
MOBS: Multi-Operator Observation-Based Slicing using Lexical
Approximation of Program Dependence

Seongmin Lee
KAIST

Daejeon, Republic of Korea

bohrok@kaist.ac.kr

David Binkley
Loyola University Maryland

Baltimore, United States

binkley@cs.loyola.edu

Nicolas Gold
University College London

London, United Kingdom

n.gold@ucl.ac.uk

Syed Islam
University of East London

London, United Kingdom

syed.islam@uel.ac.uk

Jens Krinke
University College London

London, United Kingdom

j.krinke@ucl.ac.uk

Shin Yoo
KAIST

Daejeon, Republic of Korea

shin.yoo@kaist.ac.kr

ABSTRACT

Observation-Based Slicing (ORBS) is a recently introduced program

slicing technique based on direct observation of program seman-

tics. Previous ORBS implementations slice a program by iteratively

deleting adjacent lines of code. This paper introduces two new dele-

tion operators based on lexical similarity. Furthermore, it presents a

generalization of ORBS that can exploit multiple deletion operators:

Multi-operator Observation-Based Slicing (MOBS). An empirical

evaluation of MOBS using three real world Java projects finds that

the use of lexical information, improves the efficiency of ORBS:

MOBS can delete up to 87% of lines while taking only about 33% of

the execution time with respect to the original ORBS.

CCS CONCEPTS

• Software and its engineering→Dynamic analysis; Software

testing and debugging;

ACM Reference Format:

Seongmin Lee, David Binkley, Nicolas Gold, Syed Islam, Jens Krinke, and Shin

Yoo. 2018. MOBS: Multi-Operator Observation-Based Slicing using Lexi-

cal Approximation of Program Dependence. In ICSE ’18 Companion: 40th

International Conference on Software Engineering Companion, May 27-June

3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 2 pages. https:

//doi.org/10.1145/3183440.3194981

1 OBSERVATION-BASED SLICING

ORBS [1] slices a program by iteratively applying a deletion operator

on its source code. Given a line of source code, l , a deletion operator
checks whether a set of lines, related to l , can be safely deleted w.r.t.
a slicing criterion. If, after deletion, the code either fails to compile

or changes the value trajectory of the criterion when executed

using the given test suite, the deletion is rejected. Otherwise, ORBS

accepts the deletion and moves on to the next line.

The originalORBS implementation [1](W-ORBS), uses awindow-

deletion operators, Dw, which attempts to delete consecutive source

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3194981

code lines that can only be deleted together. This effectively limits

the scalability of ORBS, as it needs to make at least k deletion

attempts to delete k lines.

2 ORBS WITH LEXICAL SIMILARITY

Our new deletion operators are based on the intuition that, if a

line of source code can be deleted with respect to a given slicing

criterion, then there may be other lexically similar lines that can

also be deleted. We introduce two lexical deletion operators, Dvsm

and Dlda, based on two models that are used to represent textual

documents as numerical vectors: Vector Space Model (VSM) and

Latent Dirichlet Allocation (LDA). Treating each line of source code

as a document, these deletion operators choose a set of lines within

the given threshold of certain similarity (calculated by their models),

to be deleted together.

To evaluate their effectiveness, we present variations of ORBS

that use the newly designed operators, VSM-ORBS and LDA-ORBS.

VSM-ORBS and LDA-ORBS share the following features that may

yield advantages over the existingW-ORBS in terms of efficiency.

First, there is no limit to the number of lines that can be deleted in

a single deletion attempt. Second, they can delete non-consecutive

lines. Finally, during a single iteration, only one deletion is at-

tempted at each slicing point.

3 MOBS: MULTI-OPERATOR
OBSERVATIONAL SLICING

ORBS now has multiple deletion operators at its disposal. Each

attempts to delete different parts of the code based on different

criteria, and thus brings different results. A method for selecting

an appropriate operator is therefore required. We hereby introduce

MOBS: Multi-operator Observational Slicing, which selectively

applies multiple deletion operators while slicing.

Algorithm 1 presentsMOBS. The function InitOperator ini-

tializes the deletion operator selection probabilities. The function

SelectOperator chooses a deletion operator to apply at each line

using roulette-wheel selection [2] based on operator proportions.

Once chosen, the speculative deletion is the same as that done by

ORBS except thatMOBS updates the operator proportions using

updater,U , which is specific to each operator selection strategy.
There are two kinds of operator selection strategies: Fixed Op-

erator Selection (FOS) and Rolling Operator Selection (ROS). FOS

302

2018 ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3183440.3194981&domain=pdf&date_stamp=2018-05-27


ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS

input : Source program P = {l1, ..., ln }, Slicing criterion (v, l, I), Set of
deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (v, l, I)
1 O ← Setup(P, v, l ) � Insert a slicing criterion

2 V ← Execute(Build(O ), I) � Obtain the oracle

3 D ← InitOperator (D, S, R ) � Set the selection prob.

4 repeat
5 deleted ← False

6 for i ← Length (O ) to 1 do
7 D← SelectOperator(D)
8 O ′, l ine_cnt, status ← D(O, V , i, I) � Delete

9 D ← U (D, D, status, l ine_cnt ) � Update the prob.

10 if status = success then
11 O, deleted ← O ′, True � Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number

of Test Executions (E), Execution Time (sec) (T), and Number of

Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject
W-ORBS VSM-ORBS (γ = 0.9) LDA-ORBS (γ = 0.9)

C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245

commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138

guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106

guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-defined operator proportions for an entire slice. The pro-

portions are initialized in one of the following ways: uniform value,

using the number of successful deletions (applicability), using the

number of lines deleted (affect). In contrast, ROS updates the pro-

portion after each deletion attempt. The proportion updater U for

ROS changes operator proportions, which have been initialized

with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP

We ask the following research questions:

RQ1. Lexical Deletion Operators: How efficient/effective is VSM-

ORBS, LDA-ORBS when compared toW-ORBS?

RQ2.MOBS: How efficient/effective is MOBS compare toW-ORBS?

We use three real world Java projects in our empirical study:

commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava
which is a core Java library developed by Google. We choose three

slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,

6 test cases) and common.net (1,569 NCLOC, 8 test cases).
The library of deletion operators used by ORBS variants are:

W-ORBS with Dwk where deletion window size k = 1, 2, 3, and

4, VSM-ORBS with Dvsmγ where threshold γ = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with Dldaγ where threshold γ = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to

the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS

Table 1 shows the result of the operator efficiency comparisons

between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-

ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (μdel ), Execution

Time (μt ime ), Seconds per Deletion (μspd ), and Speed Up ratio w.r.t

W-ORBS by W-ORBS and MOBS

Criteria Strategy μdel μt ime μspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76

FOS-app-MOBS 957 23697 25.32 2.40

FOS-aff-MOBS 969 21690 22.89 2.62

FOS-uni-MOBS 951 23653 25.31 2.40

W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61

FOS-app-MOBS 618 14862 24.55 3.11

FOS-aff-MOBS 625 14103 22.97 3.26

FOS-uni-MOBS 606 13531 22.68 3.39

W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17

FOS-app-MOBS 195 5146 26.64 3.21

FOS-aff-MOBS 201 5213 26.55 3.11

FOS-uni-MOBS 210 5143 24.89 3.17

W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67

FOS-app-MOBS 724 11725 16.23 2.73

FOS-aff-MOBS 738 12362 16.88 2.55

FOS-uni-MOBS 730 12702 17.52 2.49

W-ORBS 917 31645 35.03 1.00

lines deleted byW-ORBS, respectively. However, VSM-ORBS uses

only 12.1% of compilations and 25.0% of executions of W-ORBS,

resulting in only 19.7% of the execution time of W-ORBS. Similarly,

LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and

takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the efficiency/effectiveness

comparisons betweenW-ORBS, andMOBS with the four different

operator selection strategies. We terminateMOBS after the same

number of iterationsW-ORBS required to terminate. While all the

MOBS variants slices the program more efficiently thanW-ORBS,

ROS-MOBS performs slightly better than others. Overall,MOBS

deletes about 79% of the linesW-ORBS deletes, using about one

third of the execution timeW-ORBS requires.

6 CONCLUSION

This paper makes two novel technical contributions. First, we

present a generalisation of observational slicing that can exploit

multiple deletion operators. Second, we introduce lexical deletion

operators that exploit lexical similarities between source code lines

to improve the efficiency of ORBS.MOBS is the resulting obser-

vational slicer that uses multiple deletion operators including the

newly-introduced lexical deletion operators. The results of our em-

pirical evaluation of MOBS using three real world Java programs

suggest thatMOBS can significantly improve the efficiency of W-

ORBS: it can delete about 79% of the lines deleted by W-ORBS,

while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

303


