
MOAD: Modeling Observation-based Approximate
Dependency

Seongmin Lee
KAIST

Daejeon, Republic of Korea

bohrok@kaist.ac.kr

David Binkley
Loyola University Maryland
Baltimore, United States

binkley@cs.loyola.edu

Robert Feldt
Chalmers University of Technology

Gothenburg, Sweden

robert.feldt@chalmers.se

Nicolas Gold
University College London
London, United Kingdom

n.gold@ucl.ac.uk

Shin Yoo
KAIST

Daejeon, Republic of Korea

shin.yoo@kaist.ac.kr

Abstract—While dependency analysis is foundational to many
applications of program analysis, the static nature of many exist-
ing techniques presents challenges such as limited scalability and
inability to cope with multi-lingual systems. We present a novel
dependency analysis technique that aims to approximate program
dependency from a relatively small number of perturbed execu-
tions. Our technique, called MOAD (Modeling Observation-based
Approximate Dependency), reformulates program dependency as
the likelihood that one program element is dependent on another,
instead of a more classical Boolean relationship. MOAD generates
a set of program variants by deleting parts of the source code,
and executes them while observing the impacts of the deletions on
various program points. From these observations, MOAD infers
a model of program dependency that captures the dependency
relationship between the modification and observation points.
While MOAD is a purely dynamic dependency analysis technique
similar to Observation Based Slicing (ORBS), it does not require
iterative deletions. Rather, MOAD makes a much smaller number
of multiple, independent observations in parallel and infers
dependency relationships for multiple program elements simul-
taneously, significantly reducing the cost of dynamic dependency
analysis. We evaluate MOAD by instantiating program slices
from the obtained probabilistic dependency model. Compared
to ORBS, MOAD’s model construction requires only 18.7% of
the observations used by ORBS, while its slices are only 16%
larger than the corresponding ORBS slice, on average.

I. INTRODUCTION

Understanding dependencies between program elements is

a fundamental task in software engineering [1], [2]. It provides

a basis for many software engineering tasks including program

comprehension [3], software testing [4], maintenance [5], [6],

refactoring [7], security [8], and debugging [9]. The traditional

static approach based on dependence graphs [10] has been

widely adopted but suffers from issues such as its inability to

handle multi-lingual systems (combining analyses for multiple

languages is too complicated) and limited scalability (partial

analysis of a large system is not viable using static approaches

that require whole-program analyses).

Observation Based Slicing (ORBS) [11]–[14] was designed

to overcome these issues. ORBS applies speculative deletions

iteratively to the program under analysis, and observes whether

the latest applied deletion is viable (i.e., the code compiles

after deletion) and is unrelated to the slicing criteria (i.e., the

variable of interest shows the same behaviour after deletion

with respect to a test suite). When deletions are made at the

line of text level, ORBS can be entirely language agnostic [11]

and can analyse files for which the grammar is unavailable/un-

known and languages with unconventional semantics, such as

Picture Description Languages (PDLs) [15]. Despite its bene-

fits, ORBS has one clear drawback: the cost of analysis. Being

a purely dynamic approach, it iteratively attempts to validate

its speculative deletion of program elements via compilations

and test executions. As such, it can incur a significant cost.
This paper investigates whether it is possible to perform

approximate dependency analysis dynamically at a lower cost.
A precise dependency analysis can report whether program

element A depends on program element B or not: the out-

come is Boolean. An approximate dependency analysis instead

reports the likelihood that A depends on B: the outcome is a

real number. While probabilistic program dependency analysis

techniques have been proposed before [2] they require an

initial static analysis which is then extended with probabilistic

information based on test executions. We conjecture that a

more general, approximate dependency analysis based on

dynamic observations can still be useful in many program

analysis contexts while being significantly less costly.
The approximate nature of our approach stems from the

fact that it infers a stochastic model of program dependencies.

Unlike ORBS which performs iterative deletions to analyse

program dependency with respect to a single program element

(i.e., the slicing criterion), our technique, MOAD (Model-

ing Observation-based Approximate Dependency), learns an

approximate model of program dependence from (a smaller

number of) dynamic observations. Intuitively, ORBS makes a

single slice increasingly more accurate by iterative deletion.

MOAD, however, employs a set of deletions that can be

treated independently. For each, it observes multiple program

elements. This approach introduces the following benefits:

• MOAD requires many fewer observations than ORBS, as

12

2019 19th International Working Conference on Source Code Analysis and Manipulation (SCAM)

2470-6892/19/$31.00 ©2019 IEEE
DOI 10.1109/SCAM.2019.00011

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:47:06 UTC from IEEE Xplore. Restrictions apply.

it infers the relationships between individual deletions and

thus the dependency, instead of uncovering dependence

information by iteratively deleting until it arrives at a

one-minimal slice [11].

• The output of MOAD can be used to construct multiple

slices, whereas a single ORBS run produces a single slice.

• Moreover, since the observations required by MOAD

are independent from each other, MOAD is inherently

parallel.

To evaluate our claims, we have implemented MOAD and

performed dependency analysis against a benchmark suite of

programs that have been widely used in the slicing literature.

We evaluate the viability and the accuracy of MOAD by

instantiating concrete slices based on the outcome of MOAD:

program element A is in the backward slice of program

element B iff the reported likelihood of B depending on A

is greater than a threshold value. A comparison to a baseline

random slicing technique shows that MOAD is indeed learning

program dependencies; a comparison to ORBS slices shows

that MOAD can produce slices that are only 16% larger than

ORBS slices, while using only 18.7% of the observations. We

also investigate various ways to construct the observation sets,

as well as the impact of different inference models. Note that

dependency modeling is more general than program slicing

(and has other uses [2]). However, we leave these additional

use cases for future work and focus here on slicing as a

representative approach.

The technical contributions of this paper are as follows:

• We introduce the concept of learning approximate de-

pendency analysis, which transforms the dependency

relationship from Boolean to probabilistic.

• We present MOAD, a technique that models approximate

program dependency, and describe the essential compo-

nents: how to generate observations, and how to infer

models of program dependency.

• We conduct an empirical evaluation of MOAD via pro-

gram slices instantiated from the learned models.

The rest of this paper is organised as follows. Section II

introduces the concept of approximate dependency analysis,

and explains how it relates to the existing slicing technique

ORBS. Section III introduces MOAD, a technique that aims

to model approximate dependency, and how we can use it for

slicing by instantiating program slices from the learned de-

pendency models. Section IV presents the set-up of empirical

evaluation, the results of which are reported in Section V.

Section VI contains discussions of our findings and potential

future work. Section VII presents the related work, and Sec-

tion VIII concludes.

II. APPROXIMATING PROGRAM DEPENDENCY

Program dependencies are dependence relations that hold

between elements of a program (e.g., statements, expressions,

or variables). If the computation of one element directly

or indirectly affects the computation of another element we

consider them to be dependent. A plethora of techniques have

been proposed to capture and model dependence information.

Often these techniques are static and require parsing and

detailed analysis of program elements based on the semantics

of the programming language in question. The outcome of

the analysis typically captures a binary dependence relation

where two program elements either have or may not have

a dependence relation. While dynamic dependence analysis

approaches have been proposed, they typically annotate an

already extracted static model with probabilities based on

concrete executions [2] (static-then-annotate) or do not build

any explicit model at all [11].

One downside of the static and static-then-annotate ap-

proaches is that they cannot handle heterogeneous systems,

some of whose components are either binary, or written in

multiple languages and file formats. Even if it is possible in

theory to combine analyses of multiple languages and formats,

concrete tools actually support only a fixed and typically small

selection. An additional practical problem is that they need to

duplicate the early stages of multiple compiler tool chains.

Observation-based slicing [11] (ORBS) addresses these

problems and allows language-agnostic dynamic slicing with-

out detailed semantic knowledge, by reusing the build chain.

An implementation of ORBS is also trivial and requires very

few lines of code. However, ORBS does not learn a general

model of the program components and their relations. Given

a target slicing criterion, it simply creates a slice through iter-

ative build and execute cycles. The process has to be repeated

if another slicing criterion is selected for analysis, which

typically happens in fault diagnosis or debugging applications.

This paper proposes a middle ground that leverages the

minimal requirements, general applicability, and easy imple-

mentation of lightweight dynamic analysis techniques such as

ORBS, while modeling dependence relations approximately.

By not requiring any detailed syntactic or semantic knowl-

edge of the components or programming languages involved,

we can support heterogeneous systems with a very general

approach and tool. Since our model building is based on a

few, specific, dynamic executions it can only approximate
the complete dependency information. However, explicitly

building such probabilistic models brings potential advantage

over model-free, dynamic approaches such as ORBS, which

do not learn anything between invocations. We posit that

there exists an interesting and possibly complementary trade-

off between what we propose and existing program analysis

methods.

While the idea of approximate program dependency model-

ing is a general one, we focus below on a simple instantiation

of it that targets slicing. This allows us to study the potential

benefits compared to a well-known and general technique.

Thus in the following we thus describe MOAD in the context

of program slicing.

III. MOAD: MODELING OBSERVATION-BASED

APPROXIMATE DEPENDENCY

This section first overviews the key terminology used to

describe MOAD, before presenting its two phases: the obser-

vation phase and the inference phase. The output of the first

13

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:47:06 UTC from IEEE Xplore. Restrictions apply.

phase is a set of observations. These observations form the

input to the inference phase, which builds an inference model

M that aims to capture the dependence within the program. As

a case study, we illustrate M by inferring program slices [16],

[17]. In the next section we compare the inferred slices with

those produced using ORBS [11], [12].

A. Terminology

Our approach is dynamic in nature and thus, in addition to a

program, P , it takes a set of test inputs, I . We identify within

P a set of deletable units U = {u1, ..., u|U |}. For example,

U might be composed of lines of text, program statements,

or blocks of code within a program. We subsequently create

sub-programs of P , P ′, by deleting one or more units from P .

To support the inference process, we represent a sub-program

as a boolean vector, called deletion, which has one entry for

each unit. In this vector deleted units are assigned the value

TRUE and retained units are assigned the value FALSE.

Borrowing the notion from program slicing [16], [17],

we assess the impact of deleting various units at a set of

(slicing) criteria, C = {c1, ..., c|C|}. Each criteria ci includes a

program location (e.g., a line number) and a variable of interest

(e.g., the variable updated by an assignment statement). To

determine the impact of deleting a given unit, we observe

the sequence of values produced by each criterion. The result

is a boolean vector, called response, that has one entry per

criterion. The entry ci has the value TRUE iff the sequence

of values produced for ci is unaffected by the deletion (with

respect to the sequence produced by the original program).

The key assumption here is that, if the deletion of unit ua

brings about a change in the the trajectory for criterion cb,

then the criterion cb likely depends on (some part of) unit ua.

B. Observation Phase

The core of the first phase is a deletion generation scheme,

which generates the set of deletions used to produce program

mutants. Our experiments consider the two n-hot deletions

schemes: 1-hot and 2-hot. The first, 1-hot generates |U |
deletions where each deletion removes exactly one unit. In

other words, it generates all of the one-hot encoding vectors

of length |U |. The second, 2-hot subsumes 1-hot; it considers

both all single units and all pairs of units. (Because 2-hot in-

volves dramatically more deletions than 1-hot, in Section V-D

we also consider the impact of sampling the 2-hot data.)

Algorithm 1 describes the observation phase. Its input in-

cludes, P , the program under study, I , the input test suite, and

a deletion generation scheme, GENSCHEME. The algorithm

assumes that P has been annotated to output a sequence of

values capturing each slicing criterion, similar to ORBS [11].

The algorithm first initializes the output observation set, O,

to the empty set, E to the expected output sequence for each

criteria (collected from the execution of unmodified P and

I), and the set of deletions generated using the given scheme.

Subsequently, Lines 4-9 process each deletion by first using

the function APPLY to generate sub-program P ′ composed of

only the non-deleted units (omitting those those units whose

Algorithm 1: Observation phase

input : P : an annotated version of the input program

I: test suite

GENSCHEME: deletion generation scheme

(1-hot, 2-hot)

output: O: a set of observations

1 O ← {}
2 E ← OBSERVE (P, I) // retain expected output

3 deletions← GENSCHEME (P)
4 while ¬deletions.EMPTY () do
5 deletion← deletions.REMOVE ()
6 P ′ ← APPLY (P, deletion)
7 X ← OBSERVE (P ′, I)
8 response← COMPARE (E,X))
9 O ← O ∪ {(deletion, response)}

10 return O

value in deletion is TRUE). Next, function OBSERVE executes

P ′ using set of inputs I to produce the trajectories for each

criterion as produced by the annotations in P . The final step

compares the expected output E with the output of P ′, to

produce the result vector response. Note that P ′ may fail

to compile in which case its outputs will fail to match the

expected output. The response is paired with the deletion

and recorded in the set of observations to be returned by

the algorithm. The main difference between Algorithm 1 and

ORBS is that while ORBS is a cumulative process to produce a

slice for one slicing criterion, each observation in Algorithm 1

is independent, thus it can be done in parallel.

To illustrate Algorithm 1, consider a program P with

three statements S1, S2, and S3 using the 1-hot generation

scheme. With three statements, 1-hot produces the three dele-

tions {TRUE, FALSE, FALSE}, {FALSE, TRUE, FALSE}, and

{FALSE, FALSE, TRUE}. Applying the first deletion to P
produces the two statement program S2;S3, which is then

observed (compiled and executed using input I).

C. Inference phase

The inference phase, described in Algorithm 2, infers the

slices for each criterion. The algorithm uses the set of obser-

vations, O, (output by the first phase) to train an inference

model, M : C → D = Boolean|U |, where D is the set of

possible deletions. Then, for each slicing criterion, M is used

to infer a set of deletions, which is applied to the original

program to produce the slice.

The key assumption made in the inference process is that

if deleting the unit um changes the trajectory of the slicing

criterion ck, then um is likely to be in the slice of ck.

While this connection is straightforward, this data tends to

overestimate deletability for the 1-hot data. For example when

either of two statements can be deleted, but not both [11]. In

contrast, for n-hot when n is greater than one, it is possible

that not all of the deleted units influence ck.

The remainder of this subsection details three different

inference models studied in the next section. As a notational

14

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:47:06 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Inference phase

input : P : an input program

C: a set of slicing criteria

O: a set of observations

dsg mdl: a design of model (one of O,L,B)

output: P∫ : set of inferred slices; one for each slicing

criterion ck ∈ C
1 M ← dsg mdl.TRAIN (O)
2 P∫ ← {}
3 for ck ∈ C do
4 deletion←M (ck)
5 Pk ← APPLY (P, deletion)
6 P∫ ← P∫ ∪ {Pk}
7 return P∫
convenience, hereafter we use “0” and “1” to denote “FALSE”

and TRUE”, respectively.

Once Success (O): The Once Success model explicitly

follows the aforementioned assumption. Assume subprogram

P ′ is obtained from program P by removing deletion unit um.

If P ′ preserves the trajectory of the slicing criterion ck, the

model removes um from the slice of ck. More formally, the

Once Success model, MO, trained with observations O, infers

the deletion of the slice of ck as follows:

MO (ck) [m] =

{
1, if ∃ (d, r) ∈ O s.t. d [m] = 1 and r [k] = 1

0, otherwise

where d [m] represents the mth element of deletion vector

s and r [k] represents the kth element of response vector r.

Thus, d [m] = 1 and r [k] = 1 represents that unit m has been

deleted and the response for criterion k is unchanged.

Logistic (L): The Logistic model regards the response ele-

ment, r [k] (for slicing criterion ck) as a dependent variable and

the elements of the deletion, d, as the independent variables.

Because the variables are binary values, they are modeled

using logistic regression,

r [k] ≈ L(d, βk),

where the elements of βk are the coefficients of the regression.

The sign of each coefficient is used to determine if the

corresponding unit is removed to preserve the slicing criterion

ck. If βk [m], the mth coefficient of βk, has a positive value,

um is more likely to be removed from the slice, while a

negative value indicates that um is less likely to be removed

from the slice. More formally, ML, the Logistic model, infers

the deletion vector for the slice taken with respect to ck as

follows:

ML (ck) [m] =

{
0, if βk [m] ≤ 0

1, if βk [m] > 0
.

Bayesian (B): The final model we consider uses Bayesian

inference. We assume that P (ck|um) denotes the conditional

probability of preserving the trajectory of ck when the unit

um has been deleted. From the observations, O, we estimate

P̂ (ck|um) as follows:

P (ck|um) = P (preserves trajectory of ck|um has been deleted)

= P (r [k] = 1|d [m] = 1)

=
P (r [k] = 1, d [m] = 1)

P (d [m] = 1)

P̂ (ck|um) =
#(r [k] = 1 and d [m] = 1)/|O|

#(d [m] = 1)/|O|
=

#(r [k] = 1 and d [m] = 1)

#(d [m] = 1)
,

where #(cond) is a number of observations in O satisfying

the condition cond. Formally, MB, the Bayesian model, infers

the deletion of the slice of ck as follows:

MB (ck) [m] =

{
0, if P̂ (ck|um) ≤ μi∈{1..|U |}(P̂ (ck|ui))

1, if P̂ (ck|um) > μi∈{1..|U |}(P̂ (ck|ui)),

where μi∈{1..|U |}(P̂ (ck|ui)) is an average value of the esti-

mated probability.

IV. EXPERIMENT SETUP

A. Research Questions

We evaluate MOAD by investigating the following four

research questions.

RQ1. Viability: Do the learned models capture program
dependence information?

To ascertain if our approach is viable we compare the

learned models’ ability to produce slices against that of a

random slicer. If none of the models can outperform a random

slicer then there is no reason to consider them further.

RQ2. Impact of the inference model: Assuming that more
than one model is viable, how does the performance of the
viable models compare?

To study RQ2 we consider the ability of each model to

compute program slices. Because the models are trained with

runtime information, they approximate dynamic slices. The

most closely related dynamic slicing approach is observational

slicing. As benchmarks we consider the slices produced by

two observational slicing implementations W-ORBS [11] and

T-ORBS [13], [14]. While these two are expected to produce

more accurate slices than MOAD, they are also expected to

take longer to do so.

When considering RQ2, performance is compared in terms

of both slice precision, measured in lines of code, and slicing

effort, measured as the number of observations required.

RQ3. Performance compared to ORBS: For the best in-
ference model, how well does MOAD perform compared to
ORBS?

Based on the results from RQ2, we compare the perfor-

mance of ORBS and MOAD when using the best of the viable

models. Parallel to RQ2, effort is measured in terms of the

number of observations required. However, for precision, we

take a more refined approach and count both missing and

excess lines relative to the W-ORBS slice.

15

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:47:06 UTC from IEEE Xplore. Restrictions apply.

RQ4. Sampling effect: How feasible is using only a sample
of the 2-hot data?

The primary goal of RQ4 is to determine if there is a

sweet spot in the analysis that best balances precision and

effort. Our expectation here is that a model trained with

more observations will have higher precision, but require

greater effort. To investigate RQ4, we consider ten different

sample sizes when sampling from each program’s set of 2-hot

observations. The sizes include 10%, 20%, ..., 100% of the

2-hot observations. Since the performance might be biased by

a particular sample, we repeat the sampling for each size ten

times.

B. Subjects

Subject SLoC |U | |C|
mbe 64 45 16
mug 61 44 13
wc 46 33 17

prttok 410 388 98
prttok2 387 364 75
replace 508 465 253
sched 283 252 75
sched2 276 248 81
totinfo 314 227 210
tcas 152 110 62

TABLE I: The statistics of experiment subjects’ properties.

Table I shows the programs we study. It includes the

number of non-comment-non-blank lines (SLoC), the number

of units, and the number of criteria used. The first three

subjects, mbe, mug, wc, are small, well known, programs

that have well studied semantics. This makes them amenable to

careful precise study. Furthermore, the first two raise specific

challenges to dependence analysis and thus serve to highlight

the pros and cons of our approximation technique. In addition,

we study the Siemens suite [18], to see how our technique

works on ordinary C code. The Siemens suite is used in lieu of

larger programs because it is possible to exhaustively compute

all the slices of each program (for all scalar slicing criteria).

This removes any slice selection bias from the data.

C. Observation-based Slicing (ORBS)

We use Observation-Based Slicing (ORBS) [11] as a bench-

mark approach to evaluate the performance of MOAD. ORBS

is a dynamic program slicing technique based on direct ob-

servation of program semantics (when executing the program

on a chosen test suite). An ORBS slicer performs iterative,

speculative deletion of parts of the code. Each deletion is made

permanent if it preserves the trajectory of values computed at

the slicing criterion.

The original ORBS implementation [11], slices source code

at the line-of-text level. We refer to this algorithm as W-ORBS

where the ‘W’ captures the use of a deletion window, in which

W-ORBS considers the deletion of a sequence of consecutive

lines of text. In addition to a performance advantages, the use

of a deletion window enables W-ORBS to delete lines that can

only be deleted together (e.g., the pair of brackets that enclose

an empty block). Applied to line li, W-ORBS attempts to

delete from one to k lines (i.e., from {li} to {li, . . . , li+k−1}).
If it successfully deletes j lines (i.e., {li, . . . , li+j−1}), the

deletion continues with line li+j ; if all k attempts fail, the

deletion continues with line li+1. Thus after each successful

deletion, W-ORBS moves onto the next target source code line

(skipping over the deleted lines), while after each unsuccessful

deletion it reverts the deletion before moving on to the next

line of the file. W-ORBS performs multiple passes over the

code until it cannot delete anything further, producing a 1-

minimal line slice [11].
A recent variation of W-ORBS, T-ORBS [13], [14] works

with a tree-based representation. T-ORBS performs a breadth-

first tree traversal using a work list. For each node, n, it

attempts to delete the subtree rooted at n. If the resulting

program produces the same trajectory for the slicing criterion

then the subtree is permanently deleted. Otherwise, its children

are appended on the work list for later consideration. The

T-ORBS implementation we used employs SrcML [19] to

produce an XML tree from a program. It is important to note

that we modified the original T-ORBS algorithm to attempt

to delete only those syntactic elements that are considered by

MOAD; in this case statements. Our motivation for modifying

T-ORBS to attempt the deletion of only those syntactic ele-

ments that correspond to the units considered by MOAD is to

provide an apples-to-apples comparison. Otherwise T-ORBS

takes considerably longer as it has to consider numerous sub-

trees that represent only a subset of the statement. Doing so

requires introducing a small amount of language information

into an otherwise language agnostic algorithm but provides a

better basis for comparison (and as a consequence also brings

a dramatic speedup).

D. Configuration
In the initial experiments, the units considered by MOAD

are programming language statements. We use SrcML (version

0.9.5) [19], an XML-based multi-language parsing tool, to

identify statements. SrcML enables our approach to be applied

to any programming language, including multi-lingual pro-

grams, that SrcML can process. Other than this dependence,

our algorithm is language independent.
The set of slicing criteria considered consist of all scalar

(char, int, float, etc.) assignments. We use Clang (ver-

sion 3.8) [20] to insert logging statements for each slicing

criterion. These statements are responsible for outputting the

sequence of values computed for the criteria. A slicer’s goal is

to preserve this sequence while removing unnecessary code.
As a benchmark, we apply both W-ORBS (with maximum

window size of three) and (the modified) T-ORBS to our

subjects.
The experiments were performed under Ubuntu 16.04, on

an Intel(R) Core(TM) i7 CPU with 32GB of memory using

gcc version 5.5.0.

E. Metrics
There are various metrics used to measure and to compare

the performance of the slicing techniques.

16

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:47:06 UTC from IEEE Xplore. Restrictions apply.

• WSk, TSk, and MSk: The slice taken with respect to

criterion ck as computed by W-ORBS, T-ORBS, and

MOAD, respectively.

• miss: Given a reference slice (e.g., WSk) and an inferred

slice (e.g., MSk) the number of units that should have
been removed (i.e., that were missed) from the inferred

slice. In other words, it is the number of units in the

inferred slice that are not in the reference slice.

• excess: Given a reference slice (e.g., WSk) and an

inferred slice (e.g., MSk) the number of units that are

excessively removed from the inferred slice. In other

words, it is the number of units in the reference slice

that are not in the inferred slice.

By design T-ORBS and MOAD share the same set of

deletable units. Thus, we can calculate miss and excess
directly applying a set difference between the set of units

making up the slice. Since W-ORBS modifies the source code

at the line-of-text level, the same method is not viable when

comparing W-ORBS and MOAD. Instead, we use a python

difflib module to calculate miss and excess at the line level.

V. RESULTS

A. Viability

To answer RQ1, we first create a random slicer. Our

implementation randomly deletes each unit with a probability

of 0.5. For every slicing criterion in every subject program, we

run the random slicer ten times and check whether the slice

generated preserves the trajectory of the slicing criterion. With

900 slicing criteria (see Table I) spread across the ten subject

programs, the random slicer generates 9,000 slices in total.

Only fifteen of the random slices compile, and none of them

preserve the trajectory of the given slicing criterion. This result

clearly indicates that it is very unlikely to produce a slice by

chance.

Subject
Deletion

Gen. Scheme
Success Rate

O L B

mbe 1-hot 100% 100% 100%
2-hot 100% 100% 100%

mug 1-hot 100% 100% 100%
2-hot 100% 100% 100%

wc 1-hot 100% 100% 100%
2-hot 88% 76% 100%

prttok 1-hot 03% 04% 11%
2-hot 03% 03% 11%

prttok2 1-hot 72% 19% 77%
2-hot 63% 13% 67%

replace 1-hot 7% 31% 28%
2-hot 3% 13% 31%

sched 1-hot 48% 47% 41%
2-hot 39% 35% 43%

sched2 1-hot 30% 26% 28%
2-hot 17% 26% 28%

totinfo 1-hot 52% 50% 62%
2-hot 32% 10% 65%

tcas 1-hot 48% 90% 48%
2-hot 26% 68% 48%

TABLE II: MOAD’s success rate on the ten test subjects

In contrast, Table II shows the ability of MOAD to produce

viable slices that not only compile, but also capture the desired

semantics. In the table, the second column shows the deletion

generation scheme used to generate the observations. Then

in the remaining columns we report the success rate for

each of the three inference models, O, L, and B, as the

percentage of ‘slices’ that preserve the desired trajectory. For

the smaller programs mbe, mug, and wc, most slices preserve

the trajectory successfully. For the Siemens suite 42% of the

generated slices preserve the trajectory.

In the table, prttok shows a particularly low success rate.

Investigating this, we found that the root cause was two

lines of code, shown in the snippet below, where there is

a data dependence from Line 188 to Line 189. What is

unusual about these two lines is that for many slices that

do not depend on the value of t o k e n p t r it is possible to

individually delete either Line 188 or 189 without affecting

the trajectory, but not both. Thus the model learns to remove

each line. Consequently, when MOAD infers a slice it tends to

unwantedly omit both lines. The result is that most trajectories

change. This suggests the use of stronger statistical models

(e.g., Rasmussen’s Gaussian processes [21]), that can capture

higher-level interaction effects between program elements.

164 s t a t i c t o k e n n u m e r i c c a s e (. . .)
165 {

. . .
188 s t r c p y (t o k e n p t r−>t o k e n s t r i n g , t o k e n s t r) ;
189 re turn (t o k e n p t r) ;
190 }

Based on these results, we answer RQ1 as follows:

RQ1. Viability: Inference models trained using dynamic

observations can successfully learn program dependence.

B. Model Impact

Our initial look at the impact that a given model has focuses

on the model’s ability to remove units. Table III shows the

average slice size, μ (WSk), μ (TSk), and μ (MSk), over all

slicing criteria for W-ORBS, T-ORBS, and the three models

used with MOAD. To facilitate inter-program comparison,

the average slice sizes are given as a percentage of the

original program’s size. The table also shows the number of

observations involved. For W-ORBS and T-ORBS this count

reflects the number of compilations and executions made while

computing each slice, while for MOAD the number is the

number of compilations and executions used in constructing

the training data.

To gain some intuition for the relative slice sizes, we first

compare MOAD’s average slice size with that of W-ORBS

and then T-ORBS before focusing in on the impact of the

individual models. Due to the approximate nature of the

inference, MOAD is expected to generate larger slices than

W-ORBS or T-ORBS. To normalize the data across programs,

we first consider the ratio of the average slice size generated

using one of the six MOAD variants (2 deletion generation

scheme × 3 inference model) to the average W-ORBS slice

size.

Compared to W-ORBS, the results find that MOAD pro-

duces slices that are on average 45% larger than those pro-

17

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:47:06 UTC from IEEE Xplore. Restrictions apply.

Subject
W-ORBS T-ORBS 1-hot 2-hot

|OW| μ (WSk) |OT| μ (TSk) |OM| |OM|
|OW|

|OM|
|OT|

μ (MSk) |OM| |OM|
|OW|

|OM|
|OT|

μ (MSk)
O L B O L B

mbe 6,546 35.1% 1,163 40.6% 47 0.72% 4.04% 46.0% 48.2% 45.8% 948 14.5% 81.5% 43.4% 48.4% 46.2%
mug 4,420 25.6% 969 33.7% 46 1.04% 4.75% 41.7% 51.0% 43.1% 904 20.5% 93.3% 35.8% 48.3% 45.5%
wc 3,843 23.7% 860 30.3% 35 0.91% 4.07% 37.3% 54.6% 46.9% 454 11.8% 52.8% 31.6% 44.9% 41.7%
prttok 262,374 43.3% 68,372 43.2% 390 0.15% 0.57% 51.8% 58.3% 59.9% 74,175 28.3% 108.5% 43.6% 43.1% 58.6%
prttok2 246,668 37.3% 41,324 38.8% 366 0.15% 0.89% 42.6% 66.6% 49.6% 65,393 26.5% 158.2% 37.6% 56.2% 48.8%
replace 1,214,230 45.6% 311,323 45.9% 467 0.04% 0.15% 54.9% 68.3% 60.9% 106,412 8.8% 34.2% 44.1% 50.9% 61.0%
sched 130,199 37.3% 33,911 37.9% 254 0.20% 0.75% 59.5% 69.1% 61.5% 31,181 23.9% 91.9% 45.3% 58.4% 62.9%
sched2 93,173 35.3% 31,200 33.7% 250 0.27% 0.80% 49.2% 64.6% 56.8% 30,227 32.4% 96.9% 38.4% 49.5% 56.3%
totinfo 451,715 33.9% 86,499 39.7% 229 0.05% 0.26% 50.8% 55.8% 53.5% 25,151 5.6% 29.1% 43.2% 31.5% 53.3%
tcas 40,883 37.3% 11,377 33.3% 112 0.27% 0.98% 46.2% 70.5% 47.5% 5,846 14.3% 51.4% 39.4% 53.1% 47.7%

Average: 35.4% 37.7% 0.37% 1.73% 48.0% 60.7% 52.5% 18.7% 79.8% 40.2% 48.4% 52.2%

TABLE III: |OW|, |OT|, and |OM| denote the number of observations used by each of W-ORBS, T-ORBS, and MOAD, respectively. μ (WSk), μ (TSk),
and μ (MSk) denote the mean slice size, given as a percentage of the original program’s size, generated by each W-ORBS, T-ORBS and MOAD, respectively.
Columns 9-11 and 15-17 show μ(MSk) separately for each of the three models where the smallest mean for the three is shown in bold.

Subject
Deletion

Generation
Scheme

MSk vs WSk (line) MSk vs TSk (line) MSk vs TSk (stmt)
O L B O L B O L B

E(%) M(%) E(%) M(%) E(%) M(%) E(%) M(%) E(%) M(%) E(%) M(%) E(%) M(%) E(%) M(%) E(%) M(%)

mbe 1-hot 2(3) 11(18) 2(3) 13(21) 2(3) 11(18) 3(5) 9(15) 3(6) 11(18) 3(6) 9(15) 1(3) 5(13) 1(3) 7(16) 1(3) 6(14)
2-hot 2(3) 9(15) 2(3) 13(21) 2(3) 11(19) 2(4) 6(10) 3(5) 11(18) 3(6) 9(15) 1(3) 3(6) 1(3) 6(14) 1(3) 6(14)

mug 1-hot 8(14) 13(22) 7(12) 19(32) 8(14) 14(24) 0(1) 6(11) 2(4) 15(25) 0(0) 7(12) 0(0) 7(17) 0(0) 15(34) 0(0) 8(18)
2-hot 8(14) 10(16) 8(13) 18(30) 8(13) 16(27) 0(1) 3(5) 0(1) 12(19) 0(1) 9(15) 0(1) 1(4) 0(0) 10(24) 0(0) 8(19)

wc 1-hot 5(11) 8(18) 4(9) 16(36) 4(10) 13(28) 1(2) 6(13) 2(4) 15(34) 1(3) 11(24) 0(1) 4(14) 0(1) 11(34) 0(1) 6(21)
2-hot 5(12) 6(13) 5(12) 13(28) 4(10) 10(23) 1(3) 3(8) 2(6) 11(25) 1(3) 9(20) 1(4) 2(7) 1(4) 8(25) 0(2) 5(17)

prttok 1-hot 54(13) 63(15) 42(10) 81(19) 50(12) 92(22) 9(2) 45(11) 17(4) 81(19) 6(1) 75(18) 6(1) 42(10) 5(1) 71(18) 3(0) 72(18)
2-hot 58(14) 34(8) 69(16) 46(11) 50(12) 87(21) 15(3) 18(4) 39(9) 42(10) 6(1) 70(17) 11(2) 15(3) 30(7) 34(9) 4(1) 66(17)

prttok2 1-hot 34(8) 39(10) 27(7) 128(33) 30(7) 61(15) 12(3) 28(7) 14(3) 125(32) 15(3) 57(14) 7(2) 33(9) 4(1) 95(26) 5(1) 50(13)
2-hot 37(9) 23(6) 33(8) 94(24) 30(7) 58(15) 13(3) 10(2) 16(4) 87(22) 15(3) 54(14) 9(2) 7(2) 10(2) 59(16) 5(1) 48(13)

replace 1-hot 113(22) 110(21) 101(20) 171(33) 105(20) 132(25) 29(5) 81(16) 30(6) 156(30) 40(8) 122(24) 15(3) 63(13) 13(2) 111(23) 13(2) 91(19)
2-hot 124(24) 66(13) 112(22) 94(18) 106(20) 133(26) 34(6) 32(6) 48(9) 86(16) 38(7) 121(23) 25(5) 17(3) 28(6) 52(11) 13(2) 91(19)

sched 1-hot 33(11) 74(26) 32(11) 102(36) 32(11) 80(28) 6(2) 65(23) 7(2) 96(34) 7(2) 72(25) 2(1) 67(26) 2(0) 83(33) 2(1) 72(28)
2-hot 35(12) 37(13) 30(10) 72(25) 33(11) 85(30) 7(2) 26(9) 9(3) 69(24) 7(2) 77(27) 3(1) 27(10) 2(1) 60(23) 2(1) 76(30)

sched2 1-hot 41(15) 61(22) 39(14) 101(36) 41(15) 81(29) 5(1) 48(17) 7(2) 93(33) 6(2) 70(25) 2(1) 45(18) 2(1) 82(33) 2(1) 62(25)
2-hot 44(16) 32(11) 43(15) 64(23) 41(15) 80(29) 7(2) 19(7) 9(3) 55(20) 6(2) 69(25) 4(1) 20(8) 5(2) 43(17) 2(1) 61(24)

totinfo 1-hot 37(11) 73(23) 31(10) 86(27) 35(11) 78(25) 3(1) 42(13) 7(2) 65(20) 5(1) 51(16) 1(0) 34(15) 1(0) 49(21) 1(0) 42(18)
2-hot 37(12) 50(16) 76(24) 51(16) 35(11) 78(25) 4(1) 19(6) 53(17) 30(9) 4(1) 50(16) 2(1) 11(5) 48(21) 23(10) 1(0) 41(18)

tcas 1-hot 27(20) 35(26) 21(15) 68(50) 27(20) 37(27) 4(3) 29(21) 3(2) 67(49) 4(3) 31(23) 2(2) 23(21) 1(0) 48(43) 2(2) 24(22)
2-hot 29(21) 25(19) 20(15) 41(30) 26(19) 37(27) 6(4) 19(14) 2(1) 39(29) 4(3) 32(23) 3(3) 15(13) 1(0) 25(23) 2(2) 24(22)

TABLE IV: Average value of excess, denoted ‘E’, and miss, denoted ‘M’, in MSk when compared to WSk and TSk . Columns 3-8 compare with WSk

at the line level, Columns 9-14 compare with TSk at the line level, and finally Columns 15-20 compare with TSk at the statement (unit) level. The values
in parentheses reflect the percentage of excess and miss compared to the number of lines or units in the original program.

duced by W-ORBS. The most significant difference occurs

with the program wc when using the Logistic inference model

trained with the 1-hot data. The size of the inferred slice is 2.3

times larger than that of the corresponding W-ORBS slice. On

the other hand, there are inferred slices that are smaller than

the corresponding W-ORBS slice. For example, the models

trained by the configuration of (replace, Once Success, 2-

hot), (prttok, Logistic, 2-hot), and (totinfo, Logistic, 2-hot)

inferred slices that have 96%, 99%, and 93% of the W-ORBS

slice size, respectively.

Next when compared with T-ORBS, the differences are

smaller, which reflects T-ORBS producing slightly larger slices

than W-ORBS on average. Over all programs MOAD produces

slices that are 35.3% larger than T-ORBS. The most significant

difference occurs for (tcas, Logistic, 1-hot) where the MOAD

slice is 2.1 times larger. Because the T-ORBS slices are slightly

larger than the W-ORBS slices there are again examples where

the MOAD slice is smaller than the corresponding T-ORBS

slice. We investigate the differences between MOAD slices

and both T-ORBS and W-ORBS slices further with RQ3.

Turning to the question of how performance of the three

models compares overall, Once Success(O) generates smaller

slices than the other two inference models (ANOVA, p-

value < 0.0001). Comparing the rows of Table III, Once

Success produces the smaller slice in 17 of the 20 rows.

Considering the overall impact of the training data, 2-hot

produces the smaller average slice in 24 of the 30 cases.

Because of its dominance, we focus the remainder of the

analysis on the 2-hot data. First, considering the Once Success

model trained using the 2-hot observations, the size of the

average inferred slice is 16% larger than the W-ORBS average

and 7% larger than the T-ORBS average. This is due to how

the inference algorithm Once Success works. No matter how

rarely it happens, if the deletion of a unit does not affect the

trajectory, Once Success learns to delete it when inferring a

slice. This implies that the number of deletions monotonically

increases as the set of observations is increased. Thus, Once

Success trained with 2-hot data ubiquitously generates smaller

slices than when trained with the 1-hot data.

Considering the Logistic model (L), it also tends to generate

smaller slices using the 2-hot data, doing so for nine of the

ten subjects. This dominance illustrates that the model learns

more dependency relations from the larger set of observations.

Finally, the sizes of the slices generated by the Bayesian model

18

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:47:06 UTC from IEEE Xplore. Restrictions apply.

(B) show relatively minor variation as the size of the set

of observations increases. That this is the most sophisticated

of the models is thus evident. For example, the 1-hot data

and 2-hot data each produce the smaller average for five of

the subjects. Thus with more data, the estimated probability

of preserving the slicing criterion may increase or decrease,

depending on the observations. This results is echoed in the

study of RQ4 in Section V-D.

Based on the data, we answer RQ2 as follows:

RQ2. Impact of the inference model: Among the three

inference models, Once Success generates the smallest

slices.

C. Comparison with ORBS

Table IV compares MOAD slices to those produced by

the two implementations of ORBS. For each subject, deletion

generation scheme, and inference model, we calculate excess
and miss (defined in Section IV-E), to facilitate a more sophis-

ticated comparison of each model’s impact. The values shown

in the table are averages for each program’s slicing criteria;

the values in parentheses are the corresponding percent of the

number of lines or units in the original program. For both

excess and miss, the smaller the number is, the more similar

two slices are. Finally, note that it is only possible to compare

with W-ORBS slices at the line level. In contrast, T-ORBS

slices can be compared with MOAD slices at both the line

level and the unit level.

Patterns evident in the data include that, when compared to

W-ORBS, MOAD requires significantly fewer observations.

For example, the number of 1-hot observations is orders

of magnitude smaller than the number used by W-ORBS.

Similarly, the 2-hot deletion generation scheme involves only

18.7% as many observations as used by W-ORBS. T-ORBS

tends to use fewer observations than W-ORBS and thus, the

values are closer. Overall, the number of of 1-hot observation

is 1.7% of the number of T-ORBS observations, while the

number of 2-hot observations is 79.8% of the number of

observations used by T-ORBS.

The patterns for 1-hot and 2-hot extend into the individual

models. As the number of observations increases from 1-hot

to 2-hot, the value of miss for Once Success (O) significantly

decreases, while excess slightly increases. This tendency is

repeated for the Logistic models (L). However, miss barely

changes for the Bayesian models (B) which helps explain why

the size of B slices shows little change in Table III.

Finally, turning to the three models, for all subjects and

deletion generation schemes O yields the smallest values of

miss. For example, it accurately deletes 11 to 30 more lines

when compared to the other two models. While there are

many cases where excess of O is larger than excess of other

models, the difference is modest. Thus, among the inference

models, O tends to generate slices more similar to those

produced by W-ORBS and T-ORBS. Table V illustrates this by

showing the average difference of miss and excess between

O and the other two models. Values are computed over all

miss MSk vs WSk (line) MSk vs TSk (line) MSk vs TSk (stmt)
L− O B− O L− O B− O L− O B− O

1-hot 29.8 11.2 36.5 14.6 24.9 11.0

2-hot 21.4 30.3 35.2 23.6 25.5 18.2

excess MSk vs WSk (line) MSk vs TSk (line) MSk vs TSk (stmt)
L− O B− O L− O B− O L− O B− O

1-hot -4.8 -2.0 2.0 1.5 -0.7 -0.7

2-hot 1.9 -4.4 6.4 1.7 2.8 -1.3

TABLE V: The difference in the average value of miss and excess between
the three inference models. The upper table shows the data for miss while
the lower table shows that for excess.

slicing criteria and subjects. It is clear from this data that

for miss, O performs consistently and notably better than the

other two models. Interestingly this dominance does not extend

to excess where the values are smaller and more varied.

To gain confidence, we applied an ANOVA and then Tukey’s

HSD test [22] to the values of miss and excess1. The

statistically significant results (p < 0.0001) show that miss
for O is smaller than it is for L and B. However, there is

no significant differences between L and B. The results for

excess find B the smallest, followed by O, and then L.

Overall, the result shows that the Once Success model

trained with the 2-hot observations generates slices that are

not only compact but also the most similar to ORBS slices.

However, there are some cases where the Logistic model

produces the smallest slice, such as when slicing totinfo with

the 2-hot data. However, such slices tend to have a high

excess. Since an ORBS slice for a given slicing criteria is

not necessary unique, we explicitly check the output trajectory

of such small slices. Further investigation revealed that they

are unable to preserve the trajectory of the targeting slicing

criteria, which implies that the dependency inference was not

sufficiently precise.

From the overall trends observed in size and similarity

comparisons, we answer RQ3 as follows:

RQ3. Performance compared to ORBS: Using Once

Success trained with the 2-hot data, MOAD requires less

than one fifth of the observations compare to W-ORBS. At

the same time the inferred slice is only 16% larger than the

W-ORBS slice.

D. Sampling effect

RQ4 considers the tradeoff between the amount of training

data used and the quality of the inference. To gain an initial

impression for the data, Figure 1 shows two examples, taken

from the programs replace and totinfo. In each of the six

plots, the x-axis shows the size of the sample, while the y-

axis shows the ratio of the average slice size, |MSk|, to the

original program size, |P |, where the values are averaged over

all slicing criteria. Finally, the solid red (grey) and dashed blue

horizontal lines represent the average slice size ratio produced

by W-ORBS and T-ORBS, respectively. These six plots clearly

1The full details of Tukey’s HSD results are available online at: https:
//coinse.github.io/MOAD Rdata webpage/

19

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:47:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The figure presents μ (MSk) which represents the mean slice size given as a percentage of the original program’s size, generated by MOAD using
each size of the sample from 2-hot data. The boxplot shows the results of a trained model from 10 different random samplings. The red and blue line represents
the ratio of the W-ORBS and T-ORBS slice size to the original program size, averaging by all slicing criteria of all subjects.

show that as the sample size increases the size of a MOAD

slice approach that of the ORBS slices.
Because the plots indicate a fair amount of variation, we

consider each model separately. To begin with, the left two

plots for the Once Success model O suggest that it performs

better when using 100% of the data. The reduction in size is

substantial at small sample sizes, and it continues to decrease

as the sample size increases. For example, the average of the

first three slice size differences (20% − 10%, 30% − 20%,

and 40% − 30%) is 4.4 times larger than the average of the

last three slice size differences (70% − 80%, 80% − 90%,

and 90% − 100%). Note also that, when using only half

of the 2-hot observations, O generates slices that are only

3.4% larger than when using all the data. Finally, the variance

among different individual samples (the higher of the boxes)

is relatively small, which suggests that O is robust against the

stochastic sampling.
For the Logistic model, L, the size of the slices also tends

to decrease as the sample size increases, but the trend is

not as strong as with O. The L model also shows higher

variance across samplings, when compared to other inference

models. Similarly, while the Bayesian model, B, tends to

generate smaller slices with more observations, the median

size fluctuates and the difference in slice size between samples

is relatively small.
To gain additional statistical confidence, we applied

ANOVA separately to each model2. In all three cases, the

results are statistically significant (p < 0.0001). Applying

Tukey’s post-hoc test finds five equivalence classes of the mean

slice sizes. The most useful findings are that using samples of

40% to 90% of the 2-hot data produces mean slice sizes that

are not statistically different. The same is true of the range 50%

to 100%, suggesting that using only half the data produces

results essentially indistinguishable from using all of the data.

2The full details of ANOVA results are available online at: https://coinse.
github.io/MOAD Rdata webpage

For the L models, there is a similar band from 30% to 80%,

and two narrower bands from 60% to 90% and 80% to 100%.

These bands being narrower reflects the models being more

sensitive to the amount of data that they are trained on.

Finally, the Bayesian model, B, shows the greatest stability

with all values from 20% to 100% being in the same band.

Thus only when using a 10% sample does the model show in-

ferior performance. This suggests that these models themselves

are very robust against sampling variances. If it were possible

to improve the size and the accuracy of slices produced by B

models, the stability observed here may be a strong benefit of

using B models.

We answer RQ4 as follows.

RQ4. Sampling effect: The high rate of reduction and

high variability of the inferred slice size for small sample

sizes indicates there is some sampling effect especially with

Once Success. On the other hand, the wide bands show

that it is possible to build high performing models using

only a fraction of the training data. For example, Once

Success infers slices 3.4% larger when using only half

of the observations while the Bayesian model has similar

performance using only 20% of the training data.

VI. DISCUSSIONS AND FUTURE WORK

A. Once Success (O) vs. Critical Slicing vs. ORBS

The Once Success model, O generates slices by deleting

a line if the sub-program without the line preserves the

trajectory. This is conceptually identical to critical slicing [23]

and the slice using the pair < 1-hot, O > is exactly the same

as a critical slice. The results from Section V-C show that

the slices from critical slicing and ORBS are similar to each

other for the programs studied in this paper. The next step

is to investigate whether this tendency is retained on larger

programs with more complex dependence structures. Similarly,

20

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:47:06 UTC from IEEE Xplore. Restrictions apply.

the ORBS slice using statement-level granularity might give a

similar slice to the slice from O.

B. Advanced and adaptive deletion generation scheme

The study reported here generates deletions to observe

before observation starts. A more principled way would be

to use Design of Experiments [24] to systematically select

among the many possible deletions. This could also allow and

utilise the sampling of more than two deletions per build and

observe cycle, which could provide faster learning. Yet another

approach would be to generate the deletion just-in-time (adap-

tively) with respect to the observations that have been made

(e.g., via active learning [25]). Using the observation data,

an interim model might be learned that can propose future

deletions with the highest potential information gain.

C. Alternative inference models

Richer inference models could be used to model the rela-

tionships between units, and between criteria. Models such

as Bayesian Networks [26] might be used to encode the

conditional independencies between parts of programs and to

infer the likelihood of program unit inclusion in slices based

on the distributed joint distribution encoded therein. Markov

Random Fields might also be tried to model the strength of

association between program units as observed. Even if such

probabilistic graphical models can be expected to perform

well since they can capture the often graph-like dependency

relations of software, more general statistical inference models

(e.g. Gaussian processes [21]) should also be explored.

D. Observation-based forward slicing

There are two ways to slice the source code. A backward
slice leaves the source code which influences the target slic-

ing criteria. A forward slice leaves the source code that is

influenced by the target slicing criteria. ORBS is a backward

slicing method; it focuses on preserving the trajectory of the

(single) slicing criterion. In contrast, MOAD uses a set of

slicing criteria. Thus it can infer the forward slice when given

sufficient observations. One possible approach is to compute

the forward slice, Sc, of the slicing criteria, c, as the set of

statements that contain the other criterion whose trajectory

changed when c has also been changed.

E. Parallelization Opportunities

Observational slicing brings many opportunities for par-

allelization. An excellent example is P-ORBS (Parallel

ORBS) [27]. The implementation of P-ORBS is similar to

that of W-ORBS except that it attempts to delete a set of

windows sizes in parallel and then selects the largest deletion

that produced the correct execution semantics. This enables the

slicer to more quickly delete large blocks of code. While T-

ORBS brings less inherent opportunity for parallelization, it is

possible, for example, to consider the parallel deletion of a set

of siblings in the tree. MOAD, by virtue of building training

data from a set of independent executions has obvious paral-

lelization opportunities. For example, looking at Algorithm 1,

each iteration of the loop on Lines 4-9 is independent.

F. Applications

Future work will evaluate if the models we build can also

be effectively used for tasks such as fault localization and fault

comprehension [2], [28], [29]. It will also consider the trade-

offs between precision and the usefulness of these models

(e.g., early comprehension for orientation may benefit from

slightly less precise models that retain some situational context

in the slice, whereas bug-location may benefit from more

precise slices).

VII. RELATED WORK

There have been multiple proposals to approximate depen-

dencies by complementing a statically extracted graph with

dynamic information [2], [28], [29]. A notable example is

Baah et al. [2] who proposed to annotate traditional program

dependence graphs (PDGs) with probabilities that capture de-

pendence relations from dynamic execution of test cases. They

extend the PDG with edges having conditional probabilities

that relate states of child nodes to the states of their parents.

Similarly, Feng and Gupta [28] (using Bayesian Networks)

and Gong et al. [29] (using direct calculations of conditional

probabilities) model the correctness of program statements (for

fault localization) based on the control flow graph. Santelices

and Harrold use probability models to predict the likely

impact of changes in forward slicing [30] by augmenting static

forward slices with relevance scores (labelling dependence

edges in the interprocedural dependence graph with proba-

bilities relating to coverage and propagation). While we also

propose probabilistic modeling of dependencies of program

elements we do not need an existing program dependence

graph nor detailed information about program execution state.

Our coarser modeling is thus more generally applicable whilst

still useful, at least for slicing.

VIII. CONCLUSION

This paper introduces and studies a new technique for

modeling program dependence based on dynamic observation.

The long term goal of this work is to enable the reformulation

of dynamic program dependency analysis into a probabilistic

space using statistical inference models. Doing so should lower

analysis costs. Furthermore, the cost is all upfront: once the

model is built, inferring results is very inexpensive. At the

same time, the reformulation aims to retain the strengths of

existing purely dynamic dependency analysis (no need for

prior static analysis, language agnostic, scalable, etc.).

To illustrate the value of this new technique the paper

studies MOAD, which uses the inference model to produce

(observation based) dynamic slices. The results, presented in

Section V, illustrate the value of the probabilistic model.

Specifically, MOAD can produce slices that are only 16%

larger than the 1-minimal W-ORBS slices on average, from

models built using only 18.7% of the observations required by

W-ORBS. Furthermore, once the model is trained, the slicing

cost is negligible.

21

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:47:06 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. E. Livadas and P. K. Roy, “Program dependence analysis,” in
Proceedings of the International Conference on Software Maintenance
1992. Los Alamitos, California, USA: IEEE Computer Society Press,
Nov. 1992, pp. 356–365.

[2] G. K. Baah, A. Podgurski, and M. J. Harrold, “The probabilistic
program dependence graph and its application to fault diagnosis,” IEEE
Transactions on Software Engineering, vol. 36, no. 4, pp. 528–545, 2010.

[3] Zhifeng Yu and V. Rajlich, “Hidden dependencies in program com-
prehension and change propagation,” in Proceedings 9th International
Workshop on Program Comprehension. IWPC 2001, May 2001, pp. 293–
299.

[4] D. Binkley, “Semantics guided regression test cost reduction,” IEEE
Transactions on Software Engineering, vol. 23, no. 8, pp. 498–516, 1997.

[5] K. B. Gallagher, “Using program slicing in software maintenance,” Ph.D.
dissertation, University of Maryland, Baltimore, Maryland, December
1989.

[6] Á. Hajnal and I. Forgács, “A demand-driven approach to slicing legacy
cobol systems,” Journal of Software: Evolution and Process, vol. 24,
no. 1, pp. 67–82, 2012.

[7] R. Ettinger and M. Verbaere, “Untangling: A slice extraction
refactoring,” in Proceedings of the 3rd International Conference
on Aspect-oriented Software Development, ser. AOSD ’04. New
York, NY, USA: ACM, 2004, pp. 93–101. [Online]. Available:
http://doi.acm.org/10.1145/976270.976283

[8] R. Karim, F. Tip, A. Sochurkova, and K. Sen, “Platform-independent
dynamic taint analysis for javascript,” IEEE Transactions on Software
Engineering, pp. 1–1, 2019.

[9] S. Jiang, C. McMillan, and R. Santelices, “Do programmers do change
impact analysis in debugging?” Empirical Software Engineering,
vol. 22, no. 2, pp. 631–669, Apr 2017. [Online]. Available:
https://doi.org/10.1007/s10664-016-9441-9

[10] S. Horwitz, T. Reps, and D. W. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems, vol. 12, no. 1, pp. 26–61, 1990.

[11] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo,
“ORBS: Language-independent program slicing,” in Proceedings of the
22nd ACM SIGSOFT International Symposium on the Foundations of
Software Engineering, ser. FSE 2014, 2014, pp. 109–120.

[12] ——, “ORBS and the limits of static slicing,” in Proceedings of the 15th
IEEE International Working Conference on Source Code Analysis and
Manipulation, ser. SCAM 2015, September 2015, pp. 1–10.

[13] N. Gold, D. Binkley, M. Harman, S. Islam, J. Krinke, and S. Yoo,
“Generalized observational slicing for tree-represented modelling lan-
guages,” in Proceedings of the 11th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2017, 2017,
pp. 547–558.

[14] D. Binkley, N. Gold, S. Islam, J. Krinke, and S. Yoo, “A comparison
of tree- and line-oriented observational slicing,” Empirical Software
Engineering, Jan 2019. [Online]. Available: https://doi.org/10.1007/
s10664-018-9675-9

[15] S. Yoo, D. Binkley, and R. Eastman, “Observational slicing based on
visual semantics,” Journal of Systems and Software, vol. 129, pp. 60–78,
July 2017.

[16] M. Weiser, “Program slices: Formal, psychological, and practical investi-
gations of an automatic program abstraction method,” Ph.D. dissertation,
University of Michigan, Ann Arbor, MI, 1979.

[17] ——, “Program slicing,” IEEE Transactions on Software Engineering,
vol. 10, no. 4, pp. 352–357, 1984.

[18] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact.” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
2005.

[19] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An Infrastructure
for the Exploration, Analysis, and Manipulation of Source Code: A Tool
Demonstration,” in Int’l Conf. Softw. Maintenance. IEEE, 2013, pp.
516–519.

[20] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” San Jose, CA, USA, Mar 2004,
pp. 75–88.

[21] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer
School on Machine Learning. Springer, 2003, pp. 63–71.

[22] J. W. Tukey, Exploratory Data Analysis: Limited Preliminary Ed.
Addison-Wesley Publishing Company, 1970.

[23] R. A. DeMillo, H. Pan, and E. H. Spafford, “Critical slicing for
software fault localization,” in Proceedings of the 1996 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
’96. New York, NY, USA: ACM, 1996, pp. 121–134.

[24] K. Chaloner and I. Verdinelli, “Bayesian experimental design: A review,”
Statistical Science, pp. 273–304, 1995.

[25] M. Zuluaga, G. Sergent, A. Krause, and M. Püschel, “Active learning for
multi-objective optimization,” in International Conference on Machine
Learning, 2013, pp. 462–470.

[26] F. V. Jensen, Introduction to Bayesian Networks, 1st ed. Berlin,
Heidelberg: Springer-Verlag, 1996.

[27] S. Islam and D. Binkley, “PORBS: A parallel observation-based slicer,”
in 24th International Conference on Program Comprehension (ICPC).
IEEE, 2016, pp. 1–3.

[28] M. Feng and R. Gupta, “Learning universal probabilistic models for
fault localization,” in Proceedings of the 9th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering.
ACM, 2010, pp. 81–88.

[29] D. Gong, X. Su, T. Wang, P. Ma, and W. Yu, “State dependency
probabilistic model for fault localization,” Information and Software
Technology, vol. 57, pp. 430–445, 2015.

[30] R. Santelices and M. J. Harrold, “Probabilistic slicing for predictive
impact analysis,” Georgia Institute of Technology, Tech. Rep. GIT-
CERCS-10-10, 2010.

22

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:47:06 UTC from IEEE Xplore. Restrictions apply.

