not viable using static approaches that require
hole-program analyses).

✩ Editor: Gabriele Bavota.
∗ Corresponding author.

E-mail addresses: bohrok@kaist.ac.kr (S. Lee), binkley@cs.loyola.edu
D. Binkley), robert.feldt@chalmers.se (R. Feldt), n.gold@ucl.ac.uk (N. Gold),
hin.yoo@kaist.ac.kr (S. Yoo).
ttps://doi.org/10.1016/j.jss.2021.110988
164-1212/© 2021 Elsevier Inc. All rights reserved.
Observation Based Slicing (ORBS) (Binkley et al., 2014, 2015;
Gold et al., 2017; Binkley et al., 2019) was designed to overcome
these issues. ORBS applies speculative deletions iteratively to the
program under analysis, and observes whether the latest applied
deletion is viable (i.e., the code compiles after deletion) and
is unrelated to the slicing criteria (i.e., the variable of interest
shows the same behavior after deletion with respect to a test
suite). When deletions are made at the line-of-text level, ORBS
is entirely language agnostic (Binkley et al., 2014; Gold et al.,
2017; Binkley et al., 2019; Lee et al., 2020) and can analyze
files for which the grammar is unavailable/unknown, and analyze
languages with unconventional semantics such as Picture De-
scription Languages (PDLs) (Yoo et al., 2017). Despite its benefits
along with a lightweight implementation it needs, ORBS has one
clear drawback: the cost of analysis. Being a purely dynamic ap-
proach, it iteratively attempts to validate its speculative deletion
of every program element via compilations and test executions.
As such, it can incur significant cost.

This paper investigates the feasibility of approximate depen-
dency analysis at a greatly reduced cost. A precise dependency
analysis aims to report whether program element A depends on
program element B or not: the outcome is Boolean. An approx-

imate dependency analysis instead reports the likelihood that A

https://doi.org/10.1016/j.jss.2021.110988
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.110988&domain=pdf
mailto:bohrok@kaist.ac.kr
mailto:binkley@cs.loyola.edu
mailto:robert.feldt@chalmers.se
mailto:n.gold@ucl.ac.uk
mailto:shin.yoo@kaist.ac.kr
https://doi.org/10.1016/j.jss.2021.110988

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

d
p
b
w
t
b
p

t
l
d
s
b
o
s
m
a
i
l
f

d
h
v
o
b
B
t
d
s
O
i
a

n
s
F
p
c
s
d
s
s
p
u
b
a
p
a
e
f

f

t
e
S
a
s
S
o
o
r

2

t
v
r
b
p

d
o
a
t
r
b
m
e
m

a
t
m
t
t
A
e

d
s
i
r
a
G
s
t
a

a
a
m

t
p

epends on B: the outcome is a real number. While probabilistic
rogram dependency analysis techniques have been proposed
efore (Baah et al., 2010) they require an initial static analysis
hich is then extended with probabilistic information based on
est executions. We conjecture that a more general analysis,
ased solely on dynamic observations can still be useful in many
rogram analysis contexts while being significantly less costly.
The approximate nature of our approach stems from the fact

hat it infers a stochastic model of program dependences. Un-
ike ORBS which performs iterative deletions to analyze program
ependency with respect to a single program element (i.e., the
licing criterion), our technique, MOAD (Modeling Observation-
ased Approximate Dependency), learns an approximate model
f program dependence from significantly fewer dynamic ob-
ervations. Intuitively, ORBS makes a single slice increasingly
ore accurate by iterative deletion. In contrast, MOAD employs
set of deletions that can be treated independently. For each,

t observes multiple program elements and can thus, ultimately,
earn more from each execution. This approach introduces the
ollowing benefits:

• MOAD requires many fewer observations than ORBS, as it in-
fers the relationships between individual deletions and thus
the dependency, instead of uncovering dependence informa-
tion by iteratively deleting until it arrives at a one-minimal
slice (Binkley et al., 2014).
• The output of MOAD can be used to construct multiple

backward and forward slices, whereas a single ORBS run
produces a single backward slice.
• Moreover, since the observations required by MOAD are

independent from each other, MOAD is inherently parallel.

To evaluate MOAD, we have implemented it and performed
ependency analysis against a benchmark suite of programs that
ave been widely used in the slicing literature. We evaluate the
iability and the accuracy of MOAD by producing slices based
n the MOAD produced model: program element A is in the
ackward slice of program element B iff the reported likelihood of
depending on A is greater than a threshold value. A comparison

o a baseline random slicing technique shows that MOAD is in-
eed learning program dependences; a comparison to ORBS slices
hows that MOAD can produce slices that are only 16% larger than
RBS slices, while using only 18.7% of the observations. We also
nvestigate various ways to construct the observation sets, as well
s the impact of different inference models.
In earlier work (Lee et al., 2019) we presented the basic tech-

ique and empirically evaluated its use for producing backward
lices. This paper extends our previous work in three main ways.
irst, we provide a more extensive comparison of backward slices
roduced by MOAD and those produced by ORBS. Secondly, we
ompare MOAD-based forward slices to those of the CodeSurfer
tatic analysis tool from Grammatech Inc. (2002). Finally, we also
escribe our framework in more depth and provide more exten-
ive experiments to show the relative merits of different deletion
chemes as well as inference models when inferring MOAD de-
endency models. Taken together this extends the use of the
nderlying modeling technique and provides a richer explanation
oth of its benefits as well as clarifying its limitations. As hinted
t in Section 2, our study of slicing only scratches the surface. Our
robabilistic dependency modeling is far more general. It can be
pplied to a wide range of problems such as Fault Diagnosis (Baah
t al., 2010). However, we leave these additional use cases to
uture work and focus here on slicing as a representative example.

To summarize, the technical contributions of this paper are as
ollows:
2

• We introduce the concept of learning approximate depen-
dency analysis, which transforms the dependency relation-
ship from Boolean to probabilistic.
• We present MOAD, a technique that models approximate

program dependency, and describe its essential steps: how
to generate observations and how to infer models from the
observations.
• We conduct an empirical evaluation of MOAD via backward

program slices instantiated from the learned models.
• We show how to instantiate forward program slices from

the models learned by MOAD and empirically compare these
slices to those of a static analysis tool.

The rest of this paper is organized as follows. Section 2 in-
roduces the concept of approximate dependency analysis, and
xplains how it relates to the existing slicing technique ORBS.
ection 3 introduces MOAD, a technique that aims to model
pproximate dependency, and how we can use it for slicing by in-
tantiating program slices from the learned dependency models.
ection 4 presents the set-up of empirical evaluation, the results
f which are reported in Section 5. Section 6 contains discussions
f our findings and potential future work. Section 7 presents the
elated work, and Section 8 concludes.

. Approximating program dependency

Program dependency is dependence relations that hold be-
ween elements of a program (e.g., statements, expressions, or
ariables). If the computation of an element a directly or indi-
ectly affects the computation of another element, b, we consider
to be dependent on a. A plethora of techniques have been
roposed to capture and model dependence information.
Often these techniques are static and require parsing and

etailed analysis of program elements based on the semantics
f the programming language in question. The outcome of the
nalysis typically captures a binary dependence relation where
wo program elements either may or may not have a dependence
elation. While dynamic dependence analysis approaches have
een proposed, they typically annotate an already extracted static
odel with probabilities based on concrete executions (Baah
t al., 2010) (static-then-annotate) or do not build any explicit
odel at all (Binkley et al., 2014).
One downside of the static and static-then-annotate

pproaches is that they cannot easily handle heterogeneous sys-
ems, some of whose components are either binary, or written in
ultiple languages and file formats. Even if it is possible in theory

o combine analyses of multiple languages and formats, concrete
ools actually support only a fixed, and typically small, selection.
n additional practical problem is that they need to duplicate the
arly stages of multiple compiler tool chains.
Observation-based slicing (Binkley et al., 2014) (ORBS) ad-

resses these problems and allows language-agnostic dynamic
licing without detailed semantic knowledge, by reusing the ex-
sting build chain. An implementation of ORBS is also trivial and
equires very few lines of code. However, ORBS does not learn
general model of the program components and their relations.
iven a target slicing criterion, it simply creates a single backward
lice through iterative build and execute cycles. The process has
o be repeated if another slicing criterion is selected for analysis,
s, for example, typically happens in fault diagnosis or debugging.
If we consider the notion of a ‘‘perfect’’ dependence model that

ccurately captures the dependences in the program, a learning
pproach can be seen as aiming to approximate that perfect
odel as closely as possible for minimal effort in construction.
Classical ORBS (Binkley et al., 2014) could be seen as a learning

echnique: in effect, it starts from a perspective of ‘‘total de-
endency’’ assuming that everything is dependent on everything

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

e
a
t
i
d
c
p
i
t

m
o
m
n
c
h
S
e
f
b
s
F
e
p
a
e

p
s
p
t

t
w
c
d
‘
o
a
m
t
t
s
l
e
i
t
w
t
s

i
p
c
o
m
i
p

3
d

s
p
a

t
w
I
p
s

3

a

T
u
o
d
w
c
c

c
a
i
t
t
t

lse (like a dependence cluster (Binkley and Harman, 2005)) and
ttempts to discover and learn total independence (w.r.t. the cri-
erion) through deletion and execution by permanently removing
ndependent elements. However, learned dependence/indepen-
ence is not explicitly modeled separately from the code (the
ode state itself represents the current ‘‘understanding’’ of de-
endence at any given point in the process — information about
ndependent program elements is lost during the process since
hey no longer exist).

This paper proposes a middle ground that leverages the mini-
al requirements, general applicability, and easy implementation
f lightweight dynamic analysis techniques such as ORBS, while
odeling dependence relations explicitly and approximately. By
ot requiring any detailed syntactic or semantic knowledge of the
omponents or programming languages involved, we can support
eterogeneous systems with a very general approach and tool.
ince our model building is based on a few, specific, dynamic
xecutions it can only approximate the complete dependency in-
ormation. However, explicitly building such probabilistic models
rings potential advantage over model-free, dynamic approaches
uch as ORBS, which do not learn anything between invocations.
or one, we can learn about multiple dependences for each ex-
cution. We can also use one and the same model for multiple
rogram analysis tasks. We posit that there exists an interesting
nd complementary trade-off between what we propose and
xisting program analysis methods.
Conceptually, the shift from traditional, precise program de-

endency models to approximate dependence modeling might
eem large. However, we argue that this is mainly a matter of
erspective because which technique is a better fit depends on
he specific analysis task at hand.

In a precise analysis the outcome is a binary relation stating
hat a program element (B) depends on another (A). However,
hen we consider the full space of inputs of the program there
an be a subset of inputs for which the value at B does not
epend on A. The precise analysis thus answers the question
‘Is program element B, for at least one actual input, dependent
n program element A?’’ In contrast, an approximate analysis
nswers the question ‘‘What is the probability that program ele-
ent B is affected by program element A?’’ To the latter question

he precise analysis can only give an approximate answer. The
echnique we propose here also gives an approximate answer,
ince it samples only a subset of inputs and is typically not
earning an optimal model. However, the approximation can be
xpected to improve with additional observations and with better
nference algorithms. Which question and which approximation
o it is preferable depends on the downstream analysis task to
hich the model will be applied, and also on the semantics of
he code being analyzed as well as the complexity of the input
pace.
While the idea of approximate program dependency modeling

s a general one, we focus below on an instantiation that targets
rogram slicing. This allows us to study the potential benefits
ompared to a well-known and general technique. In the context
f the above model-view discussion, slicing is one view of the
odel, with a particular direction of dependence ascribed to

t. Thus in the following we consider MOAD in the context of
rogram slicing.

. MOAD: Modeling observation-based approximate depen-
ency

This section first overviews the key terminology used to de-
cribe MOAD, before describing its two phases: the observation
hase and the inference phase. The output of the first phase is
set of observations. These observations form the input to the
3

inference phase, which builds an inference model M that aims
o capture the dependence within the program. As a case study,
e illustrate M by inferring program slices (Weiser, 1979, 1984).

n the next section we compare the inferred slices with those
roduced using ORBS (Binkley et al., 2014, 2015) and the static
lices produced by Codesurfer (Grammatech Inc., 2002).

.1. Terminology

Our approach is dynamic in nature and thus, in addition to
program, P , it takes a set of test inputs, I . We identify within

P a set of deletable units U = {u1, . . . , u|U |}. For example, U
might be composed of lines of text (Line 1, Line 2, . . . , Line
n), program statements (assign-statement, if-statement, etc.), or
blocks of code (a whole method or a class, etc.) within a program.
We subsequently create sub-programs of P by deleting one or
more units from P . To support the inference process, we represent
a sub-program as a boolean vector, called deletion, which has one
entry for each unit. In this vector deleted units are assigned the
value True and retained units are assigned the value False.

Program slicing (Weiser, 1979, 1984) produces a subset of a
program that relates to the value that a specific variable at a
specific location, what we call a slicing criterion, has. There are
two types of program slices: a backward slice consists of program
elements that affect the value in the criterion, and a forward slice
consists of program elements that are affected by the value in the
criterion.

Borrowing the notion from program slicing, we assess the
impact of deleting various units at a set of (slicing) criteria, C =
{c1, . . . , c|C |}. Each criterion ci includes a program location (e.g., a
line number) and a variable of interest (e.g., the variable updated
by an assignment statement). To determine the impact of delet-
ing a given unit, we observe the sequence of values (trajectory)
produced by each criterion. To do this, we implement the original
program to output the value in the criteria by annotating printing
scripts after each criterion, similar to ORBS (Binkley et al., 2014).
The result is a boolean vector, called response, that has one entry
per criterion. The entry ci has the value True iff the sequence
of values produced for ci is unaffected by the deletion (with
respect to the sequence produced by the original program). The
key assumption here is that, if the deletion of unit ua brings about
a change in the trajectory for criterion cb, then the criterion cb
likely depends on (some part of) unit ua.

3.2. Observation phase

The core of the first phase is a deletion generation scheme,
which generates the set of deletions used to produce program
mutants. Our experiments consider the two n-hot deletion
schemes: 1-hot and 2-hot. The first, 1-hot generates |U | deletions
where each deletion removes exactly one unit. In other words,
it generates all of the one-hot encoding vectors of length |U |.
he second, 2-hot subsumes 1-hot; it considers both all single
nits and all pairs of units. The relation between the number
f observations in 1-hot and 2-hot is, assuming there are n
eletable units in the program, 1-hot requires O(n) observations,
hile 2-hot requires O(n2) observations. (Because 2-hot involves
onsiderably more deletions than 1-hot, in Section 5.5 we also
onsider the impact of sampling the 2-hot data.)
Algorithm 1 describes the observation phase. Its input in-

ludes, P , the program under study, I , the input test suite, and
deletion generation scheme, GenScheme. The algorithm first

nitializes the output observation set, O, to the empty set, E to
he expected output sequence for each criterion (collected from
he execution of P and I), and the set of deletions generated using
he given scheme. Subsequently, Lines 4–9 process each deletion

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

s
p

d
r

d
f
c

t

Algorithm 1: Observation phase
input : P: an annotated version of the input program

I: test suite
GenScheme: deletion generation scheme (1-hot,

2-hot)
output: O: a set of observations

1 O← {}
2 E ← Observe (P, I) // retain expected output
3 deletions← GenScheme (P)
4 while ¬deletions.Empty () do
5 deletion← deletions.Remove ()
6 P ′ ← Apply (P, deletion)
7 X ← Observe

(
P ′, I

)
8 response← Compare (E, X)
9 O← O ∪ {(deletion, response)}

10 return O

by first using the function Apply to generate sub-program P ′
composed of only the non-deleted units (omitting those units
whose value in deletion is True). Next, function Observe executes
P ′ using set of inputs I to produce the trajectories for each
criterion as produced by the annotations in P . The final step
compares the expected output E with the output of P ′, to produce
the result vector response. Note that P ′ may fail to compile in
which case its outputs will fail to match the expected output. The
response is paired with the deletion and recorded in the set of
observations to be returned by the algorithm. For readers familiar
with ORBS, the main difference between Algorithm 1 and ORBS is
that while ORBS is a cumulative process to produce a backward
slice for a single slicing criterion, each observation in Algorithm
1 is independent, thus they can be done in parallel.

To illustrate Algorithm 1, consider a program P with three
statements S1, S2, S3, and two criteria C1 and C2 using the 1-
hot generation scheme on the statement level units. With three
statements, 1-hot produces the three deletions {True, False,
False}, {False, True, False}, and {False, False, True}. Applying
the first deletion to P produces the two-statement program
S2; S3, which is then observed (compiled and executed using
input I). It produces a response vector of two boolean values,
where each of them represents whether the trajectory of the
corresponding criterion is preserved or not. The tuple of the
deletion and the response becomes a single observation. This
process is then repeated for each of the other deletions and
resulting two-statement programs.

3.3. Inference phase

The inference phase, described in Algorithm 2, infers the back-
ward slices for a set of criterion. The algorithm uses the set of
observations, O, (output by the first phase) to build an inference
model, M : C → D = Boolean|U |, where D is the set of possible
deletions. Then, for each slicing criterion, M is used to infer a
et of deletions, which, when applied to the original program,
roduce a backward slice.
The key assumption made in the inference process is that if

eleting the unit um changes the trajectory of the slicing crite-
ion ck, then um is likely to be in the backward slice of ck. We
call this assumption a ‘‘trajectory change assumption’’. While this
connection is straightforward, this data tends to overestimate
deletability for the 1-hot data. For example, when either of two
statements can be deleted, but not both (Binkley et al., 2014),
1-hot data cannot provide the failing situation when both are
deleted misleading the model to generate an invalid slice. In
4

Algorithm 2: Inference phase
input : P: an input program

C: a set of slicing criteria
O: a set of observations
dsg_mdl: a design of model (one of O,L,B)

output: IS: set of inferred slices; one for each slicing
criterion ck ∈ C

1 M ← dsg_mdl.Build (O)
2 IS ← {}
3 for ck ∈ C do
4 deletion← M (ck)
5 Pk ← Apply (P, deletion)
6 IS ← IS ∪ {Pk}
7 return IS

contrast, for n-hot with n > 1, it is possible that not all of the
eleted units influence ck. In this study, we designed three dif-
erent inference models (dsg_mdl) that instantiate the trajectory
hange assumption: Once Success (O), Logistic (L), and Bayesian
(B). We describe each of the models in following sections in
detail.

The inference step is also necessarily constrained by the reso-
lution of the observations. For example, if the granularity of the
unit is a function-level, it is infeasible for MOAD to remove a
statement that is independent from the criteria if another state-
ment in the same function affects the criteria from the slice. The
observations described in Section 3.2 identify the criteria that are
potentially influenced by each deletable unit. Note that all of the
criteria are part of a deletable unit, but some deletable units (e.g.,
the break statement in C) include no criteria.

The asymmetry between the granularity of the deletion and
the granularity of the criterion of the observation impacts the
slices that MOAD can produce. When computing a backward slice,
the possible slicing criteria match the criteria used in the obser-
vations, and the slices are composed of the deletable units from
the observations. However, when we consider forward slicing
in Section 5.6, these two are reversed. Thus when computing a
forward slice MOAD can accept as a slicing criteria any deletable
unit, but it outputs as the slice a subset of the criteria from
the Observation Phase. Because this inversion can be a source
of confusion, when we compare the forward slices generated by
MOAD to those from other slicers, we consider the lines of text
involved in the criteria and in the deletable units (statements).

The remainder of this subsection details three different infer-
ence models studied in the next section. As a notational conve-
nience, hereafter we use ‘‘0’’ and ‘‘1’’ to denote ‘‘False’’ and True’’,
respectively.

3.3.1. Once success (O)
The Once Success model explicitly follows the aforementioned

assumption (that if deleting the unit um changes the trajectory of
he slicing criterion ck, then um is likely to be in the backward
slice of ck). Assume subprogram P ′ is obtained from program
P by removing deletion unit um. If P ′ preserves the trajectory
of the slicing criterion ck, the model removes um from the slice
of ck. More formally, the Once Success model, MO, built with
observations O, infers the slice of ck as follows:

MO (ck) [m] =
{
1, if ∃ (d, r) ∈ O s.t. d [m] = 1 and r [k] = 1
0, otherwise

where d [m] represents the mth element of deletion vector s
and r [k] represents the kth element of response vector r . Thus,
d [m] = 1 and r [k] = 1 represents that unit m has been deleted

and the response for criterion k is unchanged.

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

3

a
g
h
b
d
i
n
w

s
t

b
f

P

w
c
d
o
i
t

M

w
p

3

f
f
p
i
c

a
c
l
f
O
i
b
t
o
r

t
o
f
s
b
a
o
c
n

s
i
e
a
r
t
d

4

4

q
i
e
e
e
F
M
R
d
t
o
t
s
a
r
a
o
t
R
t
a
o
R

.3.2. Logistic (L)
Our second model, ‘‘Logistic’’, statistically implements our

ssumption by performing a logistic regression. In logistic re-
ression, the coefficient represents how an independent variable
elps make the dependent variable True (1) or False (0). To
e more specific, if the sign of the coefficient is positive, the
ependent variable has a higher chance of being true when the
ndependent variable increases. Conversely, if the coefficient is
egative, the dependent variable has a lower chance to be true
hen the independent variable increases (Szumilas, 2010).
The Logistic model regards the response element, r [k] (for

licing criterion ck) as a dependent variable and the elements of
he deletion, d, as the independent variables.

r [k] ≈ L(d, βk),

The elements of βk represent the regression coefficients, and
we interpret their signs to decide whether each unit should be in
the slice or not. If βk[m], the mth coefficient of βk, has a positive
value, it means that when we deleted um, it gave, on average,
a higher chance to change the trajectory. On the other hand,
if we delete a unit that does not affect the criterion, then the
probability of trajectory change can only and will, on average, go
down. Thus, the corresponding coefficient will be negative. Notice
that, for the same reason, units that have a considerably smaller
effect on the criterion compared to other affecting units could
also have a negative coefficient. For simplicity, we use zero as
the threshold for coefficients and decide to include elements with
positive coefficients while excluding those with zero or negative
coefficients. Future work could optimize the threshold value or
even sample slices based on the sign and size of the coefficients.
More formally, ML, the Logistic model, infers the deletion vector
for the slice taken with respect to ck as follows:

ML (ck) [m] =
{
0, if βk [m] ≤ 0
1, if βk [m] > 0.

3.3.3. Bayesian (B)
The final model we consider uses Bayesian inference. While

the Once Success model strictly reflects the trajectory change as-
sumption, it may overestimate the independence as we described
before. In the Bayesian model, we represent the dependence in
the conditional probability and generate a slice by applying a cer-
tain threshold. We assume that P(ck|um) denotes the conditional
probability of preserving the trajectory of ck when the unit um has
een deleted. From the observations, O, we estimate P̂(ck|um) as
ollows:

(ck|um) = P(preserves trajectory of ck|um has been deleted)
= P(r [k] = 1|d [m] = 1)

=
P(r [k] = 1, d [m] = 1)

P(d [m] = 1)

P̂(ck|um) =
#(r [k] = 1 and d [m] = 1)/|O|

#(d [m] = 1)/|O|

=
#(r [k] = 1 and d [m] = 1)

#(d [m] = 1)
,

here #(cond) is a number of observations in O satisfying the
ondition cond. There would be a difference in how much it
epends on other units for each criterion. Thus, use an average
f the conditional probability for each criterion as a threshold
nstead of a fixed value. Formally, MB, the Bayesian model, infers
he slice of ck as follows:

B (ck) [m] =

{
0, if P̂(ck|um) ≤ µi∈{1..|U |}(P̂(ck|ui))
1, if P̂(ck|um) > µi∈{1..|U |}(P̂(ck|ui)),

here µi∈{1..|U |}(P̂(ck|ui)) is an average value of the estimated
robability.
 m

5

.4. Observation-based forward slicing

An important advantage that MOAD has over ORBS, apart
rom the improved efficiency, is that it enables observation based
orward slicing. In contrast to backward slicing, which aims to find
rogram elements that affect the slicing criterion, forward slicing
dentifies all program elements that are affected by the slicing
riterion (Horwitz et al., 1990).
Given a Program Dependence Graph (PDG), both backward

nd forward slicing can be thought of as finding the transitive
losure of the program dependence: the transitive closure fol-
owing dependence direction is the forward slice, while the one
ollowing the reverse dependence direction is the backward slice.
RBS approximates the backward slice by iteratively attempt-
ng to delete program elements. The iterative approach works
ecause, essentially, all dependence converges to the slicing cri-
erion when performing backward slicing: it suffices to observe
nly the slicing criterion, as the impact of any deletion that is
elevant to the backward slice will be observed at the criterion.

ORBS, however, cannot easily compute forward slices. In con-
rast to backward slices, the dependence in forward slices fans
ut from the slicing criterion to multiple program elements in the
orward slice. Consequently, the only way of obtaining a forward
lice of a given criterion c using ORBS would be to compute
ackward slices from all the other program elements, and include
ny element that has c in its backward slice in the forward slice
f c. Given that analysis cost is already a weakness of ORBS,
omputing a forward slice from multiple backward slices would
ot be an attractive approach.
On the other hand, MOAD can efficiently compute forward

lices since, by definition, it approximates the dependence model
tself. The main difference between ORBS and MOAD when gen-
rating a forward slice is how they utilize information from
n observation. While ORBS only recognizes a single relation
egarding a deleted unit affecting a single criterion, MOAD cap-
ures multiple relations, specifically which criteria are affected by
eleted units.

. Experiment setup

.1. Research questions

We evaluate MOAD by investigating the following six research
uestions. The first RQ concerns whether MOAD has the capabil-
ty to approximate program dependency. With RQ2 to RQ4, we
valuate MOAD by comparing its backward slices to those gen-
rated by ORBS and the static slicer of CodeSurfer. With RQ5, we
valuate how the amount of observation affects MOAD’s accuracy.
inally, with RQ6, we compare the forward slices generated by
OAD with those generated by CodeSurfer.
Q1. Viability: Do the learned models correctly capture program
ependence information? MOAD is the first approach that stochas-
ically models program dependence without requiring knowledge
btained from expensive static analysis; there is no guarantee
hat MOAD would have learned the program dependence from
cratch. To investigate if our approach is viable, we compare the
bility of our learned models to produce slices against that of a
andom slicer, which produces a random subset of a program as
slice without any prior knowledge. If none of the models can
utperform a random slicer, there is no reason to further consider
hem.
Q2. Impact of Model Type: Which inference model performs
he best? Given our use of program slicing in our evaluation, to
nswer RQ2, we compare the size of slices generated using each
f the three inference models.
Q3. Comparison to ORBS: How does the best performing inference

odel compare to ORBS? MOAD is a purely dynamic approach

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

t
T
c
a
a
M
q
M
R
p
o
b
a
t
w
t
t
R

hat builds inference models using dynamic information only.
he closest related baseline approach is observational slicing. We
onsider two implementations, W-ORBS (Binkley et al., 2014)
nd T-ORBS (Gold et al., 2017; Binkley et al., 2019): while both
re expected to produce more accurate slices when compared to
OAD, they are also expected to take longer. In this research
uestion, we evaluate both the quality and the efficiency of
OAD in comparison to W-ORBS and T-ORBS.
Q4. How does the best performing inference model com-
are with a static slicer? We perform a quantitative analysis
f backward slices generated by MOAD, and those generated
y the widely studied static backward slicer, CodeSurfer. RQ4 is
ddressed by a complete enumeration study for every line in the
hree C benchmark programs, mbe, mug, and wc, investigating
hy each line is in one slice but not in the other, or vice versa. In
his way, we analyze the root causes of the differences between
he two.
Q5. Sampling effect: What is the impact of using sampled ob-

servations? We investigate whether we can further reduce the
analysis cost of MOAD by using sampled subsets of the observa-
tions. The hypothesis is that models built with more observations
will produce better slices at higher analysis cost. We consider ten
different sampling rates when sampling from the 2-hot observa-
tions of each subject program, from 10% to 100% of all available
observations, and build inference models using the sampled ob-
servations. To cater for the randomness in sampling, we repeat
the process ten times for each sampling rate. Subsequently, we
compare the size of slices that are generated by models built with
different amounts of the sampled observations.
RQ6. How do MOAD’s forward slices compare to static forward
slices? While originally designed with backward slicing in mind,
we consider the related operation of forward slicing to provide
some insight into how well MOAD generalizes to other program
dependences analyses. To better understand the forward slicing
capability of MOAD, we qualitatively compare its forward slices
with those computed by CodeSurfer.

4.2. Baseline

This section describes two baseline approaches: ORBS, a purely
dynamic slicing approach, and CodeSurfer, a dependence analysis
tool that can produce static slices.

4.2.1. Observation-Based Slicing (ORBS)
We use Observation-Based Slicing (ORBS) (Binkley et al., 2014)

as a benchmark approach to evaluate the performance of MOAD.
ORBS is a dynamic program slicing technique based on direct ob-
servation of program semantics (when executing the program on
a chosen test suite). An ORBS slicer performs iterative, speculative
deletion of parts of the code. Each deletion is made permanent
if it preserves the trajectory of values computed at the slicing
criterion.

The original ORBS implementation (Binkley et al., 2014), slices
source code at the line-of-text level. We refer to this algorithm
as W-ORBS where the ‘W’ captures the use of a deletion window,
in which W-ORBS considers the deletion of a sequence of consec-
utive lines of text. In addition to a performance advantages, the
use of a deletion window enables W-ORBS to delete lines that can
only be deleted together (e.g., the pair of brackets that enclose an
empty block). Applied to line li, W-ORBS attempts to delete from
one to k lines (i.e., from {li} to {li, . . . , li+k−1}). If it successfully
deletes j lines (i.e., {li, . . . , li+j−1}), the deletion continues with
line li+j; if all k attempts fail, the deletion continues with line li+1.
Thus after each successful deletion, W-ORBS moves onto the next
target source code line (skipping over the deleted lines), while
after each unsuccessful deletion it reverts the deletion before
6

moving on to the next line of the file. W-ORBS performs multiple
passes over the code until it cannot delete anything further,
producing a 1-minimal line slice (it is impossible to delete any
single line from the slice) (Binkley et al., 2014).

A recent variation of W-ORBS, T-ORBS (Gold et al., 2017; Bink-
ley et al., 2019) works with a tree-based representation. T-ORBS
performs a breadth-first tree traversal using a work list. For each
node, n, it attempts to delete the subtree rooted at n. If the result-
ing program produces the same trajectory for the slicing criterion
then the subtree is permanently deleted. Otherwise, its children
are appended on the work list for later consideration. The T-
ORBS implementation we used employs SrcML (Collard et al.,
2013) to produce an XML tree from a program. It is important to
note that we modified the original T-ORBS algorithm to attempt
to delete only those syntactic elements that are considered by
MOAD; in this case statements. Our motivation for modifying
T-ORBS is to provide an apples-to-apples comparison between
the output of the two slicers. Doing so requires introducing a
small amount of language-specific information into an otherwise
language-agnostic algorithm but provides a better basis for com-
parison. This also brings a dramatic speed-up because T-ORBS can
spend considerable time as it considers the numerous sub-trees
that represent the constituent parts of a given statement.

4.2.2. CodeSurfer
We use CodeSurfer to compute the static program slicing

baselines. CodeSurfer is a static analysis tool produced by Gram-
maTech (Grammatech Inc., 2002). It computes static slices by
first converting a program into a System Dependence Graph
(SDG) (Horwitz et al., 1990) and then solving a reachability prob-
lem over this graph. The resulting set is often referred to as a
dependence-closure slice, which among other things implies that
it is not necessarily an executable program (Binkley, 1993).

Relevant to the experiments with MOAD, a CodeSurfer slice
is returned at the vertex level, which represent a finer level of
granularity than that used by MOAD. For example, consider the
statement x = x + a++. CodeSurfer is capable of identifying that
a++ but not this entire statement is part of a slice.

Fortunately, CodeSurfer maintains a mapping connecting the
original text of the program to the vertices and thus it is possible
to map a CodeSurfer slice into a set of line numbers by exploiting
this mapping. This mapping can also be used to map a line
number into the set of vertices that overlap with the source code
found on the given line. Thus in the experiment we identify the
line associated with each slicing criteria, map that line to a set
of vertices from which we compute a slice and then finally map
the vertices back to a set of line numbers for comparison with
MOAD. For example, Fig. 1 shows an excerpt from the output of
CodeSurfer slicing script.

4.3. Configuration

In the initial experiments, the units considered by MOAD
are programming language statements. We use SrcML (version
0.9.5) (Collard et al., 2013), an XML-based multi-language parsing
tool, to identify statements. SrcML enables our approach to be
applied to any programming language, including multi-lingual
programs, that SrcML can process. Other than this dependence,
our algorithm inherits ORBS’ ability to be applied to any language
and in multi-lingual analysis.

The set of slicing criteria considered consists of all arithmetic
(char, int, float, etc.) assignments. We use Clang (version 3.8)
(Lattner and Adve, 2004) to insert logging statements for each
slicing criterion. These statements are responsible for outputting
the sequence of values computed for the criteria. The goal of a
slicer is to preserve this sequence while removing unnecessary
code.

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

d
C
T
I
5

4

o
s
s
p
a
r
t
I
s
s
e
s
a
a
d
2
u
o
f
a
e
t
t
o
p
i

4

I
T
T

Fig. 1. Example line-level mapping of three CodeSurfer slices from the program mug.
Table 1
The statistics of experiment subjects’ properties. Each of prttok, prttok2, replace, sched, sched2, totinfo, tcas represents
printtokens, printtokens2, replace, schedule, schedule2, totinfo, tcas in the Siemens programs.
Subject SLoC |U | |C | Subject SLoC |U | |C |

mbe 64 45 16 replace 508 465 253
mug 61 44 13 sched 283 252 75
wc 46 33 17 sched2 276 248 81
prttok 410 388 98 totinfo 314 227 210
prttok2 387 364 75 tcas 152 110 62
d
f
t
M

c
S
t
r
s
i
t

C
c
i
T
s
a
C
i
l
l
r
r

As a baseline, we apply both W-ORBS (with maximum win-
ow size of three) and (the modified) T-ORBS to our subjects.
odeSurfer we apply version 2.2p0 in its default configuration.
he experiments were performed under Ubuntu 16.04, on an
ntel(R) Core(TM) i7 CPU with 32GB of memory using GCC version
.5.0.

.4. Subjects

Table 1 shows the programs we study. It includes the number
f non-comment-non-blank lines (SLoC), the number of units
tatements, and the number of criteria used. The first three
ubjects, mbe, mug, wc (word count), are small, well known,
rograms that have well studied semantics. This makes them
menable to careful precise study. Furthermore, the first two
aise specific challenges to dependence analysis and thus serve
o highlight the pros and cons of our approximation technique.
n addition, we study the Siemens suite (Do et al., 2005), to
ee how our technique works on ordinary C code. The Siemens
uite is used in lieu of larger programs because it is possible to
xhaustively compute all the slices of each program (for all scalar
licing criteria). This removes any slice selection bias from the
nalysis. Both subject program sets (the three small programs
nd the Siemens suite) are widely used in the program depen-
ence literatures (Horwitz et al., 2009; Santelices and Harrold,
010; Binkley et al., 2014, 2015; Lee et al., 2020). Thus, their
se would make it easy to compare our results with those of
ther existing literature techniques. Several previous papers have
ound the observation-based approach is viable for language-
gnostic program dependence analysis (Binkley et al., 2014; Gold
t al., 2017; Binkley et al., 2019; Lee et al., 2020). Leveraging
his prior work, we use only C programs to evaluate MOAD in
his study, while still being applicable to programs involving
ther programming languages. Considering the relative modeling
erformance of MOAD applied to C as opposed to other languages
s outside the scope of this study.

.5. Metrics

We use the following metrics to compare slicer performance.
n the definitions we denote that slices computed by W-ORBS,
-ORBS, CodeSurfer, and MOAD, for the slicing criteria c , as WSc ,
Sc , CSc , and MSc , respectively.

• Success Rate: For a MOAD model, the success rate is the
number of inferred slices that successfully compile and pre-
serve the trajectory of the target slicing criterion divided by
the number of slicing criteria.
7

• |Omethod|: The number of observations used by each slic-
ing method (including W-ORBS, T-ORBS and MOAD), when
generating slices. An observation consists of a compilation
and the subsequent execution assuming the compilation is
successful.
• µ (WSc), µ (TSc), µ (CSc), and µ (MSc): The mean slice size,

given as a percentage of the original program’s size, gen-
erated by each W-ORBS, T-ORBS, CodeSurfer, and MOAD
respectively.
• miss: Given a reference slice (e.g., WSc) and an inferred

slice (e.g., MSc), the number of deletable units that are
expected to have been deleted (i.e., that were missed) relative
to the reference slice. In other words, miss is the number
of deletable units in the inferred slice that are not in the
reference slice.
• excess: Given a reference slice (e.g., WSc) and an inferred

slice (e.g., MSc) the number of deletable units that are ex-
cessively removed from the inferred slice relative to the
reference slice. In other words, excess is the number of units
in the reference slice that are not in the inferred slice.

By design T-ORBS and MOAD operate on the same set of
eletable units. Thus, we can calculate miss and excess directly
rom the slices produced by these two. However, the same is not
rue of W-ORBS and CodeSurfer. Thus when comparing them with
OAD we map each MOAD slice to the line-of-text level.
For MOAD we build a statement-line mapping and use it to

onvert a statement-level slice of MOAD to one in the line-level.
rcML with an option position provides the line number and
he column number of the program elements as attributes in cor-
esponding XML elements. We utilize such information to build a
tatement-line mapping. For CodeSurfer exploit its mapping from
ts internal dependence graph representation to lines of source
ext.

Two other granularity issues arise when comparing MOAD and
odeSurfer slices. First, when MOAD deletes a statement that
ontains one or more other statements (e.g., when it deletes an
f statement), it necessarily deletes all the contained statements.
hus it cannot observe the effect of deleting solely the containing
tatement. For this reason we ignore containing statements such
s if statements when comparing MOAD and CodeSurfer. Second,
odeSurfer slicing criteria are constructed using vertices from
ts internal graph representation. This is often be a much finer
evel of granularity than a complete line of text (e.g., consider the
ine of text *to++ = *from++). To compute a line-level slice with
espect to a set of lines L, we use the union of all the vertices that
epresent code found on the lines of L.

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

T
S

r
p

m
F
r
p
c
r
r
o
i

s
m
g
t
t

able 2
uccess rate of MOAD on the ten test subjects.
Subject Deletion gen. scheme Success rate Subject Deletion gen. scheme Success rate

O L B O L B

mbe
1-hot 100% 100% 100%

replace
1-hot 7% 31% 28%

2-hot 100% 100% 100% 2-hot 3% 13% 31%

mug
1-hot 100% 100% 100%

sched
1-hot 48% 47% 41%

2-hot 100% 100% 100% 2-hot 39% 35% 43%

wc
1-hot 100% 100% 100%

sched2
1-hot 30% 26% 28%

2-hot 88% 76% 100% 2-hot 17% 26% 28%

prttok
1-hot 3% 4% 11%

totinfo
1-hot 52% 50% 62%

2-hot 3% 3% 11% 2-hot 32% 10% 65%

prttok2
1-hot 72% 19% 77%

tcas
1-hot 48% 90% 48%

2-hot 63% 13% 67% 2-hot 26% 68% 48%
Table 3
µ (WSc) , µ (TSc), and µ (MSc) denote the mean slice size, given as a percentage of the original program’s size, generated by each of W-ORBS, T-ORBS and MOAD,
espectively. Columns 4–6 and 7–9 show µ(MSc) separately for each of the three models where the smallest mean for the three is shown in bold. Numbers in the
arentheses is the ratio of µ(MSc) to µ (WSc).
Subject µ (WSc) µ (TSc) µ (MSc), 1-hot µ (MSc), 2-hot

O L B O L B

mbe 35.1% 40.6% 44.4% (1.26) 46.6% (1.33) 44.8% (1.28) 41.5% (1.18) 46.2% (1.32) 44.8% (1.28)
mug 25.6% 33.7% 40.1% (1.57) 49.9% (1.95) 40.9% (1.60) 34.2% (1.33) 46.7% (1.82) 42.4% (1.66)
wc 23.7% 30.3% 36.1% (1.52) 52.2% (2.21) 42.3% (1.79) 30.3% (1.28) 42.8% (1.81) 38.7% (1.64)
prttok 43.3% 43.2% 50.4% (1.16) 57.3% (1.32) 58.5% (1.35) 42.2% (0.98) 42.0% (0.97) 57.1% (1.32)
prttok2 37.3% 38.8% 41.5% (1.11) 61.6% (1.65) 47.1% (1.26) 36.6% (0.98) 50.8% (1.36) 46.6% (1.25)
replace 45.6% 45.9% 52.7% (1.16) 64.2% (1.41) 58.7% (1.29) 41.8% (0.92) 48.5% (1.06) 58.8% (1.29)
sched 37.3% 37.9% 59.1% (1.58) 66.4% (1.78) 61.0% (1.64) 44.8% (1.20) 57.1% (1.53) 62.2% (1.67)
sched2 35.3% 33.7% 47.5% (1.35) 61.9% (1.76) 54.1% (1.54) 37.2% (1.05) 46.6% (1.32) 53.6% (1.52)
totinfo 33.9% 39.7% 49.3% (1.45) 53.9% (1.59) 52.0% (1.54) 41.8% (1.23) 30.7% (0.91) 51.8% (1.53)
tcas 37.3% 33.3% 45.7% (1.23) 66.7% (1.79) 46.6% (1.25) 38.8% (1.04) 50.0% (1.34) 46.6% (1.25)

Average 35.4% 37.7% 46.7% (1.34) 58.1% (1.68) 50.6% (1.45) 38.9% (1.12) 46.1% (1.34) 50.2% (1.44)
o

5. Results

5.1. Viability (RQ1)

To answer RQ1, we first create a random slicer. Our imple-
entation randomly deletes each unit with a probability of 0.5.
or every slicing criterion in every subject program, we run the
andom slicer ten times and check whether the slice generated
reserves the trajectory of the slicing criterion. With 900 slicing
riteria (see Table 1) spread across the ten subject programs, the
andom slicer generates 9000 slices in total. Only fifteen of the
andom slices compile, and none of them preserve the trajectory
f the given slicing criterion. This result clearly indicates that it
s very unlikely to produce a slice by chance.

In contrast, Table 2 shows MOAD’s ability to produce viable
lices that not only compile, but also capture the desired se-
antics. In the table, the second column shows the deletion
eneration scheme used to generate the observations. Then in
he remaining columns we report the success rate for each of the
hree inference models, O, L, and B, as the percentage of ‘slices’
that preserve the desired trajectory. For the smaller programs
mbe, mug, and wc, most slices preserve the trajectory success-
fully. For the Siemens suite 42% of the generated slices preserve
the trajectory. In terms of Success Rate, the best performing
approach is B. It outperforms the other two in 6 of 10 cases for
the 1-hot deletion generation scheme, and in 9 of the 10 with
the 2-hot deletion generation scheme. Considering O and L it is
interesting to note that, on average, O a performs worst with the
1-hot data, while L performs worst with the 2-hot data.

In the table, prttok shows a particularly low success rate. Inves-
tigating this, we found that the root cause was two lines of code,
shown in the snippet below, where there is a data dependence

from Line 188 to Line 189.

8

164 s ta t i c token numeric_case (. . .)
165 {

. . .
188 strcpy (token_ptr−>token_string , token_str) ;
189 return (token_ptr) ;
190 }

What is unusual about these two lines is that for many slices
that do not depend on the value of token_ptr it is possible to
individually delete either Line 188 or 189 without affecting the
trajectory, but not both. Thus the model learns to remove each
line. Consequently, when MOAD infers a slice it tends to unwant-
edly omit both lines. The result is that most trajectories change.
A similar situation happens in replace, too. The last step of the re-
place program is to replace the target text with the input text, and
it is triggered by a boolean variable which represents whether
the input parsing has been succeeded. There are two assignment
statements for that boolean variable, and deleting either one of
them does not bother executing the last step. However, deleting
both of the assignment statements makes the program exit before
running the replacement step making lots of slices fail to pre-
serve the trajectory. This suggests the use of stronger statistical
models (e.g., Rasmussen’s Gaussian processes Rasmussen, 2003),
that can capture higher-level interaction effects between program
elements.

Based on these results, we answer RQ1 as follows:

RQ1. Viability: Inference models built with dynamic observa-
tions can successfully learn program dependence.

5.2. Impact of model type (RQ2)

We evaluate the three inference models based on their ability
to remove units. Table 3 shows the average slice size, µ (MSc),
ver all slicing criteria for three models used with MOAD. To

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

f
g

s
0
t
i
h
O

d
a
t
i
i
s
v
u
1
g
s
d
t
r
i
e
t
t
d
t

e
a
d
s
e
d
s
d
r
i

t
W
e
a
f
o
o

Fig. 2. Venn diagrams of statements deleted by O, L, and B under two, different deletion schemes.
acilitate inter-program comparison, the average slice sizes are
iven as a percentage of the original program’s size.
According to the result, Once Success(O) generates smaller

lices than the other two inference models (ANOVA, p-value <
.0001). Comparing the rows of Table 3, Once Success produces
he smaller slice in 18 of the 20 rows. This is due to how the
nference algorithm Once Success works. No matter how rarely it
appens, if the deletion of a unit does not affect the trajectory,
nce Success learns to delete it when inferring a slice.
Considering the overall impact of the training data, 2-hot pro-

uces the smaller average slice in 25 of the 30 cases. We further
nalyze the tendency with respect to each inference model. To
he Once Success model (O), the more attempts on deletion
n data implies the more chances of the model to observe the
ndependence between units and criteria. This implies that the
ize of the slice monotonically decreases as the set of obser-
ations is increased. Thus, Once Success built with 2-hot data
biquitously generates smaller slices than when built with the
-hot data. Considering the Logistic model (L), it also tends to
enerate smaller slices using the 2-hot data, doing so for all ten
ubjects. This dominance illustrates that the model learns more
ependency relations from the larger set of observations. Finally,
he sizes of the slices generated by the Bayesian model (B) show
elatively minor variation as the size of the set of observations
ncreases. That this is the most sophisticated of the models is thus
vident. For example, the 1-hot data and 2-hot data each produce
he smaller average for five of the subjects. Thus with more data,
he estimated probability of preserving the unit may increase or
ecrease, depending on the observations. This result is echoed in
he study of RQ5 in Section 5.5.

We also investigate whether there are more qualitative differ-
nces between slices produced by O, L, and B. For this, we an-
lyzed the subsumption relationship between sets of statements
eleted by different models, and summarize the differences. Fig. 2
hows Venn diagrams of statements deleted by different mod-
ls from all studied subjects and slicing criteria (Fig. 2a shows
eleted statements using 2-hot scheme, while Fig. 2b shows all
tatements deleted using 1- and 2-hot schemes combined). By
efinition, all statements deleted by B will be deleted by O,
esulting in the set B − O being empty. This can be clearly seen
n both diagrams.

Comparison of L−O andO−L is more interesting. Fig. 2 shows
hat O and L are better at deleting different sets of statements.
e hypothesize that the frequency of execution (and, therefore,

xposure) of different statements may interact with the relative
ggressiveness of different models. Consider a statement that is
requently and commonly executed by many test cases. In some
f these executions, the slicing criterion may depend on it; in
ther executions, it may not. O will aggressively delete such

statements, because a single trajectory-preserving execution is all
9

it requires for deletion. L will be more cautious, as it will con-
sider both types of executions: ones that exhibit the dependence
relationship to the slicing criterion, and others that do not.

In contrast, consider a statement that is deeply nested. It
will be executed only under certain conditions: when such a
statement is executed, it is likely because its execution is specif-
ically required to affect the subsequent computation, including
the slicing criterion. Consequently, deleting such a statement is
likely to fail to preserve the trajectory, preventing O from easily
deleting them. Interestingly, if the deletion of a statement only in-
frequently affects a trajectory, L is likely to put relatively smaller
weights to the corresponding features of the logistic regression
model, L.

We checked this hypothesis with a simple analysis involving
average statement nesting depth in L − O and vice versa. We
found the averages to be 5.54 for L−O, but only 4.99 for O− L.
While the initial findings are promising, we note that this may not
be the only factor that affects slice differences. Thus, this warrants
further study and deeper analysis which is outside the scope of
this paper.

Based on the data, we answer RQ2 as follows:

RQ2. Impact of the inference model: Among the three in-
ference models, Once Success generates the smallest slices.
Considering the impact of the training data, 2-hot deletion
generation scheme produces smaller slices than 1-hot.

5.3. Comparison with ORBS (RQ3)

In this section, we compare the MOAD and the two implemen-
tations of ORBS regarding three aspects: efficiency, slice size, and
accuracy.

5.3.1. Efficiency
Our initial look at the efficiency considers the number of

observations required to generate slices. W-ORBS turns out to
require fewer observations if it starts at the end of the code
and works its way towards the beginning (Binkley et al., 2014).
Therefore we used this version in our efficiency comparison.
Table 4 shows the number of observations involved. For W-ORBS
and T-ORBS, this count reflects the number of compilations and
executions made while computing each slice, while for MOAD the
number is the number of compilations and executions used in
constructing the training data. ORBS examines every statement
at least once for one slice. MOAD makes many observations, but
after that, we can produce many slices from that observations. For
a fair comparison, we compute the ratio between the number of
resulting slices and the number of observations. The 5th, 6th, 8th,
and 9th columns in Table 4 show the ratio. Patterns evident in the

data indicate that, when compared to W-ORBS, MOAD requires

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

T
|

r

e
o
c
n
t
M
t
t
g
s
2
u
a
r

5

e
b
s
C
t
C
s
t
a
w
d
o
i
s
i
f
t
r

s
t
s
m
t

able 4
OW-ORBS|, |OT-ORBS|, |O1-hot|, |O2-hot| denote the number of observations used by each of W-ORBS, T-ORBS, and MOAD with 1-hot and 2-hot deletion generation scheme,
espectively.

Subject |OW-ORBS| |OT-ORBS| |O1-hot|
|O1-hot |
|OW-ORBS |

|O1-hot |
|OT-ORBS |

|O2-hot|
|O2-hot |
|OW-ORBS |

|O2-hot |
|OT-ORBS |

mbe 6 546 1 163 46 0.70% 3.96% 948 14.5% 81.4%
mug 4 420 969 45 1.02% 4.64% 904 20.4% 93.2%
wc 3 843 860 34 0.88% 3.95% 454 11.8% 52.7%
prttok 262,374 68,372 389 0.15% 0.57% 74,175 28.3% 108.5%
prttok2 246,668 41,324 365 0.15% 0.88% 65,393 26.5% 158.2%
replace 1,214,230 311,323 466 0.04% 0.15% 106,412 8.8% 34.2%
sched 130,199 33,911 253 0.19% 0.75% 31,181 23.9% 91.9%
sched2 93,173 31,200 249 0.27% 0.80% 30,227 32.4% 96.9%
totinfo 451,715 86,499 228 0.05% 0.26% 25,151 5.6% 29.1%
tcas 40,883 11,377 111 0.27% 0.98% 5,846 14.3% 51.4%

Average: 0.37% 1.69% 18.6% 79.7%
(
B
s
t

5

s
t
a
s
c
m
T
p
c
b
t
w
c
u

t
w
t
B
s

g
e
p
e
m
s
T
a
c
t
t
e

H
s
i
d
s

w

significantly fewer observations. For example, the number of 1-
hot observations is orders of magnitude smaller than the number
used by W-ORBS. Similarly, the 2-hot deletion generation scheme
involves only 18.6% as many observations as used by W-ORBS.
T-ORBS tends to use fewer observations than W-ORBS, and thus,
the values are closer. Overall, the number of 1-hot observation is
1.7% of the number of T-ORBS observations, while the number of
2-hot observations is 79.7% of the number of observations used
by T-ORBS.

For a more complete efficiency comparison, we also consider
fficiency in the worst-case scenario of using MOAD; if one wants
nly a single slice from a criterion in the program. In such a
ase, ORBS could very well be more efficient than MOAD which
eeds to analyze the whole program dependence. To investigate
his, we computed the ratio between how many observations
OAD needs and the average number of observations needed

o generate a single slice by ORBS. However, our results show
hat in this the worst-case scenario, MOAD with a 1-hot deletion
eneration scheme actually needs only 13.9% and 58.7% of the ob-
ervations needed by W-ORBS and T-ORBS, respectively. For the
-hot deletion generation scheme, the number of observations
sed by MOAD is the same as the number needed for W-ORBS
nd T-ORBS to generate approximately 14 slices and 59 slices,
espectively.

.3.2. Slice size
Due to the approximate nature of the inference, MOAD is

xpected to generate larger slices than W-ORBS or T-ORBS. Ta-
le 3 shows the average slice size, µ (WSc) and µ (TSc), over all
licing criteria from W-ORBS and T-ORBS, along with µ (MSc).
ompared to W-ORBS, the results find that MOAD produces slices
hat are, on average, 40% larger than those produced by W-ORBS.
onsidering the Once Success model built using the 2-hot ob-
ervations, which is the setting for generating the smallest slice,
he inferred slice’s size is 12% larger than the W-ORBS slices on
verage. The most significant difference occurs with the program
c when using the Logistic inference model built with the 1-hot
ata. The size of the inferred slice is 2.3 times larger than that
f the corresponding W-ORBS slice. On the other hand, there are
nferred slices that are smaller than the corresponding W-ORBS
lice. For example, using two-hot data, the Once Success model
nferred slices that have 98%, 98%, and 92% of W-ORBS slice size
or replace, prttok, prttok2, and the Logistic model inferred slices
hat have 97% and 91% of W-ORBS slice size for prttok and totinfo,
espectively.

Next, when compared with T-ORBS, the differences are
maller, which reflects T-ORBS producing slightly larger slices
han W-ORBS on average. Over all programs MOAD produces
lices that are 30% larger than T-ORBS. With the Once Success
odel with 2-hot observations, the inferred slices are 4% larger

han T-ORBS slices. The most significant difference occurs for
 g

10
tcas, Logistic, 1-hot), where the MOAD slice is 2.1 times larger.
ecause the T-ORBS slices are slightly larger than the W-ORBS
lices, there are again examples where the MOAD slice is smaller
han the corresponding T-ORBS slice.

.3.3. Accuracy
While ORBS guarantees to provide a 1-minimal slice that pre-

erves the trajectory of the slicing criterion, MOAD approximates
he slice given the slicing criteria. Therefore, we set ORBS slices
s ground truth and compare MOAD slices to those. For each
ubject, deletion generation scheme, and inference model, we
alculate excess and miss (defined in Section 4.5), to facilitate a
ore detailed comparison of studied models. The values shown in
able 5 are averages over all slicing criteria in each of the subject
rograms; the values in parentheses are the corresponding per-
ent of the number of lines or units in the original program. For
oth excess and miss, the smaller the number is, the more similar
wo slices are. Finally, note that it is only possible to compare
ith W-ORBS slices at the line level. In contrast, T-ORBS slices
an be compared with MOAD slices at both the line level and the
nit level.
As the number of observations increases from 1-hot to 2-hot,

he value of miss for Once Success (O) significantly decreases,
hile excess slightly increases. This tendency is repeated for
he Logistic models (L). However, miss barely changes for the
ayesian models (B) which helps explain why the size of B slices
hows little change in Table 3.
Turning to the three models, for all subjects and deletion

eneration schemes O yields the smallest values of miss. For
xample, it accurately deletes 11 to 30 more lines when com-
ared to the other two models. While there are many cases where
xcess of O is larger than excess of other models, the difference is
odest. Thus, among the inference models, O tends to generate
lices more similar to those produced by W-ORBS and T-ORBS.
able 6 illustrates this by showing the average difference of miss
nd excess between O and the other two models. Values are
omputed over all slicing criteria and subjects. It is clear from
his data that formiss,O performs consistently and notably better
han the other two models. Interestingly this dominance does not
xtend to excess where the values are smaller and more varied.
To gain confidence, we applied an ANOVA and then Tukey’s

SD test (Tukey, 1970) to the values of miss and excess.1 The
tatistically significant results (p < 0.0001) show that miss for O
s smaller than it is for L and B. However, there is no significant
ifferences between L and B. The results for excess find B the
mallest, followed by O, and then L.
Overall, the result shows that the Once Success model built

ith the 2-hot observations generates slices that are not only

1 The full details of Tukey’s HSD results are available online at: https://coinse.
ithub.io/MOAD_Rdata_webpage/.

https://coinse.github.io/MOAD_Rdata_webpage/
https://coinse.github.io/MOAD_Rdata_webpage/

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

T
A
9
o

T

s
a
c
g
t
i

a
t
s
T
W
c

able 5
verage value of excess, denoted ‘E’, and miss, denoted ‘M’, in MSc when compared to WSc and TSc . Columns 3–8 compare with WSc at the line level, Columns
–14 compare with TSc at the line level, and finally Columns 15–20 compare with TSc at the statement (unit) level. The values in parentheses reflect the percentage
f excess and miss compared to the number of lines or units in the original program.
Subject Deletion generation

scheme
MSc vs. WSc (line) MSc vs. TSc (line) MSc vs. TSc (stmt)

O L B O L B O L B

E(%) M(%) E(%) M(%) E(%) M(%) E(%) M(%) E(%) M(%) E(%) M(%) E(%) M(%) E(%) M(%) E(%) M(%)

mbe 1-hot 2(3) 11(18) 2(3) 13(21) 2(3) 11(18) 3(5) 9(15) 3(6) 11(18) 3(6) 9(15) 1(3) 5(13) 1(3) 7(16) 1(3) 6(14)
2-hot 2(3) 9(15) 2(3) 13(21) 2(3) 11(19) 2(4) 6(10) 3(5) 11(18) 3(6) 9(15) 1(3) 3(6) 1(3) 6(14) 1(3) 6(14)

mug 1-hot 8(14) 13(22) 7(12) 19(32) 8(14) 14(24) 0(1) 6(11) 2(4) 15(25) 0(0) 7(12) 0(0) 7(17) 0(0) 15(34) 0(0) 8(18)
2-hot 8(14) 10(16) 8(13) 18(30) 8(13) 16(27) 0(1) 3(5) 0(1) 12(19) 0(1) 9(15) 0(1) 1(4) 0(0) 10(24) 0(0) 8(19)

wc 1-hot 5(11) 8(18) 4(9) 16(36) 4(10) 13(28) 1(2) 6(13) 2(4) 15(34) 1(3) 11(24) 0(1) 4(14) 0(1) 11(34) 0(1) 6(21)
2-hot 5(12) 6(13) 5(12) 13(28) 4(10) 10(23) 1(3) 3(8) 2(6) 11(25) 1(3) 9(20) 1(4) 2(7) 1(4) 8(25) 0(2) 5(17)

prttok 1-hot 54(13) 63(15) 42(10) 81(19) 50(12) 92(22) 9(2) 45(11) 17(4) 81(19) 6(1) 75(18) 6(1) 42(10) 5(1) 71(18) 3(0) 72(18)
2-hot 58(14) 34(8) 69(16) 46(11) 50(12) 87(21) 15(3) 18(4) 39(9) 42(10) 6(1) 70(17) 11(2) 15(3) 30(7) 34(9) 4(1) 66(17)

prttok2 1-hot 34(8) 39(10) 27(7) 128(33) 30(7) 61(15) 12(3) 28(7) 14(3) 125(32) 15(3) 57(14) 7(2) 33(9) 4(1) 95(26) 5(1) 50(13)
2-hot 37(9) 23(6) 33(8) 94(24) 30(7) 58(15) 13(3) 10(2) 16(4) 87(22) 15(3) 54(14) 9(2) 7(2) 10(2) 59(16) 5(1) 48(13)

replace 1-hot 113(22) 110(21) 101(20) 171(33) 105(20) 132(25) 29(5) 81(16) 30(6) 156(30) 40(8) 122(24) 15(3) 63(13) 13(2) 111(23) 13(2) 91(19)
2-hot 124(24) 66(13) 112(22) 94(18) 106(20) 133(26) 34(6) 32(6) 48(9) 86(16) 38(7) 121(23) 25(5) 17(3) 28(6) 52(11) 13(2) 91(19)

sched 1-hot 33(11) 74(26) 32(11) 102(36) 32(11) 80(28) 6(2) 65(23) 7(2) 96(34) 7(2) 72(25) 2(1) 67(26) 2(0) 83(33) 2(1) 72(28)
2-hot 35(12) 37(13) 30(10) 72(25) 33(11) 85(30) 7(2) 26(9) 9(3) 69(24) 7(2) 77(27) 3(1) 27(10) 2(1) 60(23) 2(1) 76(30)

sched2 1-hot 41(15) 61(22) 39(14) 101(36) 41(15) 81(29) 5(1) 48(17) 7(2) 93(33) 6(2) 70(25) 2(1) 45(18) 2(1) 82(33) 2(1) 62(25)
2-hot 44(16) 32(11) 43(15) 64(23) 41(15) 80(29) 7(2) 19(7) 9(3) 55(20) 6(2) 69(25) 4(1) 20(8) 5(2) 43(17) 2(1) 61(24)

totinfo 1-hot 37(11) 73(23) 31(10) 86(27) 35(11) 78(25) 3(1) 42(13) 7(2) 65(20) 5(1) 51(16) 1(0) 34(15) 1(0) 49(21) 1(0) 42(18)
2-hot 37(12) 50(16) 76(24) 51(16) 35(11) 78(25) 4(1) 19(6) 53(17) 30(9) 4(1) 50(16) 2(1) 11(5) 48(21) 23(10) 1(0) 41(18)

tcas 1-hot 27(20) 35(26) 21(15) 68(50) 27(20) 37(27) 4(3) 29(21) 3(2) 67(49) 4(3) 31(23) 2(2) 23(21) 1(0) 48(43) 2(2) 24(22)
2-hot 29(21) 25(19) 20(15) 41(30) 26(19) 37(27) 6(4) 19(14) 2(1) 39(29) 4(3) 32(23) 3(3) 15(13) 1(0) 25(23) 2(2) 24(22)
Table 6
The difference in the average value of miss and excess between the three inference models. The upper table shows
the data for miss while the lower table shows that for excess.
miss MSc vs. WSc (line) MSc vs. TSc (line) MSc vs. TSc (stmt)

L− O B− O L− O B− O L− O B− O

1-hot 29.8 11.2 36.5 14.6 24.9 11.0
2-hot 21.4 30.3 35.2 23.6 25.5 18.2

excess MSc vs. WSc (line) MSc vs. TSc (line) MSc vs. TSc (stmt)

L− O B− O L− O B− O L− O B− O

1-hot − 4.8 − 2.0 2.0 1.5 − 0.7 − 0.7
2-hot 1.9 − 4.4 6.4 1.7 2.8 − 1.3
Table 7
Average value of miss and excess in MOAD backward slice when compared to CodeSurfer backward slice. |L| shows the size of the number of lines in comparison.
he values in parentheses reflect the percentage of excess and miss compared to |L|.
Subject |L| µ (MSc) µ (CSc) miss (%) excess (%) Subject |L| µ (MSc) µ (CSc) miss (%) excess (%)

mbe 13 41.3% 45.2% 0 (2) 1 (6) replace 275 35.5% 45.4% 24 (9) 51 (19)
mug 15 45.9% 31.1% 2 (16) 0 (1) sched 163 42.3% 45.7% 24 (15) 30 (18)
wc 17 33.6% 20.6% 3 (17) 1 (4) sched2 148 35.7% 46.8% 11 (7) 27 (19)
prttok 278 30.9% 54.8% 13 (5) 79 (29) totinfo 157 36.7% 41.5% 12 (7) 19 (12)
prttok2 171 35.4% 40.4% 18 (10) 27 (16) tcas 73 37.1% 38.9% 8 (11) 9 (12)

Average 37.4% 41.0% 11 (10) 24 (14)
compact but also the most similar to ORBS slices. However, there
are some cases where the Logistic model produces the smallest
slice, such as when slicing totinfo with the 2-hot data. However,
uch slices tend to have a high excess. Since an ORBS slice for
given slicing criteria is not necessary unique, we explicitly

heck the output trajectory of such small slices. Further investi-
ation revealed that they are unable to preserve the trajectory of
he targeting slicing criteria, which implies that the dependency
nference was not sufficiently precise.

As we described in Section 4.2.1, T-ORBS used in this study is
modified version of T-ORBS in Binkley et al. (2019) to stop its

raversing at the statement-level. The modified version of T-ORBS
hows a dramatic speed-up compared to the original T-ORBS.
hus, our answer to RQ3 only considers the comparison with
-ORBS. From the overall trends observed in size and similarity

omparisons, we answer RQ3 as follows:
11
RQ3. Performance compared to ORBS: Using Once Success
built with the 2-hot data, MOAD can require less than one fifth
of the observations compare to W-ORBS. At the same time the
inferred slice is only 12% larger than the W-ORBS slice. The
result further presents that Once Success also produces slices
of high accuracy: it achieved much smaller miss, while there
is no big difference in excess compared to other inference
models.

5.4. In-depth comparison to static backward slicing (RQ4)

To answer RQ4, we configure MOAD to use the 2-hot deletion
generation scheme and the Once Success inference algorithm
because the results from RQ2 show that this configuration is
the most effective and accurate configuration. As described in
Section 4.5, we convert the resulting slices to the line-level.

Table 7 shows the miss and excess values comparing the
line-level backward slices from MOAD and CodeSurfer averaged
over the set of criteria. |L| shows the size of the number of
lines in comparison. Note that |L| is not the same with SLoC in

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

T
n

Fig. 3. mbe, mug, and wc source code.
g

Fig. 4. Difference of the backward slices of MOAD and CodeSurfer of mbe.

able 1 since candidate lines are the lines that correspond to
on-containing statements. µ (MSc) and µ (CSc), in this case, use
|L| as a denominator of the ratio. From the table, when slicing
mbe there is no line that MOAD fails to delete that CodeSurfer
deletes and thus miss is zero. On average, 2 and 3 lines are missed
by MOAD in mug and wc and 8–24 lines are missed by MOAD
for the programs in Siemens suite. In terms of excess lines, on
average only 0 to 1 lines are errantly deleted by MOAD in the
backward slices of mbe, mug, and wc when compared with slices
generated by CodeSurfer. For the Siemens suite, MOAD exces-
sively deletes 9–79 lines, which is a notable higher percentage. In
the big picture there is a larger proportion of missed lines with
the bigger programs because they include more opportunities for
static analysis false-positives. We consider this issue in greater
detail during the discussion of RQ6.
12
Fig. 5. Difference of the backward slices of MOAD and CodeSurfer of mug.

Fig. 3 shows the source code for the three benchmark C pro-
rams mbe, mug, and wc. For these three, Figs. 4, 5, and 6

visualize the differences between the slices produced by MOAD
and those produced by CodeSurfer. In each figure

• The x-axis shows the line numbers of the lines whose source
code is affected by the slicing criteria.
• The y-axis shows the program line numbers of the lines that

make up the slicing criteria.
• Each row captures the backward slice taken with respect to

the criterion found on the y-axis.
• A blue cell, , denotes an excess statement (one that is in

the CodeSurfer slice but not the MOAD slice).
• A red cell, , denotes a missed statement (one that is in the

MOAD slice but not the CodeSurfer slice).
• An empty gray cell, , denotes a statement in neither slice.

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

t
u
c
f
p
d
b

s

t

Fig. 6. Difference of the backward slices of MOAD and CodeSurfer of wc.

• A gray cell with a black square, , denotes a statement in
both slices.

The remainder of this section explores the differences between
he slices produced by CodeSurfer and MOAD with an eye toward
nderstanding their root causes. We addressed every mismatch
ases and these differences can be partitioned into the following
ive categories. After explaining each, we illustrate it with exam-
les taken from the three benchmark programs. The examples
escribed by line numbers in the program represent all red or
lue cells in the columns of referred lines in the figures.

• [Keeping Declarations]:
Using the Once Success inference model, MOAD often can-
not delete variable declarations because there is insufficient
observation of their deletion. This occurs because the 2-hot
deletion generation scheme deletes no more than two state-
ments at a time. Therefore, if a variable has more than one
use, Once Success will never observe the successful deletion
of the variable declaration. Doing so requires deleting at
least three statements.
MOAD is also unable to delete a function prototype if its
deletion produces a compilation error. In contrast,
CodeSurfer computes dependence-closure slices using a
graph representation that omits function prototypes; thus,
it will never include one in a slice (Binkley, 1993).
Examples of this category include declaration statements on
Line 10 and 11 from mbe (Fig. 4); function declarations on
Lines 4 and 5, and declaration statements on Line 11, 12, and
13 from mug (Fig. 5); and finally the function declaration on
Line 2 and declaration statements on Lines 5, 7, and 8 from
wc (Fig. 6).
• [Mutation Granularity]:

The only program mutation operator used by MOAD is
statement deletion. This limits the granularity at which it
operates. For example, consider the statement iterations++
nested within the loop while (scanf("%c", &c) == 1). Key to
this example is that the iteration count does not depend
on the value of c, which CodeSurfer correctly identifies.
However, MOAD treats the loop statement as atomic, and
thus is forced to retain c and consequently its declaration.
The only example of this category is the declaration state-
ment on Line 9 from wc (Fig. 6).
 s

13
• [Missing Initialization]:
There are cases where the deletion of a variable initialization
has no impact (e.g., in Java integer variables are implic-
itly initialized to zero). In such cases, MOAD will delete
an initialization statement, while CodeSurfer cannot (as-
suming that the initialized value is used in a subsequent
computation).
Examples of this category include assignment statements on
Lines 10 and 11 from wc (Fig. 6).
• [Missing Return]:

While some languages mandate the presence of a return
statement, languages such as C do not. When a return state-
ment is deleted from a program in a permitting language,
the function simply returns the last value placed in the re-
turn location (e.g., the last value placed in the eax register).
If this value happens to cause the same behavior (e.g., the
return value is used as a boolean where it is expected to be
true in normal execution), then MOAD can often delete the
return statement without causing the observable semantics
of the program to change.
Examples of this category include return statements on
Lines 40 and 44 from wc (Fig. 6).
• [Limits of Static Analysis]:

While the static analysis of wc is straight forward, both mug
and mbe were designed to reveal the limitations of static
analysis. A previous study (Binkley et al., 2015) showed that
the observation-based slicing on which MOAD is based, can
successfully untangle the complex data dependence found
in these examples, and thus overcome the limitations exhib-
ited by static analysis. MOAD too learns to untangle these
complex data dependences and, in doing so, produces a
more precise slice.
Examples of this category include assignment statements to
the variable k on Lines 13, 19, 23 from mbe (Fig. 4); and an
assignment statement on Line 22 from mug (Fig. 5).

Our in-depth comparison between MOAD’s backward slice and
tatic backward slice could answer RQ4 as follows:

RQ4. In-depth Comparison to Static Backward Slicing: On
average, MOAD misses 0–3 lines in mbe, mug, wc, and 8–
24 lines in Siemens suite programs compared to CodeSurfer
slices. We could identify two root causes of where MOAD
missed deleting the statement from the slice compared to the
static backward slice: Keeping Declarations, due to insuffi-
cient observation of the deletions, and Mutation Granularity,
where statement deletion is not enough to observe the
independence.
On average, MOAD excessively deletes 0–1 lines in mbe, mug,
wc, and 9–79 lines in Siemens suite programs compared to
CodeSurfer slices. We could identify three root causes of
MOAD excessively deleting statements from the slice com-
pared to the static backward slice: Missing Initialization and
Missing Return, where the programming language’s implicit
semantics makes no change, and Limits of Static Analysis,
when static analysis fails to identify the true dependence in
the program.

5.5. Sampling effect (RQ5)

RQ5 considers the tradeoff between the amount of training
data used and the quality of the inference. To gain an initial
impression for the data, Fig. 7 shows two example programs,
replace and wc. In each of the resulting six plots, the x-axis shows
he sample size, while the y-axis shows the ratio of the average
lice size (averaged over all slicing criteria in the program) to

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988
Fig. 7. Averaged over all slicing criteria for replace (top) and wc (bottom), the figure presents the mean slice size of MOAD, µ (MSc), given as a percentage of the
size of the original program for a range of 2-hot sample sizes (shown on the x-axis). Each boxplot summarizes the performance of a model built using ten different
random samples. The red and blue lines represent the means for W-ORBS and T-ORBS slice size, averaged over all slicing criteria in the program.
Fig. 8. The figure presents MOAD’s mean success rate averaged over all slicing criteria for mbe (top) and sched (bottom). Each boxplot summarizes the performance
of a model built using ten different random samples.
the original program size. Finally, the solid red (gray) and blue
(dashed) horizontal lines represent the average slice size ratio
produced by W-ORBS and T-ORBS, respectively. Overall, the six
plots support the notion that as sample size increases, the slice
size of MOAD decreases and in some cases approaches that of the
two ORBS slicers.

Because the three different models show a fair amount of
variation, we consider each model separately. To begin with,
for the Once Success model O (the left two plots) there is a
substantial initial drop off that lessens, but continues to fall, as
the sample size increases. For example, the average of the first
three slice-size differences (i.e., 20%–10%, 30%–20%, and 40%–30%)
is 4.4 times larger than that of the last three slice size differences
(i.e., 70%–80%, 80%–90%, and 90%–100%). Note also that, when
using only half of the 2-hot observations, O generates slices that
are only 3.4% larger than when using all the data. Finally, the
variance among individual samples (the height of the boxes)
is relatively small, which suggests that O is robust against the
stochastic sampling.

For the Logistic model, L, the size of the slices also tends to de-
crease as the sample size increases, but the trend is not as strong
as with O. The L model also shows higher variance across sam-
plings (taller boxes), when compared to other inference models.
Finally, while the Bayesian model, B, tends to generate smaller
slices with more observations, the trend is not strong and the
 g

14
median size fluctuates. Furthermore the difference in slice size
between samples is relatively small (especially for replace).

To gain additional confidence, we applied ANOVA separately
to all the data for each model.2 In all three cases, the results
are statistically significant (p < 0.0001) thus we applied Tukey’s
post-hoc test. For the O models Tukey’s post-hoc test finds five
equivalence classes of mean slice size. The most useful findings
are that using samples of 40% to 90% of the 2-hot data produces
mean slice sizes that are not statistically different. The same
is true of the range from 50% to 100%, suggesting that using
only half of the data produces results essentially indistinguishable
from using all of the data.

The L models also have five equivalence classes. Notable
among these, there is a band from 30% to 80%, and two narrower
bands from 60% to 90% and 80% to 100%. Narrower bands reflects
the models being more sensitive to the amount of data that they
are built on.

Finally, the Bayesian models, B, show the greatest stability
with all values from 20% to 100% being in the same band. Thus
only when using a 10% sample (the only other band) does the
model show inferior performance. This suggests that these mod-
els themselves are very robust against sampling variation. If it

2 The full details of ANOVA results are available online at: https://coinse.
ithub.io/MOAD_Rdata_webpage.

https://coinse.github.io/MOAD_Rdata_webpage
https://coinse.github.io/MOAD_Rdata_webpage

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

w
p
r

b
e

p
f
p
g
w
d
c
o
s

v
a

d
A
s
w
H
a
w
C

t
a
s
a
M
o
s
a
n

a
G
c
r
d
o
m
n

S
c

M
S
b
s
p
s
f

ere possible to improve the size and the accuracy of slices
roduced by B, the stability observed here would be a strong
eason for choosing these models.

We also investigate how the success rate changes as the num-
er of observations increases. Fig. 8 shows their tendency for two
xample programs, mbe, and sched. Similar to Fig. 7, the x-axis

shows the sample size, while the y-axis shows the success rate
averaged over all slicing criteria in the program. As we discussed
in Section 5.1, MOAD can easily generate trajectory-preserving
slices for the small programs mbe, mug, and wc. This pattern
ersists even when using only a fraction of the observations
rom the 2-hot deletion generation scheme. For the Siemens suite
rograms, the success rate tends to decrease as the sample size
rows for the Once Success model and the Logistic model. In line
ith Fig. 7, as the sample size increases more statements are
eleted, which tends to cause the remaining code to be harder to
ompile and less likely to preserve the trajectory. The robustness
f the slice size from the Bayesian model keeps the success rate
teady despite the sample size growth.
RQ5 considers the impact of sampling effect. In particular, how

iable is a model built using only a subset of the 2-hot data? We
nswer RQ5 as follows.

RQ5. Sampling effect: The high initial rate of reduction and
higher variability of the inferred slice size for small sample
sizes indicates there is some sampling effect especially with
Once Success. On the other hand, the wide bands of indis-
tinguishable performance show that it is possible to build
high performing models using only a fraction of the training
data. For example, Once Success infers slices only 3.4% larger
when using as little as half of the training data, while the
Bayesian model has similar performance using only 20% of the
training data. In summary it is viable to use only a subset of
the data when building the models. The success rate related
to the sampling effect tends to follow the slice size: it often
decreases as more statements are deleted.

5.6. In-depth comparison to static forward slicing (RQ6)

RQ6 investigates how well MOAD can produce forward slices,
espite its having been designed with backward slices in mind.
s described in Section 3.4 this might be seen as a bit of a
urprise because doing so with ORBS, which was also designed
ith backward slicing in mind, turns out to be quite difficult.
owever, that MOAD is easier to ‘reverse’ does not say anything
bout the quality of the resulting slices. To address this question
e compare the forward slices of MOAD with those produced by
odeSurfer.
Similar to RQ4, we compare the slices at the line-level. Recall

hat for a MOAD forward slice we invert the sense of the criteria
nd the set of statements affecting the criteria. Thus the slicer
tarts with a set of affecting statements and produces as the slice
set of criteria. Given one or more line numbers from a program,
OAD computes a forward slice by first mapping those lines to
ne or more affecting statements within the program using the
tatement-line mapping described in Section 4.5. It then infers
set of criteria. Finally MOAD maps those criteria to the line
umbers of the slice using the same mapping.
For CodeSurfer the criteria of the forward slice are the same

s those of a backward slice, a set of dependence-graph vertices.
iven one or more line numbers from a program, CodeSurfer
omputes a forward slice by first identifying the set of vertices
epresenting code on the given line numbers. It then traverses
ependence edges in the dependence graph forward (the origin
f the name forward slicing) to identify the set of vertices that
ake up the slice. Finally, it maps this vertex set to a set of line
umbers, which forms the final slice.
15
Table 8 shows the values of miss and excess comparing the
forward slices of MOAD and CodeSurfer averaged over the set
of criteria for each program. It is important to note that in this
comparison we limit the set of lines potentially in a slice to those
that contain one or more variables because these lines are those
for which there exist a slicing criterion and thus they are the only
lines that MOAD can report as being part of, or absent from, a
forward slice. This set of lines is referred to as L and is used for a
denominator calculating µ (MSc) and µ (CSc) in Table 8. Note that
this set is different from the set named L in Table 7. For six of ten
subjects MOAD has missed no lines that should have been deleted
when compared to CodeSurfer. For the remaining four subject
only 1–6 lines are missed. A single line has been excessively
deleted by MOAD compared to CodeSurfer for mbe, and there
is no excess lines deleted for mug and wc. For the program in
iemens suite, 7–37 lines have been excessively deleted by MOAD
ompared to forward slices generated by CodeSurfer.
Fig. 9 shows the difference between the forward slices of

OAD and CodeSurfer for prttok, visualized in the same way as in
ection 5.4. We can identify structural or semantic relationships
etween the lines that have similar patterns in their forward
lices (i.e., rows in the figure). For example, Lines 129–136 of
rttok are all from the same case in a switch statement. As a
econd example, Lines 185, 203, and 273 are lines that call the
unction unget_char. Similar patterns can be observed in graphs
of the other programs we well.

To further investigate the efficiency of MOAD, we statistically
analyze the number of excessively deleted lines and the ratio
of such lines to the size of CodeSurfer forward slices, which is
shown in Table 9. The first and second rows show the total and
average number of excessively deleted lines over all slices. As can
be verified using Fig. 9, the total for prttok is the number of blue
cells (). The average is simply excess. The third and fourth rows
show the average and standard deviation of the ratio of this value
to the CodeSurfer slice size.

From the table, MOAD reduces the average forward slice size
by at most one line for three benchmark programs (mbe, mug,
wc) and by 6.82–36.75 lines for the programs of the Siemens
suite. Turning to the ratio, the reduction is larger for the Siemens
suite (25%–45%) than for the mbe, mug, and wc (7%–16%). The
main cause for this greater reduction is that MOAD can deter-
mine false positive dependences existing in the static analysis
by directly observing the program execution. Fig. 10 shows the
distribution of the ratio of the number of lines in each CodeSurfer
slice only to the size of the CodeSurfer slice for the programs in
the Siemens suite. The plot omits the three benchmarks because
they lack sufficient slices to be meaningfully represented in a
boxplot.

The dots near 100% of the ratio in Fig. 10 show the case
for which MOAD eliminates almost every line in the CodeSurfer
forward slice from its slice. We investigate what kind of criteria
make that happen and present some of the cases of them here.

The first snippet of Listing 4 in Fig. 11 shows the snippet of
the source of prttok. The value of token_id in struct token_ptr
determines whether the main loop of the program terminates
or not. Therefore, CodeSurfer includes most of the line in the
program to its forward slice of Line 147, which assigns a value to
token_id that makes the main loop to continue. However, when
both Line 147 and Line 149 are deleted, fall-through happens,
which assigns another value to token_id in Line 152, keeping
the main loop to continue. It is important to note that the test
suite we used contains not only the test cases handling the strings
with special characters, but also ones without them. From such
the observation, MOAD learns that, except those actually related
to the handling of special characters, lines in CodeSurfer’s forward
slice of Line 147 are not affected by Line 147 if the main loop does

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

Fig. 9. Difference of the forward slices of MOAD and CodeSurfer of printtokens.

Fig. 10. Distribution of the ratio of the number of lines only in a CodeSurfer slice to the CodeSurfer slice size.

Fig. 11. Snippets of the source codes of Siemens suite.

16

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

T
A

S
a
p
a
t

able 8
verage value of miss and excess in MOAD forward slice when compared to CodeSurfer forward slice. |L| shows the size of the number of lines in comparison. The

values in parentheses reflect the percentage of excess and miss compared to |L|.
Subject |L| µ (MSc) µ (CSc) miss (%) excess (%) Subject |L| µ (MSc) µ (CSc) miss (%) excess (%)

mbe 8 56.2% 68.8% 0 (0) 1 (13) replace 169 29.7% 47.6% 6 (4) 37 (22)
mug 9 39.7% 42.9% 0 (0) 0 (3) sched 49 38.5% 43.1% 6 (12) 8 (17)
wc 14 11.9% 15.1% 0 (0) 0 (3) sched2 52 30.3% 40.6% 1 (3) 7 (13)
prttok 66 50.2% 70.1% 0 (0) 13 (20) totinfo 93 28.0% 40.4% 0 (0) 12 (12)
prttok2 61 50.9% 66.6% 4 (6) 13 (22) tcas 42 22.6% 41.5% 0 (0) 8 (19)

Average 35.8% 47.7% 2 (2) 10 (14)
Table 9
Statistics on the number of lines only in CodeSurfer slice.

mbe mug wc prttok prttok2 replace sched sched2 totinfo tcas

Count Sum 6 7 9 40 26 123 35 30 62 35
Average (excess) 1.00 0.29 0.44 13.12 13.12 36.75 8.11 6.83 11.53 7.94

Ratio Average 16% 7% 14% 25% 33% 38% 36% 30% 37% 45%
stdev 17% 19% 28% 27% 27% 33% 33% 24% 34% 31%
s
b
t
u
c
2
u
f
c
d
w

f

not stop. Deleting all lines that are not related to the handling
of special characters from Line 147’s forward slice by MOAD
illustrates its success at inferring accurate dynamic dependence
analysis.

A similar pattern is observed in Line 178 of Listing 5 in Fig. 11.
CodeSurfer includes most of the lines in prttok in its forward slice
of Line 178, because tstream_ptr is the buffer containing the
input to be processed. When both Line 178 and Line 182 are
deleted, the execution does not return at Line 182 but keeps
executing the lines after Line 183, which eventually executes
Line 185 that does the same thing with Line 178. Therefore,
by removing Line 178 instead of Line 185, the lines that are
sufficient to maintain their functionality are excluded from Line
178’s forward slice by MOAD.

CodeSurfer includes almost all lines of prttok2 to its forward
slice of Line 135 (shown in Listing 6 in in Fig. 11). CodeSurfer
makes this decision because the value in the memory buffer
returned at Line 137 determines whether the main loop of the
program terminates; if it has an End of file (EOF) token, the
program terminates. However, what the if statement from Line
134 to Line 138 actually does is to put the double quote at the
end of the token if it starts with a double quote. Thus, buffer in
Line 136 already has a value that keeps the main loop running,
which indicates that Line 135 is irrelevant to the main loop.
Consequently, MOAD removes the lines from its forward slice of
Line 135 that are accidentally included in the slice generated by
CodeSurfer.

For Line 263 of sched2 (shown in Listing 7 in Fig. 11), the size
of the forward slices generated by MOAD is much less than that of
the forward slices generated by CodeSurfer. Line 263 handles the
case when the desired index is larger than the size of the queue.
However, there is no test case that results in a value of index
that is larger than the size of the queue. Consequently, MOAD
deletes those unobservable dependences from Line 263’s forward
slice. Such test suite specific information can only be captured by
MOAD.

We further analyze the root cause for the lines found only in
slices generated by MOAD, which are seen as red cells () in the
figure. Unlike the case of backward slices, declaration statements
are not the major cause of difference: declaration statements are
not in the slice since they do not contain any slicing criteria.
Instead, the major cause for the red cells is segmentation faults.
uch faults result in an empty log file, which the tool interprets
s a change in the trajectories of all executed criteria. These
erceived changes prevent MOAD from deleting statements from
slice. For example, in Fig. 12, removing Line 99 of prttok leads

o a segmentation fault; thus when MOAD computes the forward
17
slice taken with respect to Line 99 it includes Line 24 (the in
Fig. 9) even though the criterion on Line 24 is not actually affected
by the statement at Line 99.

Another significant root cause is hidden dependency, which
tatic analysis is incapable of capturing. This occurs, for example,
etween a statement updating a database and another querying
he database, where the result of the query depends on the
pdate. In our case, consider Fig. 13, which shows a section of
ode taken from sched. In this code, Lines 256, 260, 261, and
70 read input from the external source. In the configuration
sed for our empirical evaluation, CodeSurfer assumes that reads
rom a file are independent from each other: while it can be
onfigured to assume all reads are dependent, such a setting will
ramatically increase slice sizes, and is often not what the user
ants.
Based on the comparison result, we could answer RQ6 as

ollows:

RQ6. In-depth Comparison to Static Forward Slicing: In
comparison to the static forward slice, MOAD only misses
deleting 0–6 lines from the forward slice, while it could exces-
sively delete 0–37 lines from the slice. A large and excessive
deletion compared to the static forward slice often happens to
MOAD’s forward slice when the criterion is related to (1) the
main loop termination, (2) the ground data to process, or (3)
the corner case handling. The root cause for the lines found
only in MOAD’s slice is often the segmentation faults.

6. Discussions and future work

6.1. Advanced and adaptive deletion generation scheme

An in-depth analysis of MOAD backward slices compared to
static backward slices indicates that a specific set of units should
be deleted together or should not be deleted. The category
[Keeping Declarations] describes that MOAD often cannot delete
the variable declaration statements since the 2-hot deletion gen-
eration scheme does not offer an observation that deletes the
declaration statement with all the statements using the declared
variable. [Missing Initialization] and [Missing Return] cat-
egories produce evidence that unexpected execution behavior
could mislead MOAD to excessively delete the initialization state-
ments or return statements from the slice. Such a result suggests
that a more advanced and adaptive deletion generation scheme
is needed for modeling the source code.

A more principled way would be to use Design of Experiments
(Chaloner and Verdinelli, 1995) to systematically select among

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

t
s
w
t
t
t
(
m
t

c
g
o

c
s
i
d
g
i
2

Fig. 12. An example of false positive dependency due to the segmentation fault.
Fig. 13. An example of the hidden dependence in sched that static analysis is unable to figure out.
W
t
i

he many possible deletions. This could also allow and utilize the
ampling of more than two deletions per build and observe cycle,
hich could provide faster learning as well as enough observa-
ions for deleting declarations. Yet another approach would be
o generate the deletion just-in-time (adaptively) with respect to
he observations that have been made (e.g., via active learning
Zuluaga et al., 2013)). Using the observation data, an interim
odel might be learned that can propose future deletions with

he highest potential information gain.
While the aforementioned methodologies work in general, we

ould also think of a more particular method to adopt the deletion
eneration scheme for a specific limitation. One possible way of
vercoming [Keeping Declarations] limitation is to introduce

meta-statements, which group together all statements that use a
particular variable. In addition to deleting individual statements,
MOAD could also attempt to delete an entire group by deleting
its single meta-statement. In several of the examples, this would
improve the slice generated by MOAD.

A variation of the meta-statement approach attempts to ob-
serve more detailed dependence relationships between the state-
ments found in each meta-statement. For example, consider using
the n-hot deletion generation scheme. Let meta-statement S in-
lude the statements {s1, . . . , sm}. The n-hot deletion generation
cheme covers the observations of deleting every combination of
statements (1 ≤ i ≤ n) in S. Hence, we additionally try to
elete combinations that are not covered by the n-hot deletion
eneration scheme, which are the combinations of j statements
n S where n+ 1 ≤ j ≤ m. For example, assume we are using the
-hot deletion generation scheme with the following program:

int a; (s1)
...
a = 3; (s2)
...
c = 7 + a; (s3)
d = g(a); (s4)

where s1, s2, s3, and, s4 belongs to the same meta-statement. Since
every single statement deletions ({s }, · · ·, {s }) and deletions
1 4

18
of a pair of statements ({s1, s2}, {s1, s3}, · · ·, {s3, s4}) are already
covered by 2-hot deletion generation scheme, we additionally
observe deletions of other combinations with the statements such
as {s1, s2, s3}, {s1, s2, s4}, {s1, s3, s4}, {s2, s3, s4}, and {s1, s2, s3, s4}.

hile the additional cost could be much larger compared to
he problem we want to solve, such a systematic approach may
ntroduce various interesting observations.

For [Missing Initialization] and [Missing Return], we
might simply mark initialization statements or return statements
as undeletable during the observation phase. While this restriction
will make the dependence model that MOAD learns less complete,
it may make it more sound. Then after constructing a slice, we
could perform some post-processing aimed at removing initial-
ization statements of unused variables and return statements
in unused methods. Doing so would enable us to explore the
trade-off between completeness (e.g., how small the slice is) and
soundness (e.g., avoiding unwantedly deleted lines).

6.2. Conditional dependency modeling and alternative inference
models

We have seen that approximate dependency modeling can
have benefits compared to traditional, static modeling
approaches. While the latter consider only binary relations be-
tween program elements, MOAD models the probability that one
program element is dependent on another. Note, however, that
MOAD is an average or marginal probability model; it answers
with a probability over all inputs. This points to important future
work to build approximate models that are dependent on specific
inputs, i.e. input-specific approximate dependency models. For
some program analysis and software quality tasks such, even
more refined models, might be beneficial.

As one example, in fault-localization, we have precise infor-
mation about the testcase(s) that failed, and thus know which
inputs to the program to consider. We would like to condition
our probability model on the input(s) and get a more precise
estimate of the probability for the situation at hand; a conditional
dependency model. But we can go even further and consider

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

o
s
c

t
s
c
a
b
t
i
F
b
g
c
i
d
(
t
a

g
s
m
i
i
s
p
w
t

6

b
c
e
a
f
r
m

7

d
n
G
p
(
d
h
t
(
c
p
f
p
a
r
d
a
o
i
p
g

t
-
W
C
-
d

ther information to condition with. For example, in program
licing we might want to consider to condition on different slicing
riteria.
These modeling situations will likely require more sophis-

icated modeling techniques and inference algorithms. Models
uch as Bayesian Networks (Jensen, 1996) might be used to en-
ode the conditional independences between parts of programs
nd to infer the likelihood of program unit inclusion in slices
ased on the distributed joint distribution encoded therein. But
hey should also be investigated for answering more complex,
nput- and criteria-specific, modeling questions. Markov Random
ields might also be tried to model the strength of association
etween program units as observed. Even if such probabilistic
raphical models can be expected to perform well since they can
apture the often graph-like dependency relations of software,
t is unclear if they are flexible enough for general, conditional
ependency modeling. More general statistical inference models
e.g. Gaussian processes (Rasmussen, 2003)) and novel, ‘deep’ sta-
istical modeling approaches (e.g. Sum-Product Networks (Poon
nd Domingos, 2011)) should also be explored in future work.
Overall, our argument points to a hierarchy of different pro-

ram analysis questions and corresponding models to help an-
wer them. Just like a traditional, binary program dependency
odel can be seen as subsumed by an averaging model as used

n MOAD, the latter, in turn, would be subsumed by a dependent,
nput- and/or criteria-specific model. Which model to ultimately
elect likely varies with the downstream analysis task to be sup-
orted and with the specific program and its semantics. Future
ork should strive to clarify which model to select for a given
ask.

.3. Additional applications

Future work will evaluate if the models we build can also
e effectively used for tasks such as fault localization and fault
omprehension (Baah et al., 2010; Feng and Gupta, 2010; Gong
t al., 2015). It will also consider the trade-offs between precision
nd the usefulness of these models (e.g., early comprehension
or orientation may benefit from slightly less precise models that
etain some situational context in the slice, whereas bug-location
ay benefit from more precise slices).

. Related work

There have been multiple proposals to approximate depen-
encies by complementing a statically extracted graph with dy-
amic information (Baah et al., 2010; Feng and Gupta, 2010;
ong et al., 2015). A notable example is Baah et al. (2010) who
roposed to annotate traditional program dependence graphs
PDGs) with probabilities that capture dependence relations from
ynamic execution of test cases. They extend the PDG with edges
aving conditional probabilities that relate states of child nodes
o the states of their parents. Similarly, Feng and Gupta (2010)
using Bayesian Networks) and Gong et al. (2015) (using direct
alculations of conditional probabilities) model the correctness of
rogram statements (for fault localization) based on the control
low graph. Santelices and Harrold use probability models to
redict the likely impact of changes in forward slicing (Santelices
nd Harrold, 2010) by augmenting static forward slices with
elevance scores (labeling dependence edges in the interproce-
ural dependence graph with probabilities relating to coverage
nd propagation). While we also propose probabilistic modeling
f dependences of program elements we do not need an exist-
ng program dependence graph nor detailed information about
rogram execution state. Our coarser modeling is thus more

enerally applicable whilst still useful, at least for slicing.

19
8. Conclusion

This paper introduces and studies a new technique for mod-
eling program dependence based on dynamic observation. The
long term goal of this work is to enable the reformulation of
dynamic program dependency analysis into a probabilistic space
using statistical inference models. Doing so should lower analysis
costs but also allow more several and specific analysis tasks to be
supported. Furthermore, the cost is all upfront: once the model
is built, inferring results is very inexpensive. A single model can
also be reused for multiple analysis scenarios. At the same time,
the reformulation aims to retain the strengths of existing purely
dynamic dependency analysis (no need for prior static analysis,
language agnostic, scalable, etc.).

To illustrate the value of this new technique the paper studies
MOAD, which uses the inference model to produce (observation
based) dynamic slices. The results, presented in Section 5, illus-
trate the value of the probabilistic model. Specifically, MOAD can
produce slices that are only 12% larger than the 1-minimal W-
ORBS slices on average, from models built using only 18.6% of the
observations required by W-ORBS. Furthermore, once the model
is built, the slicing cost is negligible, and both backward and
forward slices can be produced from a single model.

Artifact

Our implementation of MOAD is publicly available via zen-
odo (Lee, 2021).

CRediT authorship contribution statement

Seongmin Lee: Conceptualization, Methodology, Investiga-
ion, Software, Data curation, Writing - original draft, Writing
review & editing. David Binkley: Methodology, Investigation,
riting - original draft, Writing - review & editing. Robert Feldt:
onceptualization, Methodology, Writing - original draft, Writing
review & editing. Nicolas Gold: Methodology, Writing - original
raft, Writing - review & editing. Shin Yoo: Conceptualization,

Methodology, Writing - original draft, Writing - Review & editing,
Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

Seongmin Lee and Shin Yoo have been supported by Next-
Generation Information Computing Development Program
through the National Research Foundation of Korea (NRF) funded
by the Ministry of Science, ICT (2017M3C4A7068179), as well
as by National Research Foundation of Korea (NRF), South Ko-
rea Grant NRF-2020R1A2C1013629. Robert Feldt has been sup-
ported by the Swedish Scientific Council (No. 2015-04913, Basing

Software Testing on Information Theory).

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988

R

B

B

B

B

B

B

B

C

C

D

E

F

G

G

G

G

H

H

H

J

J

K

L

L

L

eferences

aah, G.K., Podgurski, A., Harrold, M.J., 2010. The probabilistic program depen-
dence graph and its application to fault diagnosis. IEEE Trans. Softw. Eng. 36
(4), 528–545.

inkley, D.W., 1993. Precise executable interprocedural slices. ACM Lett.
Program. Lang. Syst. 3 (1–4), 31–45.

inkley, D., 1997. Semantics guided regression test cost reduction. IEEE Trans.
Softw. Eng. 23 (8), 498–516.

inkley, D., Gold, N., Harman, M., Islam, S., Krinke, J., Yoo, S., 2014.
ORBS: Language-independent program slicing. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on the Foundations of Software
Engineering. FSE 2014. pp. 109–120.

inkley, D., Gold, N., Harman, M., Islam, S., Krinke, J., Yoo, S., 2015. ORBS and the
limits of static slicing. In: Proceedings of the 15th IEEE International Working
Conference on Source Code Analysis and Manipulation. SCAM 2015. pp. 1–10.

inkley, D., Gold, N., Islam, S., Krinke, J., Yoo, S., 2019. A comparison of tree-
and line-oriented observational slicing. Empir. Softw. Eng. http://dx.doi.org/
10.1007/s10664-018-9675-9.

inkley, D., Harman, M., 2005. Locating dependence clusters and dependence
pollution. In: 21St IEEE International Conference on Software Maintenance.
Los Alamitos, California, USA. pp. 177–186.

haloner, K., Verdinelli, I., 1995. Bayesian experimental design: A review. Statist.
Sci. 273–304.

ollard, M.L., Decker, M.J., Maletic, J.I., 2013. SrcML: An infrastructure for the
exploration, analysis, and manipulation of source code: A tool demonstration.
In: Int’L Conf. Softw. Maintenance. IEEE, pp. 516–519. http://dx.doi.org/10.
1109/ICSM.2013.85.

o, H., Elbaum, S.G., Rothermel, G., 2005. Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact. Empir.
Softw. Eng. 10 (4), 405–435.

ttinger, R., Verbaere, M., 2004. Untangling: A slice extraction refactoring. In:
Proceedings of the 3rd International Conference on Aspect-Oriented Software
Development. In: AOSD ’04, ACM, New York, NY, USA, pp. 93–101. http://
dx.doi.org/10.1145/976270.976283, URL: http://doi.acm.org/10.1145/976270.
976283.

eng, M., Gupta, R., 2010. Learning universal probabilistic models for fault
localization. In: Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering. ACM, pp. 81–88.

allagher, K.B., 1989. Using Program Slicing in Software Maintenance (Ph.D.
thesis). University of Maryland, Baltimore, Maryland.

old, N., Binkley, D., Harman, M., Islam, S., Krinke, J., Yoo, S., 2017. Gener-
alized observational slicing for tree-represented modelling languages. In:
Proceedings of the 11th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering. ESEC/FSE 2017. pp. 547–558.

ong, D., Su, X., Wang, T., Ma, P., Yu, W., 2015. State dependency probabilistic
model for fault localization. Inf. Softw. Technol. 57, 430–445.

rammatech Inc., 2002. The codesurfer slicing system. URL: www.grammatech.
com.

ajnal, Á., Forgács, I., 2012. A demand-driven approach to slicing legacy COBOL
systems. J. Softw. Evol. Process 24 (1), 67–82. http://dx.doi.org/10.1002/smr.
533.

orwitz, S., Liblit, B., Polishchuk, M., 2009. Better debugging via output tracing
and callstack-sensitive slicing. IEEE Trans. Softw. Eng. 36 (1), 7–19.

orwitz, S., Reps, T., Binkley, D.W., 1990. Interprocedural Slicing Using
Dependence Graphs. Vol. 12. pp. 26–61.

ensen, F.V., 1996. Introduction to Bayesian Networks, first ed. Springer-Verlag,
Berlin, Heidelberg.

iang, S., McMillan, C., Santelices, R., 2017. Do programmers do change impact
analysis in debugging?. Empir. Softw. Eng. 22 (2), 631–669. http://dx.doi.org/
10.1007/s10664-016-9441-9.

arim, R., Tip, F., Sochurkova, A., Sen, K., 2019. Platform-independent dynamic
taint analysis for javascript. IEEE Trans. Softw. Eng. 1. http://dx.doi.org/10.
1109/TSE.2018.2878020.

attner, C., Adve, V., 2004. LLVM: A Compilation Framework for Lifelong Program
Analysis and Transformation. San Jose, CA, USA. pp. 75–88.

ee, S., 2021. Coinse/MOAD: First release, may, Zenodo, v1.0.0, http://dx.doi.org/
10.5281/zenodo.4740439.

ee, S., Binkley, D., Feldt, R., Gold, N., Yoo, S., 2019. MOAD: Modeling
observation-based approximate dependency. In: 2019 19th International
Working Conference on Source Code Analysis and Manipulation (SCAM).
IEEE, pp. 12–22.
20
Lee, S., Binkley, D., Gold, N., Islam, S., Krinke, J., Yoo, S., 2020. Evaluating lexical
approximation of program dependence. J. Syst. Softw. 160, 110459. http:
//dx.doi.org/10.1016/j.jss.2019.110459, URL: http://www.sciencedirect.com/
science/article/pii/S016412121930233X.

Livadas, P.E., Roy, P.K., 1992. Program dependence analysis. In: Proceedings of
the International Conference on Software Maintenance 1992. Los Alamitos,
California, USA. pp. 356–365.

Poon, H., Domingos, P., 2011. Sum-product networks: A new deep architecture.
In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV
Workshops). IEEE, pp. 689–690.

Rasmussen, C.E., 2003. Gaussian processes in machine learning. In: Summer
School on Machine Learning. Springer, pp. 63–71.

Santelices, R., Harrold, M.J., 2010. Probabilistic Slicing for Predictive Impact
Analysis. Technical Report GIT-CERCS-10-10, Georgia Institute of Technology.

Szumilas, M., 2010. Explaining odds ratios. J. Canad. Acad. Child Adolesc.
Psychiatry 19 (3), 227.

Tukey, J.W., 1970. Exploratory Data Analysis: Limited Preliminary Ed.
Addison-Wesley Publishing Company.

Weiser, M., 1979. Program Slices: Formal, Psychological, and Practical Investiga-
tions of an Automatic Program Abstraction Method (Ph.D. thesis). University
of Michigan, Ann Arbor, MI.

Weiser, M., 1984. Program Slicing, Vol. 10. pp. 352–357.
Yoo, S., Binkley, D., Eastman, R., 2017. Observational slicing based on visual

semantics. J. Syst. Softw. 129, 60–78.
Zhifeng Yu, Rajlich, V., 2001. Hidden dependencies in program comprehension

and change propagation. In: Proceedings 9th International Workshop on
Program Comprehension. IWPC 2001. pp. 293–299. http://dx.doi.org/10.1109/
WPC.2001.921739.

Zuluaga, M., Sergent, G., Krause, A., Püschel, M., 2013. Active learning for multi-
objective optimization. In: International Conference on Machine Learning.
pp. 462–470.

Seongmin Lee is a PhD candidate at School of Comput-
ing, KAIST, in Republic of Korea. He received BSc with a
double major in School of Computing and Department
of Mathematical Sciences from KAIST. His research in-
terest includes program analysis, dependency analysis,
program slicing, and genetic improvement.

David Binkley is a professor of Computer Science at
Loyola University Maryland where he has worked since
earning his doctorate from the University of Wisconsin
in 1991. He has been a visiting faculty researcher at the
National Institute of Standards and Technology (NIST),
worked with Grammatech Inc. on CodeSurfer develop-
ment, and was a member of the Crest Centre at Kings’
College London. Dr. Binkley’s current research, partially
funded by NSF, focuses on change recommendation and
observational program analysis. He recently completed
a sabbatical year working under Fulbright award with

the researchers at Simula Research, Oslo Norway.

Robert Feldt is a professor of Software Engineering
at Chalmers University of Technology, Sweden, and at
Blekinge Institute of Technology, Sweden. He has broad
research interests spanning from human factors to au-
tomation, statistics, and applied machine learning, and
he works, in particular, on software testing and quality,
requirements engineering, as well as human-centered
(behavioral) software engineering. Most of his research
is empirical and conducted in close collaboration with
industry partners in Sweden, Europe and Asia, but he
also leads more basic research. Dr Feldt received a PhD

in Computer Engineering from the Chalmers University of Technology in 2002,
has studied Psychology at Gothenburg University in the ’90s and has also worked
as an IT and software consultant for more than 25 years. He is co-Editor in Chief
of the Empirical Software Engineering journal and on the editorial board of two
other journals (STVR and SQJ).

http://refhub.elsevier.com/S0164-1212(21)00085-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb2
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb2
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb2
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb3
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb3
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb3
http://dx.doi.org/10.1007/s10664-018-9675-9
http://dx.doi.org/10.1007/s10664-018-9675-9
http://dx.doi.org/10.1007/s10664-018-9675-9
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb8
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb8
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb8
http://dx.doi.org/10.1109/ICSM.2013.85
http://dx.doi.org/10.1109/ICSM.2013.85
http://dx.doi.org/10.1109/ICSM.2013.85
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb10
http://dx.doi.org/10.1145/976270.976283
http://dx.doi.org/10.1145/976270.976283
http://dx.doi.org/10.1145/976270.976283
http://doi.acm.org/10.1145/976270.976283
http://doi.acm.org/10.1145/976270.976283
http://doi.acm.org/10.1145/976270.976283
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb12
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb12
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb12
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb12
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb12
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb13
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb13
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb13
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb15
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb15
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb15
http://www.grammatech.com
http://www.grammatech.com
http://www.grammatech.com
http://dx.doi.org/10.1002/smr.533
http://dx.doi.org/10.1002/smr.533
http://dx.doi.org/10.1002/smr.533
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb19
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb19
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb19
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb20
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb20
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb20
http://dx.doi.org/10.1007/s10664-016-9441-9
http://dx.doi.org/10.1007/s10664-016-9441-9
http://dx.doi.org/10.1007/s10664-016-9441-9
http://dx.doi.org/10.1109/TSE.2018.2878020
http://dx.doi.org/10.1109/TSE.2018.2878020
http://dx.doi.org/10.1109/TSE.2018.2878020
http://dx.doi.org/10.5281/zenodo.4740439
http://dx.doi.org/10.5281/zenodo.4740439
http://dx.doi.org/10.5281/zenodo.4740439
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb25
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb25
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb25
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb25
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb25
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb25
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb25
http://dx.doi.org/10.1016/j.jss.2019.110459
http://dx.doi.org/10.1016/j.jss.2019.110459
http://dx.doi.org/10.1016/j.jss.2019.110459
http://www.sciencedirect.com/science/article/pii/S016412121930233X
http://www.sciencedirect.com/science/article/pii/S016412121930233X
http://www.sciencedirect.com/science/article/pii/S016412121930233X
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb28
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb28
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb28
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb28
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb28
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb29
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb29
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb29
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb30
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb30
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb30
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb31
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb31
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb31
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb32
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb32
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb32
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb33
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb33
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb33
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb33
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb33
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb34
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb35
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb35
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb35
http://dx.doi.org/10.1109/WPC.2001.921739
http://dx.doi.org/10.1109/WPC.2001.921739
http://dx.doi.org/10.1109/WPC.2001.921739
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb37
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb37
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb37
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb37
http://refhub.elsevier.com/S0164-1212(21)00085-6/sb37

S. Lee, D. Binkley, R. Feldt et al. The Journal of Systems & Software 179 (2021) 110988
Nicolas Gold is an Associate Professor of Computer
Science at University College London. He was awarded
his doctorate from the University of Durham in 2000
and worked at UMIST and King’s College London before
joining UCL in 2010. His current research interests
include program analysis, ethics, and applications of
computer music in e-health and education.
21
Shin Yoo is an associate professor in the School of
Computing at Korea Advanced Institute of Science and
Technology (KAIST), Republic of Korea. From 2012 to
2015, he was a lecturer of software engineering in
Centre for Research on Evolution, Search, and Testing
(CREST) at University College London, UK. He received
PhD in Computer Science from King’s College London,
UK, in 2009. He received MSc and BSc from King’s
College London and Seoul National University, Korea,
respectively. His main research interest lies in Search
Based Software Engineering, i.e. the use of metaheuris-

tics and computational intelligence, such as genetic algorithm, to automatically
solve various problems in software engineering, especially those related to
testing and debugging.

	Observation-based approximate dependency modeling and its use for program slicing
	Introduction
	Approximating program dependency
	MOAD: Modeling observation-based approximate dependency
	Terminology
	Observation phase
	Inference phase
	Once success (O)
	Logistic (L)
	Bayesian (B)

	Observation-based forward slicing

	Experiment setup
	Research questions
	Baseline
	Observation-Based Slicing (ORBS)
	CodeSurfer

	Configuration
	Subjects
	Metrics

	Results
	Viability (RQ1)
	Impact of model type (RQ2)
	Comparison with ORBS (RQ3)
	Efficiency
	Slice size
	Accuracy

	In-depth comparison to static backward slicing (RQ4)
	Sampling effect (RQ5)
	In-depth comparison to static forward slicing (RQ6)

	Discussions and future work
	Advanced and adaptive deletion generation scheme
	Conditional dependency modeling and alternative inferencemodels
	Additional applications

	Related work
	Conclusion
	Artifact
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

