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a b s t r a c t 

Complex dependence analysis typically provides an underpinning approximation of true program depen- 

dence. We investigate the effectiveness of using lexical information to approximate such dependence, 

introducing two new deletion operators to Observation-Based Slicing (ORBS). ORBS provides direct obser- 

vation of program dependence, computing a slice using iterative, speculative deletion of program parts. 

Deletions become permanent if they do not affect the slicing criterion. The original ORBS uses a bounded 

deletion window operator that attempts to delete consecutive lines together. Our new deletion operators 

attempt to delete multiple, non-contiguous lines that are lexically similar to each other. We evaluate the 

lexical dependence approximation by exploring the trade-off between the precision and the speed of de- 

pendence analysis performed with new deletion operators. The deletion operators are evaluated indepen- 

dently, as well as collectively via a novel generalization of ORBS that exploits multiple deletion operators: 

Multi-operator Observation-Based Slicing (MOBS). An empirical evaluation using three Java projects, six C 

projects, and one multi-lingual project written in Python and C finds that the lexical information provides 

a useful approximation to the underlying dependence. On average, MOBS can delete 69% of lines deleted 

by the original ORBS, while taking only 36% of the wall clock time required by ORBS. 

© 2019 Elsevier Inc. All rights reserved. 
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. Introduction 

Program slicing often acts as a preprocess for tasks such as

esting ( Binkley, 1998 ), debugging ( Agrawal et al., 1993 ), main-

enance ( Gallagher and Lyle, 1991 ), and program comprehen-

ion ( Korel and Rilling, 1998 ). Traditional program slicing tech-

iques require complex dependence analysis to approximate the

nderlying dependencies ( Binkley et al., 2015 ). Recently introduced

bservation-Based Slicing (ORBS) ( Binkley et al., 2014a; Gold et al.,

017 ) foregoes this need, discovering the exact dynamic dependen-

ies given a set of inputs. However, this discovery can be expen-

ive since, in the case of statements separated by (large amounts

f) other code, many iterations may be required to remove all

f the independent code. Given this shortcoming, we conjecture

hat lexical similarity (e.g., two lines that both include the string

ax_rate ) might provide a useful approximation to the depen-

ence information. If so, then in the case of ORBS, similar lines can

ikely be deleted together, irrespective of their relative separation.

hus lexical similarity should bring value in the form of an effi-
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iency gain (assuming that lexical dependence can act as a proxy

or the true dependence). 

As an example, consider a situation where source lines l 1 and

 2 relate to a (single) computation, unrelated to the slicing crite-

ion, but sufficiently far apart from each other that they are never

n the same deletion window (the contiguous group of lines se-

ected by ORBS as a deletion candidate). Since they are unrelated

o the slicing criterion they can in principle be deleted simultane-

usly. A lexical approximation of dependence seeks to identify the

wo as related and therefore potentially deletable in a single step.

or example, l 1 might assign the variable tax_rate , which is sub-

equently used in l 2 : tax = tax_rate ∗ sale , while the slic-

ng criterion concerns a variable independent from tax_rate . The

exical connection between l 1 and l 2 (i.e., the common occurrence

f the words ‘ tax ’ and ‘ rate ’) might be exploited in an attempt

o delete both lines simultaneously. 

Exploiting the lexical dependence approximation, techniques 

hat rely on the repeated compilation and execution for their oper-

tion should benefit because doing so would permit operations on

patially separated parts of the code. In the case of ORBS, for ex-

mple, exploiting lexical dependence should enable the deletion of

ultiple spatially-separated lines in a single compile/execute step.

oing so would permit the full scope of the program to be exam-

ned for deletion candidates at any one time rather than just adja-
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cent lines. The net effect would be witnessed as an improvement

in slicing performance. 

This paper presents and investigates two approaches to the lex-

ical approximation of dependence: one using the Vector Space

Model ( Salton et al., 1975 ) and the other using Latent Dirichlet

Analysis (LDA) ( Blei et al., 2003 ). To investigate the two, we use

them as the basis for two new deletion operators within ORBS.

The investigation first considers each new operator in isolation and

then in concert with each other and the original ORBS deletion op-

erator. 

In the later case, we investigate the possibility of employing

multiple deletion operators within ORBS. Ideally, the slicer could

select the operator that leads to the largest successful deletion. In

the absence of such knowledge, we consider two selection heuris-

tics: Fixed Operator Selection (FOS), which relies on probabilities

determined a priori , and Rolling Operator Selection (ROS), which

learns the relative applicability of each deletion operator as it com-

putes a slice. The resulting generalization of ORBS uses FOS or ROS

to select between multiple deletion operators at each step. 

The effectiveness of the lexical dependence approximation is

measured using slicing effectiveness (i.e., how small are the result-

ing slices when compared to the original ORBS slices?) and slicing

efficiency (i.e., how fast can the slicing be undertaken in compari-

son with the original ORBS algorithm?). In other words, what is the

trade-off approximating the dependence lexically brings in terms

of slice size and slice time. 

We compare the original ORBS implementation ( Binkley et al.,

2014a ) against the new deletion operators in isolation, and their

combination with the existing deletion operator, using thirty slic-

ing criteria selected from ten projects written in various program-

ming languages including Java, C, and Python: eighteen slicing cri-

teria from three real world Java projects, six slicing criteria from

six C programs taken from the Siemens suite, and six slicing crite-

ria from a multi-lingual open-source project written in Python and

C. The results show that slicing using only lexical deletion opera-

tors leads to larger slices but take significantly less time. Further-

more, the combined use of the new and existing deletion operators

deletes 63% to 83% of lines deleted by ORBS in 27% to 45% of the

time. 

This paper makes the following technical contributions: 

• We introduce two new lexical dependence approximations. 
• To study the two approximations independently we introduce

two new variants of observation-based slicing, VSM-ORBS and

LDA-ORBS, which each exploit lexical information. Broad stroke,

the experiments show that lexical information can be used to

complement existing techniques. 
• To study the approximations in concert with the original, we

introduce MOBS, Multi-operator Observation-Based Slicing , which

selects a deletion operator from a set of deletion operators us-

ing four different operator selection strategies. 
• We empirically evaluate the new lexical dependence approxi-

mations using thirty slicing criteria from Java and C projects,

and a multi-lingual project written in Python and C. The results

show that, on average, MOBS deletes 69% of the code deleted by

ORBS, but requires only 36% of its execution time. 

2. Observation-Based slicing 

Based on Weiser’s original slicing definition ( Weiser, 1979 ),

observation-based slicing (ORBS) dynamically checks whether one

or more consecutive lines of program source code can be deleted

by observing the impact of their deletion ( Binkley et al., 2014a;

Gold et al., 2017 ): if the source code after deletion either fails to

compile or does not preserve the value trajectory of the slicing cri-

terion when executed using the given set of inputs, then the dele-
ion is rejected. While ORBS is designed to under-approximate the

ull semantics of program dependence through test executions, it

as surpassed static slicing in some tasks, such as capturing de-

endencies that static slicers cannot handle ( Binkley et al., 2015 ),

nd slicing multi-lingual systems ( Binkley et al., 2014a ), XML-based

odelling languages ( Gold et al., 2017 ), as well as Picture Descrip-

ion Languages, which have visual semantics ( Yoo et al., 2017 ). 

ORBS takes as input a slicing criteria and a set of inputs. It com-

utes a slice as a series of decisions about whether to accept the

eletion of successive source code lines. If, after deleting a line,

he program still compiles and preserves the observed behaviour

f the slicing criterion for all inputs, then ORBS accepts the dele-

ion. ORBS iterates until no further deletions can be made. ORBS is

hus able to uncover the “ground-truth” dependence with respect

o the set of inputs. 

One of the drawbacks of finding ground-truth dependence us-

ng ORBS is its inefficiency: ORBS requires a large number of com-

ilations and executions. This partly arises because ORBS is rela-

ively naive in its view of a program, working at the level of lines

f text, and treating each line as simply deleted or not. Depen-

ence is thus discovered on the basis of the presence or absence

f a line, with no regard for its content (thus permitting language

ndependence). Furthermore, considering only single lines limits

RBS ability to delete mutually dependent lines such as the braces

round an empty block. 

To address the mutually dependent lines problem, the original

RBS implementation ( Binkley et al., 2014a ), uses a deletion win-

ow approach, which enables it to handle sequences of source lines

hat can only be deleted together (e.g., the pair of brackets that en-

lose an empty block). Applied to line l i , ORBS attempts to delete

rom one up to k lines (i.e., from { l i } to { l i , . . . , l i + k −1 } ). If it success-

ully deletes j lines (i.e., { l i , . . . , l i + j−1 } ), the deletion continues with

ine l i + j ; if all k attempts fail, the deletion continues with line l i +1 .

hus after each successful deletion, ORBS moves onto the next tar-

et source code line (skipping over the deleted lines), while after

ach unsuccessful deletion it reverts the deletion before moving on

o the next line of the file. ORBS performs multiple passes over the

ode until it cannot delete anything further. Because in practice it

s more efficient, the implementation considers the lines of source

ode in reverse order, for example, in the hope of deleting all of a

ariable’s uses before attempting the deletion of its declaration. 

Algorithm 1: ORBS Parameterised with Deletion Operators. 

input : Source program P = { l 1 , . . . , l n } ,Slicing criterion 

( v , l, I ) ,Deletion Operator, D 

output : A slice, S, of P for ( v , l, I ) 
1 O ← Setup (P, v , l) 
2 V ← Execute ( Build (O ) , I) 

3 repeat 

4 deleted ← False 

5 for i ← Length ( O ) to 1 do 

6 O 

′ , n d , s d ← D (O, V, i, I) 

7 if s d = success then 

8 O ← O 

′ 
9 deleted ← True 

10 until ¬ deleted 

11 return O 

As shown in Algorithm 1 , ORBS is parameterised by a deletion

perator, D , along with the source program P and a slicing crite-

ion composed of variable v , line l , a set of inputs I . In the code

he function Setup inserts probe statements to capture the trajec-

ory of the slicing criterion, while function Execute executes the
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rogram with inputs I and returns the trajectory associated with

he slicing criterion. 

Deletion operator D has four parameters: the current observa-

ional slice O , the original trajectory V , the index of the current

ine i , and the inputs I . It first performs a deletion resulting in O 

′ ,
nd then builds and executes O 

′ using I, capturing the trajectory

nd comparing it with V . The operator returns O 

′ , the number of

eleted lines, n d , and a result of the deletion attempt, s d (either

ompilation-error , trajectory-change , or success ). In
he case of a successful deletion, O 

′ is made the current observa-

ional slice. 

Because it deletes the maximal window up to size k , the original

RBS deletion operator, shown as Algorithm 2 , is denoted DMw 

k .

his deletion operator is defined in terms of window deletion op-

rator, Dw 

δ
, which attempts to delete a window of exactly δ con-

ecutive lines. DMw 

k successively applies the k deletion operators,

rom Dw 

1 to Dw 

k 
, and then returns success if any deletion op-

rator succeeds, immediately, or returns failure if none of Dw 

1 

hrough Dw 

k succeeds. To emphasize its use of a deletion win-

ow , we refer to the original ORBS algorithm, which implicitly uses

Mw 

k 
, as W-ORBS. 

Algorithm 2: Pseudocode for Deletion Operator DMw 

k . 

input : Instrumented Source Code O ,Value Trajectory of 

Slicing Criterion Variable, V ,Index of Current Target 

Line, i ,Set of inputs, I 
output : A candidate slice, O 

′ , 
Number of Lines Deleted, n d , 

Result of the Deletion Attempt, s d 
1 for δ ← 1 to k do 

2 O 

′ , n d , s d ← Dw 

δ (O, V, i, I) 

3 if s d = success then 

4 return O 

′ , n d , s d 
5 return O 

′ , 0 , s d 

. Lexical similarity deletion operators 

This section introduces the two new lexical deletion operators

hat seek to exploit lexical similarity within the text of a program.

exical similarity can be a good proxy for syntactic or semantic

imilarity ( Ragkhitwetsagul et al., 2018 ). Our new deletion opera-

ors are based on the intuition that if a source line can be safely

eleted with respect to a given slicing criterion, then there are

ikely other lexically similar lines that can also be safely deleted.

or example, if the slicing criterion involves a variable that holds

n account balance in a banking system, then a line that handles

ogging will be deleted by ORBS. When deleting this line, it may

e beneficial to attempt to delete all other lines that include the

exical token log . In other words, we posit that we can approxi-

ate the semantics of program dependence using lexical similar-

ty. To this end we introduce the two lexical deletion operators:

vsm and Dlda . 

The first lexical deletion operator, Dvsm , makes use of the Vec-

or Space Model (VSM), which has been used in Information Re-

rieval (IR) to calculate the distances between a collection of text

ocuments and a query ( Salton et al., 1975 ). VSM represents each

ocument and the query as a vector of weights, that associate a

alue with each unique term (word) that occurs in any of the doc-

ments. The distance between vectors captures the similarity be-

ween the documents and the query. 

In our application, Dvsm 

γ is parameterized by a threshold γ
nd treats all lines of text in the source code as individual doc-

ments. It identifies two lines as similar if their lexical similarity
s greater than γ . In greater detail, let L be the set of all non-

omment lexical tokens in the code and let K be a list of stop

ords typically composed of programming-language reserved key-

ords. The vocabulary used is the set of terms, T = L \ K. A range

f techniques for assigning term weights and computing distances

as been used in VSMs ( Mitra and Chaudhuri, 20 0 0 ). We use tf–

df to determine term weights ( Rajaraman and Ullman, 2011 ) and

easure distances using cosine similarity ( Singhal, 2001 ). 

The second lexical deletion operator, Dlda , makes use of Latent

irichlet Allocation (LDA), which models a collection of documents

sing two probability distributions: each document is represented

s a probability distribution of topics where each topic is a prob-

bility distribution over the words of the vocabulary ( Blei et al.,

003 ). The similarity between two documents is measured as

he distance between their corresponding topic vectors. Similar to

vsm 

γ
, the deletion operator Dlda 

γ treats each source code line

s a document, uses the same vocabulary, and also computes dis-

ances using cosine similarity. 

. Variants of ORBS 

Our empirical investigation is designed to investigate the ef-

ectiveness of using lexical dependence approximation. To do so,

e first introduce two variants of ORBS based on the two lexi-

al deletion operators, Dvsm and Dlda . We then consider two ad-

itional variants that, analogous to the use of multiple window

izes by DMw 

k 
, each consider a range of parameter (threshold)

alues. Looking ahead, the empirical analysis considers two final

ariants (bringing the total to six). These final two follow lexical

eletion with the application of W-ORBS. Finally, having a range

f deletion operators suggests the potential in trying the leverage

he strengths of each. Thus the bulk of this section presents MOBS,

ulti-operator Observational Slicing, which aims to selectively ap-

ly a range of deletion operators. 

.1. Lexical ORBS variants 

The first two variants of ORBS are based on Algorithm 1 with D

eing passed one of the two lexical deletion operators. We refer to

RBS when using Dvsm 

γ as VSM-ORBS. Similarly, we refer to ORBS

hen using the deletion operator Dlda 
γ as LDA-ORBS. By virtue

f using lexical deletion operators, VSM-ORBS and LDA-ORBS share

 few distinguishing features that may yield advantages over W-

RBS. 

1. There is no limit to the number of lines that can be deleted in

a single deletion. 

2. They can delete non-consecutive lines. 

3. Because Dvsm and Dlda are lexical, ORBS language indepen-

dence is preserved. 

4. During a single iteration, only one deletion is attempted at each

slicing point, unlike W-ORBS, which may attempt multiple dele-

tions at each slicing point depending on the window size. 

The other two variants successively apply a deletion opera-

or with a range of parameter values analogous to Dw ’s succes-

ive application of a range of window sizes. Considering first VSM,

lgorithm 3 shows the pseudo code for the successive application

f Dvsm 

γ for a range of values of γ to target source code line, i .

e denote this deletion operator as DMvsm 

�
, where � is a list of

hresholds (parameter values). While it may spend more than one

eletion attempt on a single line, DMvsm 

� thoroughly checks the

exical dependence the line could have with different thresholds.

e refer to ORBS when using multiple thresholds with DMvsm 

�

s VSM-ORBS-M. Likewise, we refer to ORBS when using DMlda 
�

s LDA-ORBS-M. 
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Algorithm 3: Pseudocode for Deletion Operator 

DMvsm 

{ γ1 , ... ,γn } . The input and output are the same as 

with Algorithm 2 . 

1 for γi ∈ { γ1 , . . . , γn } do 

2 O 

′ , n d , s d ← Dvsm 

γi (O, V, i, I) 

3 if s d = success then 

4 return O 

′ , n d , s d 
5 return O 

′ , 0 , s d 
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4.2. MOBS: multi-operator observational slicing 

With three deletion operators, Dw , Dvsm , and Dlda , we can in-

stantiate Algorithm 1 in different ways producing multiple ORBS’

variants. However, because each deletion operator attempts to

delete different parts of the code, a more synergistic approach

might better exploit the strengths of each operator. Here our goal

is to improve slicing performance by using the ‘right’ deletion op-

erator at the ‘right’ time and in the ‘right’ place. To study the

range of possibilities we introduce MOBS: Multi-operator Observa-

tional Slicing , which selectively applies multiple deletion operators

while slicing. 

4.2.1. MOBS Algorithm 

Algorithm 4 presents MOBS, which has the same basic struc-

ture as Algorithm 1 . MOBS makes use of three helper functions.

The first of these, InitOperator , initializes the deletion opera-

tor selection probabilities. The second, SelectOperator , chooses a

deletion operator to apply at each line using roulette-wheel se-

lection ( Goldberg, 1989 ) based on the probability distribution on

operators. Once chosen, the speculative deletion by MOBS is the

same as that done by ORBS except that UpdateOperator updates

the probability distribution according to the updater function U . 

Algorithm 4: MOBS . 

input : Source program P = { l 1 , . . . , l n } ,Slicing criterion 

( v , l, I ) ,Set of deletion operators 

D = { D 1 , . . . , D n } ,Probability Updater U ,Static 

Proportion R 

output : A slice of P for ( v , l, I ) 
1 O ← Setup (P, v , l) 
2 V ← Execute ( Build (O ) , I) 

3 D ← InitOperator ( D, R ) 
4 repeat 

5 deleted ← False 

6 for i ← Length ( O ) to 1 do 

7 D k ← SelectOperator (D) 

8 O 

′ , n d , s d ← D k (O, V, i, I) 

9 D ← UpdateOperator (D, U, D k , n d , s d ) 

10 if s d = success then 

11 O ← O 

′ 
12 deleted ← True 

13 until ¬ deleted 

14 return O 

4.2.2. Fixed operator selection (FOS) 

The remainder of this section considers two operator selec-

tion strategies: Fixed Operator Selection (FOS) and Rolling Oper-

ator Selection (ROS). For a given slicing criterion FOS computes

fixed probabilities based on the success proportion of each dele-

tion operator and stores them in D in Line 3 of Algorithm 4 . Such
n exhaustive approach is not viable in production where an ap-

roximation over multiple criteria would be required, but for the

xperimental evaluation it serves to establish an upper bound on

OS performance. 

We use two methods to compute the success proportion of an

perator: the number of successful deletions and the number of

ines deleted. We call the proportions calculated by each method

ts ‘applicability’ and ‘effect’, respectively. In addition, we study the

se of a uniform proportion as a baseline. Note that for FOS the

robabilities remain constant throughout slicing. In other words,

he probability updater U is the identity function. 

Algorithm 5: Applicability/Effect Measurement for FOS. 

input : Source program P = { l 1 , . . . , l n } , 
Slicing criterion ( v , l, I ) , 
Set of deletion operators D = { D 1 , . . . , D n } 

output : Static Proportion R 

1 O ← Setup (P, v , l) 
2 V ← Execute ( Build (O ) , I) 

3 R ← Initialize (D, Length ( O ) ) 

4 for i ← Length ( O ) to 1 do 

5 foreach D k ∈ D do 

6 O 

′ , n d , s d ← D k (O, V, i, I) 

7 if s d = success then 

8 R D k [ i ] ← 1 � ~{ applicability} 
9 R D k [ i ] ← n d � ~{ effect } 

10 return R 

Algorithm 5 details the calculation of the initial probabilities.

t can compute applicability (if Line 8 is used) or effect (if Line 9

s used). Given a source program, a slicing criterion, and a set of

eletion operators, D, this algorithm returns a proportion array, R ,

or each deletion operator D k ∈ D. The function Initialize first as-

igns each entry the value 0. The algorithm then iteratively applies

ach operator D k to each source line and records in the proportion

rray R D k , either the deletion’s successful application (when using

ine 8) or the number of lines deleted (when using Line 9). InitOp-

rator , used in Line 3 of Algorithm 4 , takes the proportion array

nd initializes the selection probability of each deletion operator

 k as follows: 

 ( D k ) = 

∑ 

1 ≤i ≤n R D k 
[ i ] ∑ 

D j ∈D 
∑ 

1 ≤i ≤n R D j 
[ i ] 

(1)

.2.3. Rolling operator selection (ROS) 

In contrast to the FOS strategy, the Rolling Operator Selection,

OS, updates the probability after each deletion attempt. The intu-

tion here is that early on different operators will be effective than

hen the slice approaches its final state. The probability distribu-

ion over the operators P ( D k ) is initialized with a uniform distribu-

ion. UpdateOperator , first, changes the probability of the current

eletion operator using the probability updater U with respect to

he result of the deletion attempt. Then, it normalizes the sum of

he probability distribution to be 1. 

In our study, we used Eq. (2) as the probability updater U .

he penalty factor for a compilation failure, ω comp , and an ex-

cution failure ω exec , both range from zero to one. We penalise

ompilation failure more severely (i.e., ω comp ≤ω exec ) because suc-

essful compilation is necessary for a successful deletion. On the

ther hand, a successful deletion always increases the probability

s log 10 (n d + 1) > 0 . Based on our empirical investigation, we set

 comp as 0.98 and ω exec as 0.99. The selection of the next deletion
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Fig. 1. Diff result of two slices of the original code. Our modified Jaccard similarity 

between S 1 and S 2 is: Jaccard(S 1 , S 2 ) = 4 / (4 + 2 + 1 ) ≈ 0 . 57. 
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1 Note that a longest common subsequence refers to a non-consecutive subse- 

quence, such as ‘ foo(){ , int b; , b + = 1; , } ’ in S 2 of Fig. 1 , whereas a longest 

common substring is a consecutive substring that is common to two strings. 
2 https://commons.apache.org/proper/commons-cli/ 
3 https://commons.apache.org/proper/commons-csv/ 
4 https://github.com/google/guava 
perator makes use of the updated distribution. 

 new 

( D k ) = 

{ 

ω comp · P ( D k ) compilation-error 
ω exec · P ( D k ) trajectory-change 
( 1 + log 10 (n d + 1) ) · P ( D k ) success 

(2) 

. Research questions 

We investigate the following six research questions: 

RQ1. Lexical Deletion Operators: How efficient and how effective

re the lexical deletion operators? 

We compare the results of VSM-ORBS, LDA-ORBS, and W-ORBS

ith respect to the number of lines deleted (effectiveness) and the

ime taken to compute a slice (efficiency). We also investigate the

mpact of the similarity threshold parameter γ of the deletion op-

rators Dvsm 

γ and Dlda 
γ used by VSM-ORBS and LDA-ORBS, re-

pectively. Finally, we consider the impact of successive application

f a range of different thresholds using VSM-ORBS-M and LDA-

RBS-M. 

RQ2. Operator Comparison: How different are the deletion oper-

tors from each other, both quantitatively and qualitatively? 

We compare the lexical dependence approximation provided by

he two lexical deletion operators by comparing various statistics

athered when applying each operator to each line of the source

ode. 

RQ3. Operator Selection Strategy: What impact does the opera-

or selection strategy have on MOBS’s ability to exploit lexical depen-

ence? 

In contrast to RQ2’s head-to-head comparison, RQ3 begins the

nvestigation into how the deletion operators complement each

ther. Our goal here is to determine which selection strategy to

se in the subsequent experiments. 

RQ4. Strategy Impact: How does MOBS using the chosen selection

trategy compare with W-ORBS? 

RQ4 compares MOBS with its best strategy (as determined

hen considering RQ3) against the original ORBS algorithm, W-

RBS. We again compare the results in terms of effectiveness and

fficiency. 

RQ5. Qualitative Analysis: What impact do differences in the lex-

cal dependencies considered have on the resulting slices? 

To provide a more intuitive feel for the impact of lexical depen-

ence, we investigate characteristics of the slices produced by vari-

nts of ORBS and MOBS. The comparison considers several qualita-

ive properties of the resulting slices. 

RQ6. Scalability: How well does the lexical dependency approxi-

ation scale? 

The lexical deletion operators preserve the language agnostic

ature of ORBS. With this research question, we investigate the

calability of lexical deletion operators using a larger, multi-lingual

rogram. 

. Experimental setup 

.1. Metrics 

We define several performance metrics for use in the quantita-

ive analysis. The first three, CPD (Compilations Per Deletion), EPD

Executions Per Deletion), and TPD (Time Per Deletion) capture the

fficiency of a slicing method. For these metrics, the smaller the

alue, the better. On the other hand, DPS (Deletions Per Success) is

he number of deleted lines per one successful application of the

eletion operator. DPS evaluates the efficiency of a deletion opera-

or: the larger the value, the better (the more efficient the opera-

or). 
Finally, we use a variant of Jaccard similarity to calculate the

imilarity between two slices. The traditional definition of Jaccard

imilarity, which is a measure of similarity between two sets, is not

ppropriate for our purpose because, from the lexical viewpoint, a

lice is an ordered multiset, i.e., the order of the lines matter and

t may contain multiple instances of the same line. Furthermore,

t is not viable to calculate the Jaccard similarity by making each

ine uniquely identifiable (e.g., by adding the tuple (file name, line

umber)). Fig. 1 shows an example of two slices, S 1 and S 2 where

 1 and S 2 delete ‘ b + = 1; ’ from different locations, but deletions

esult in the same common subsequence ‘ foo(){ , int b; , b + =
; , } ’. Adding unique identifiers to lines would have unwontedly

ot produced the same result. 

Given two sequences, S 1 and S 2 , our variant of Jaccard similar-

ty, modified for ordered multisets, is defined as follows: 

accard(S 1 , S 2 ) = 

| C| 
| C| + | O 1 | + | O 2 | 

here C as the longest common subsequence 1 of S 1 and S 2 , O 1 =
 1 − C, and O 2 = S 2 − C. 

.2. Subjects and environment 

Table 1 shows the programs chosen for our empirical evalua-

ion. For Java, we choose three open-source projects: commons-cli
 and commons-csv 

3 from Apache Commons Project, and guava

 

4 which is a core Java library developed by Google. We choose five

licing criteria from commons-cli , three from commons-csv , and

en from guava (five each from com.google.common.escape

nd com.google.common.net ). For the C code, we choose the

iemens suite ( Do et al., 2005 ). The program tcas has been ex-

luded from the experiment, as it was too small for the lexical

imilarity models such as LDA to be applicable ( tcas has only 120

on-Comment Lines of Code (NCLOC). We choose one slicing crite-

ion for each C program. Finally, the table provides the size of each

ubject program in NCLOC, as well as the number of test cases

rovided by the developers. The provided test cases will be used

s inputs as part of the slicing criteria. The second from the last

ow shows the statistics of misaka , an open-source multi-lingual

enchmark used to study RQ6. misaka includes both C and Python

ource code and has a total of over 50 0 0 NCLOC. 

To avoid the task of generating an obvious slice, we choose all

licing criteria thoroughly, making the dependency analysis chal-

enging enough. Each slicing criterion consists of a variable located

t a call depth of at least three. For Java, the slicing criteria are

hosen from the class which has a dependency with at least three

seven on average) other classes. 

https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-csv/
https://github.com/google/guava
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Table 1 

Subject programs and slicing criteria. The notation (A + B) for misaka denotes the statistics for its C and 

Python source code, respectively. 

Lang. Proj. # of Files NCLOC # of Test cases # of slicing criteria 

Java commons-cli 23 2081 26 5 

commons-csv 11 1504 13 3 

guava-escape 10 590 6 5 

guava-net 9 1569 8 5 

C prttok 1 410 11 1 

prttok2 1 387 10 1 

replace 1 508 15 1 

sched 1 208 6 1 

sched2 1 276 6 1 

totinfo 1 261 6 1 

C + Python misaka 15 5125 92 6 

(10 + 5) (4742 + 473) 

Total 30 
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5 Plots for other slicing criteria as well as other RQs are available at https: 

//coinse.github.io/MOBS _ data _ webpage/ . 
For the purposes of this investigation, we filter out comments

and reserved words prior to analysis. Although this violates lan-

guage independence to some degree, it does not demand even the

construction of a program’s parse trees but is restricted to the lex-

ical analysis in the matching of (regular expression) tokens to the

stoplist. Consideration of all program elements forms part of our

future work. 

Experiments were performed on machines with Intel Core i7-

6700K and 32GB RAM, running Ubuntu 14.04.5 LTS. Operator spe-

cific variants of ORBS (W-, VSM-, and LDA-) as well as MOBS have

been implemented and executed in Python version 3.6.5. Java sub-

jects have been built and executed using Java version 1.8.0_141 and

JUnit version 4.12. C subjects have been built using GCC version

4.8.4. 

6.3. Configuration 

W-ORBS has a single parameter, δ, the maximum size of the

deletion window. Our prior empirical study with W-ORBS has

found that using four as the maximum window size provides the

best performance. Thus, we use W-ORBS with maximum window

size δ = 4 as the baseline. While the studied subject programs and

their test suites are deterministic, during the slicing process ORBS

can produce nondeterministic candidate slices due to changes in

control flow that arise from the deletions. Looking ahead, the im-

pact of this non-determinism can be seen in Table 7 where the

standard deviation of the number of deleted lines, σ del by W-ORBS

is non-zero in some cases. To account for this, as well as the ran-

domness from the use of wall clock execution time, each W-ORBS

slice was computed ten times. 

Both VSM-ORBS and LDA-ORBS are parameterised by similarity

threshold γ . Since cosine similarity is used, the similarity is in the

range of [0, 1]. We report results using thresholds of 0.6, 0.7, 0.8,

and 0.9. LDA-ORBS also requires selecting a topic count, which de-

termines how many topics exist in the model. The best topic count

depends heavily on properties such as the size and vocabulary of

the documents. Tuning it typically requires manual inspection. We

evaluated the values 25, 50, 10 0, 30 0, 50 0, 70 0, and 90 0 during

the experiment for RQ1 and choose 500 as the best performer for

Java projects; we also evaluated the values 25, 50, 75, 10 0, 20 0,

and 300 for C projects, and chose 200 as the best performer (see

Section 7.1 for more details). We set the LDA hyperparameters, α
and β , which affect the sparsity of the document-topic and topic-

word distributions of the LDA model, respectively, to the inverse

of the topic count. Finally, for VSM-ORBS-M and LDA-ORBS-M we

use two sequences for �: {0.6, 0.7, 0.8, 0.9} and {0.9, 0.8, 0.7, 0.6},

which we refer to as increasing order and decreasing order. For

LDA-ORBS-M we use the same topic count as used with LDA-ORBS.
ote that there is no need to repeat the VSM-ORBS(-M) and LDA-

RBS(-M) runs because VSM-ORBS is deterministic and LDA-ORBS

s deterministic apart from the generation of the topic model. Our

xperience is that the variance from other parameters, such as the

imilarity threshold and topic count, is much more significant than

he variation from rerunning the topic modelling. 

The library of deletion operators used by MOBS includes the fol-

owing twelve operators, which are different paramaterisations of

he operators Dw , Dvsm , and Dlda : 

• Dw 

δ for deletion window size δ = 1 , 2, 3, and 4 
• Dvsm 

γ for threshold γ = 0 . 6 , 0.7, 0.8, and 0.9 
• Dlda 

γ for threshold γ = 0 . 6 , 0.7, 0.8, and 0.9 

Due to the stochastic nature of the operator selection, and the

se of wall clock time, like W-ORBS, we repeat each MOBS slice

en times for each slicing criterion. 

. Results 

.1. Lexical deletion operators 

Before comparing the efficiency and effectiveness of VSM-ORBS,

DA-ORBS, and W-ORBS, we investigate how lexical deletion op-

rators delete source code. Table 2 shows several example dele-

ions. The first criterion of commons-cli , cli-1 , involves the pro-

ram’s option-setting function. Dvsm simultaneously deletes lines

hat are related to the option printing, but are irrelevant to the

riterion. In the second example, Dvsm deletes all function calls

hat handle a deficient token error from prttok2 , since the cri-

erion checks whether the input token is an identifier. Similar to

li-1 , for the criterion csv-1 , Dlda deletes all string building

unctions from commons-csv , because they are unrelated to the

ine-break checking function for a csv file. 

To answer RQ1 , we report results from comparisons between

SM-ORBS, LDA-ORBS and W-ORBS. As an example, Fig. 2 shows

he comparison between the three slicers for guava-escape 

5 : the

 -axis indicates the variant of ORBS ( γ denotes the threshold; n

he topic count of LDA). On the left is a bar chart showing the

umber of deleted lines (blue), the number of compilations (light

rey), and the number of executions (dark grey), required by each

licer. On the right is a bar chart showing the wall-clock time (red),

nd the number of lines deleted (blue) for each slicer. We also

eport the performance metrics CPD (denoted by � ), EPD ( × ),

nd TPD ( ♦) with connected lines. Both VSM-ORBS and LDA-ORBS

https://coinse.github.io/MOBS_data_webpage/
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Table 2 

Lines that have been deleted by lexical deletion operators. cli-1 and csv-1 represent the first criterion of commons-cli and commons-csv . 

prt2 represents the criterion of prttok2 . 

File-name:Line-num Code line 

cli-1 , 
Dvsm 

HelpFormatter.java:166 buff.append(’’ ’’); 
HelpFormatter.java:173 buff.append(’’[’’); 
HelpFormatter.java:182 buff.append(’’ | ’’); 
HelpFormatter.java:186 buff.append(’’]’’); 
HelpFormatter.java:191 buff.append(’’[’’); 
HelpFormatter.java:203 buff.append(’’]’’); 
OptionGroup.java:46 buff.append(’’[’’); 
OptionGroup.java:50 buff.append(’’-’’); 
OptionGroup.java:53 buff.append(’’--’’); 
OptionGroup.java:57 buff.append(’’ ’’); 
OptionGroup.java:61 buff.append(’’, ’’); 
OptionGroup.java:64 buff.append(’’]’’); 

prt2 
Dvsm 

print_tokens2.c:123 unget_error(tp); 
print_tokens2.c:130 unget_error(tp); 
print_tokens2.c:142 unget_error(tp); 

csv-1 , 
Dlda 

CSVFormat.java:410 sb.append(’’Delimiter = < ’’).append(delimiter).append('> '); 
CSVFormat.java:416 sb.append(' '); 
CSVFormat.java:428 sb.append(' '); 
CSVFormat.java:443 sb.append(’’HeaderComments:’’) .append(Arrays.toString(headerComments)); 
CSVFormat.java:447 sb.append(’’Header:’’).append(Arrays.toString(header)); 

Fig. 2. Efficiency of ORBS variants. CPD, EPD, and TPD are the number of compilations, executions, and time taken per deleted line, respectively. 
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elete many fewer lines, but with significantly higher efficiency, as

an be seen in their lower CPD, EPD, and TPD values: a similar

rend is observed across all subjects. 

The data in Table 3 compares the efficiency of W-ORBS, VSM-

RBS, and LDA-ORBS. For these results, the similarity threshold

f VSM-ORBS and LDA-ORBS is set to 0.9; the topic count for

DA-ORBS is set to 500 for Java projects and 200 for C projects

the remainder of this Section explains the rationale behind these

hoices). On average, VSM-ORBS and LDA-ORBS delete 42.2% and

3.2% of the number of lines deleted by W-ORBS, respectively.

owever, VSM-ORBS uses only 19.4% of compilations and 29.2%

f executions used by W-ORBS, requiring only 21.0% of the wall

lock execution time of W-ORBS. Similarly, LDA-ORBS uses 19.4%

f compilations, 22.1% of executions, and takes only 20.0% of the

all clock execution time of W-ORBS. 
The results in Table 3 can be summarised using the per deleted

ine efficiency metrics as follows. For VSM-ORBS, its CPD, EPD, and

PD values are, on average across all subjects, 45.9%, 63.1%, and

9.5% of the corresponding W-ORBS’s value. For LDA-ORBS they are

9.9%, 65.9%, and 62.2%, respectively. 

Fig. 3 shows the results of VSM-ORBS with various similarity

hresholds. As the threshold increases, the number of deleted lines

ends to increase: that is, as VSM-ORBS targets similar lines with

igher thresholds, it becomes more likely that it can delete those

ines together. On the other hand, the number of compilations

s relatively stable because compilation is performed every time

RBS attempts a deletion. Since the number of compilations is

uch larger than that of executions, the wall clock execution time

ends to follow the trends of compilations. Consequently, the CPD

nd TPD values show similar trends and are dependent on how the
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Table 3 

Comparison of the number of compilations (C), executions (E), execution time (T, sec), and deleted lines (D) for W-ORBS, 

VSM-ORBS, and LDA-ORBS . 

Criteria W-ORBS VSM-ORBS LDA-ORBS 

C E T D C E T D C E T D 

cli-1 21,052 2413 28,975 980 3680 470 5510 325 4330 408 5596 240 

cli-2 22,241 2318 25,168 1123 3297 370 3920 375 4076 359 4813 291 

cli-3 21,498 1886 26,165 1160 3583 391 4805 393 4195 359 5535 290 

cli-4 23,163 2760 32,246 818 4472 579 7005 285 4306 478 6178 217 

cli-5 24,340 2463 30,812 1144 3571 368 4594 364 4197 348 5119 279 

csv-1 14,627 1373 25,146 696 2706 323 4805 219 2499 234 3939 155 

csv-2 13,751 933 16,909 903 2718 253 3767 302 2897 187 3527 199 

csv-3 11,979 760 13,713 1017 3240 250 3911 299 2834 173 2897 209 

esc-1 5840 415 7894 239 1099 117 1586 115 1022 77 1229 95 

esc-2 7174 517 9983 228 1100 124 1578 114 1012 77 1286 101 

esc-3 5808 391 7196 309 1070 97 1341 134 1332 76 1673 106 

esc-4 5387 284 7185 337 1178 90 1636 137 824 67 1049 119 

esc-5 6163 458 8189 216 1109 127 1465 110 1001 102 1467 85 

net-1 12,576 814 15,727 877 2780 397 3652 448 2630 234 3406 278 

net-2 12,288 781 15,861 905 2779 393 3796 453 2569 233 3367 285 

net-3 13,115 901 16,672 844 2373 396 3199 443 2272 231 2940 291 

net-4 12,911 1806 17,933 842 2446 455 3854 368 2157 281 3035 231 

net-5 12,004 739 14,736 925 2360 379 3014 463 2796 237 3522 308 

prttok 2926 726 882 212 693 206 302 114 657 176 197 108 

prttok2 3220 570 596 223 558 126 69 59 565 132 114 54 

replace 6208 1254 1539 157 1219 392 373 92 839 230 210 61 

sched 3186 589 208 93 459 136 34 32 743 216 81 34 

sched2 1661 372 252 86 445 103 79 42 453 113 69 55 

totinfo 1883 261 54 98 415 93 11 48 392 66 10 38 
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number of deleted lines changes. If the number of deleted lines

varies significantly (as in commons-cli ), CPD and TPD tend to in-

crease; if the number of deletions varies little (as in commons-

csv ), CPD and TPD tend to be more stable. 

Fig. 4 shows the results of LDA-ORBS with various threshold pa-

rameters. Overall, the results show similar trends to those of VSM-

ORBS: the smaller the threshold value, the worse the efficiency.

However, for C projects, the difference between the number of the

compilations and executions is less than that of the Java projects;

their compilation time is also smaller. Consequently, the trend of

TPD is more likely to follow the EPD. 

Let us briefly discuss the impact of topic count on LDA-ORBS.

Fig. 5 shows the results of LDA-ORBS with various topic counts

for commons-cli . In commons-cli , we observe the number of

deleted lines increases until it reaches a maximum at topic count

of n = 500 , where it levels off. This is because, when n is too

small, the topic model cannot capture sufficient features of the

source code lines resulting in insufficient similarity and, conse-

quently, fewer deleted lines. A similar trend is observed in the C

subjects: the number of deleted lines increases as n brows to 200,

and then levels off. Based on these observations, we use the topic

counts 500 for Java and 200 for C in the remainder of our experi-

ments, as these are the values around which the number of dele-

tions improves and remains stable afterwards. 

Finally, we consider the performance of VSM-ORBS-M and LDA-

ORBS-M. Fig. 6 compares W-ORBS, VSM-ORBS with Dvsm 

0 . 9 
, and

VSM-ORBS-M using the increasing and decreasing values for �. Re-

sults suggest that there is almost no difference in the number of

lines deleted by VSM-ORBS and VSM-ORBS-M using either order.

VSM-ORBS-M deletes only 0.8% and 0.5% more lines than VSM-

ORBS with � increasing and decreasing, respectively. Meanwhile,

VSM-ORBS-M (with either �) employs 49% more compilations than

VSM-ORBS; thus, CPD increases 48% when compare to VSM-ORBS.

LDA-ORBS and LDA-ORBS-M show a similar pattern; LDA-ORBS-M

with � increasing and decreasing requires 48% and 50% more com-

pilations than LDA-ORBS while deleting only 1.7% and 1.1% more

lines than LDA-ORBS. The results imply that the different thresh-

olds have minimal impact in terms of the lines that can be deleted
sing our lexical dependence approximation. Even so, we continue

o consider different thresholds with the lexical deletion operators

ince their efficiency might differ from each other. 

In summary for RQ1 , while lexical deletion operators delete

ewer lines, they use significantly fewer compilations and execu-

ions, reducing wall clock time. Both lexical deletion operators are

ighly attractive in terms of their per-deleted-line efficiency, moti-

ating MOBS’s use of multiple deletion operators. 

.2. Operator comparison 

To answer RQ2 , we investigate the relative applicability of dif-

erent deletion operators. This is done by applying each deletion

perator to all non-comment lines of code in the program’s source

o identify which lines are successful application points. Let W, V ,

nd L be the set of lines against which Dw 

δ (δ ∈ { 1 , . . . , 4 } ) , and

vsm 

γ
Dlda 

γ ( γ ∈ {0.6, 0.7, 0.8, 0.9}) can be successfully applied:

et � denote the union of W, V , and L . In this experiment, we com-

ute all pair-wise set differences to check how uniquely the oper-

tors can be applied to different locations. 

Table 4 presents sizes of W, V , and L as well as set differences

etween them, along with DPS W 

, DPS V , and DPS L . DPS W 

is the av-

rage number of deleted lines across all successful applications of

ach Dw 

δ operator to all source code lines. Similarly, DPS V and

PS L are the average number of deleted lines across the applica-

ions of Dvsm and Dlda to all lines of source code, respectively. 

In all cases, the size of W is either identical or very close to

hat of the union, while sizes of V and L are significantly smaller

han that of W ; | V �W | and | L �W | are always close to zero. Overall,

his suggests that Dw can be applied to the largest number of lines

uccessfully. 

However, the results from the DPS analysis provide evidence

hat lexical deletion can improve the efficiency of ORBS. The results

how that, for most of the Java subjects, DPS V is notably higher

han DPS W 

, suggesting that, when successful, Dvsm is capable of

eleting more lines per attempt than Dw . DPS L shows mixed re-

ults. For C projects, DPS values are almost equal between window

nd lexical deletion operators. We suspect that, due to the smaller
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Fig. 3. VSM-ORBS: Threshold analysis. 

Fig. 4. LDA-ORBS: Threshold value comparison. 
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Fig. 5. LDA-ORBS: Impact of topic count. 

Fig. 6. Efficiency of VSM-ORBS-M. The notation � = [0 . 6 → 0 . 9] denotes the values 0.6, 0.7, 0.8, 0.9, while [0.9 → 0.6] denotes the same values in decreasing order. 
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Table 4 

Comparison between deletion operators. 

Criteria � W V L W �V W �L V �W V �L L �W L �V DPS 

W V L 

cli-1 661 660 288 213 373 447 1 102 0 27 2.11 3.98 1.22 

cli-2 804 802 347 285 456 518 1 95 1 33 2.11 4.45 1.94 

cli-3 767 766 363 280 404 486 1 108 0 25 2.15 4.37 2.0 

cli-4 549 548 225 192 323 357 0 58 1 25 2.04 5.35 2.84 

cli-5 722 721 334 263 388 458 1 96 0 25 2.13 4.26 1.96 

csv-1 530 530 197 141 333 389 0 67 0 11 2.31 3.76 1.59 

csv-2 624 623 254 176 369 448 0 89 1 11 2.31 3.48 1.62 

csv-3 670 670 255 186 415 484 0 82 0 13 2.34 3.46 1.55 

esc-1 190 185 95 80 92 109 2 29 4 14 1.96 5.48 2.03 

esc-2 169 160 89 77 73 91 2 25 8 13 1.89 5.75 2.04 

esc-3 215 207 111 89 98 125 2 38 7 16 1.98 5.08 1.85 

esc-4 252 237 118 111 122 140 3 30 14 23 2.03 4.78 4.93 

esc-5 176 170 90 73 82 102 2 28 5 11 1.94 5.66 2.15 

net-1 679 675 421 269 257 409 3 162 3 10 2.31 2.76 1.76 

net-2 667 658 422 275 239 391 3 164 8 17 2.3 2.78 1.62 

net-3 649 642 416 288 228 361 2 147 7 19 2.32 2.8 2.53 

net-4 606 602 341 222 265 382 4 130 2 11 2.28 3.05 1.82 

net-5 702 697 438 292 262 408 3 161 3 15 2.31 2.73 1.79 

prttok 179 179 60 56 119 123 0 10 0 6 2.25 1.38 1.26 

prttok2 189 184 107 95 82 93 5 24 4 12 2.23 2.81 3.21 

replace 120 120 75 51 45 69 0 26 0 2 1.42 1.36 1.32 

sched 91 90 40 52 51 39 1 2 1 14 1.61 1.39 1.45 

sched2 54 54 30 26 24 28 0 6 0 2 1.56 1.15 1.34 

totinfo 92 90 47 38 45 54 2 10 2 1 2.01 1.38 1.43 

Fig. 7. Ratios comparing VSM-ORBS or LDA-ORBS followed by W-ORBS to W-ORBS alone. 

s  

t

 

c  

e  

i  

o  

g

 

a  

d  

n  

L  

i  

m  

o  

d

 

f  

F  

t  

V  

fi  

i  

O  

t  

d  

e  

t  

i  

t  

r  

t

 

p  

d  

d  

T  

t  

a  

s  

i

ize of these subjects, there are fewer similar source code lines for

he lexical operators to exploit. 

Note that higher DPS values do not necessarily mean that the

orresponding operator will be highly applicable , as it measures the

xpected deletions per successful application. However, the results

n Table 4 suggest that, if applied appropriately, lexical deletion

perators stand to improve the efficiency of ORBS by deleting a

reater number of lines per attempt. 

The contrast in operator behaviours provides an answer to RQ2

nd suggests the use of both window and lexical deletion operators

uring observation-based slicing. We initially tried a naive combi-

ation that ran W-ORBS on the slice generated by VSM-ORBS or

DA-ORBS. The strategy first deletes lines that can be detected us-

ng lexical deletion and then applies window deletion to the re-

aining lines. In doing so, it aims to combine the efficiency gain

f lexical deletion with the smaller slices attained using window

eletion. 

Fig. 7 compares the results of applying VSM-ORBS or LDA-ORBS

ollowed by W-ORBS to those attained by applying W-ORBS alone.

or the numerator, the number of iterations, compilations, execu-

ions, lines deleted, and the time taken is the sum of the value for
SM-ORBS or LDA-ORBS plus that for W-ORBS. The box plots in the

gure summarize the ratios for each of the 24 slicing criteria stud-

ed. The green box is the ratio of W-ORBS after VSM-ORBS to W-

RBS, while the yellow box is the ratio of W-ORBS after LDA-ORBS

o W-ORBS. On average, there is a slight increase in the number of

eleted lines. However, the cost (e.g., the number of compilations,

xecutions, and the time taken) increase dramatically. Interestingly,

he initial application of lexical deletion does reduce the number

terations used in the subsequent application of W-ORBS. In 11 of

he 24 slicing criteria, W-ORBS following VSM-ORBS or LDA-ORBS

equires one fewer iteration, while for replace does it required

wo fewer. 

The data shows that applying window deletion as a “second

ass” does not improve slicing efficiency. Even so, initial lexical

eletions do help to break certain dependence chains and thus re-

uce the slice size and the number of iterations W-ORBS requires.

his potential synergy between window and lexical deletion fur-

her motivates MOBS. The interplay between the two suggests that

 more sophisticated combination might be able to exploit the

trengths of each approach. It is this potential that motivates our

ntroduction and subsequent study of MOBS. 
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Table 5 

The selection probability for FOS with applicability for each deletion operator. 

Criteria Dw with δ = Dvsm with γ = Dlda with γ = 

1 2 3 4 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 

cli-1 0.162 0.069 0.082 0.059 0.065 0.080 0.098 0.119 0.050 0.058 0.072 0.088 

cli-2 0.155 0.062 0.088 0.052 0.064 0.080 0.097 0.118 0.055 0.063 0.076 0.091 

cli-3 0.153 0.073 0.081 0.063 0.061 0.077 0.096 0.119 0.050 0.059 0.076 0.092 

cli-4 0.159 0.056 0.075 0.048 0.064 0.082 0.103 0.113 0.054 0.066 0.085 0.095 

cli-5 0.152 0.074 0.077 0.061 0.062 0.077 0.092 0.114 0.056 0.065 0.079 0.091 

csv-1 0.139 0.075 0.098 0.081 0.059 0.077 0.094 0.109 0.059 0.060 0.069 0.078 

csv-2 0.135 0.080 0.102 0.079 0.061 0.081 0.098 0.111 0.054 0.057 0.068 0.075 

csv-3 0.131 0.076 0.110 0.079 0.060 0.079 0.096 0.108 0.057 0.060 0.069 0.077 

esc-1 0.140 0.043 0.049 0.040 0.088 0.098 0.107 0.114 0.068 0.071 0.089 0.094 

esc-2 0.142 0.045 0.042 0.036 0.092 0.104 0.109 0.116 0.060 0.067 0.089 0.097 

esc-3 0.146 0.046 0.052 0.043 0.093 0.103 0.113 0.126 0.059 0.059 0.074 0.087 

esc-4 0.131 0.041 0.052 0.043 0.084 0.092 0.101 0.111 0.074 0.073 0.095 0.103 

esc-5 0.145 0.047 0.048 0.040 0.093 0.104 0.112 0.118 0.056 0.062 0.086 0.088 

net-1 0.118 0.072 0.080 0.073 0.096 0.101 0.108 0.112 0.049 0.053 0.064 0.074 

net-2 0.120 0.074 0.079 0.071 0.098 0.104 0.111 0.115 0.044 0.048 0.063 0.073 

net-3 0.115 0.071 0.075 0.072 0.095 0.100 0.107 0.111 0.050 0.056 0.069 0.079 

net-4 0.125 0.063 0.078 0.070 0.094 0.101 0.111 0.116 0.048 0.053 0.067 0.075 

net-5 0.117 0.069 0.076 0.072 0.095 0.101 0.108 0.112 0.051 0.056 0.068 0.074 

prttok 0.134 0.091 0.080 0.073 0.065 0.077 0.089 0.092 0.073 0.073 0.075 0.080 

prttok2 0.160 0.099 0.130 0.082 0.052 0.055 0.069 0.085 0.058 0.060 0.067 0.084 

replace 0.191 0.047 0.017 0.015 0.069 0.073 0.109 0.140 0.075 0.075 0.094 0.096 

sched 0.180 0.051 0.035 0.012 0.055 0.090 0.094 0.118 0.082 0.090 0.090 0.102 

sched2 0.151 0.034 0.041 0.009 0.073 0.084 0.089 0.089 0.096 0.103 0.114 0.116 

totinfo 0.137 0.054 0.041 0.056 0.090 0.092 0.099 0.106 0.083 0.079 0.081 0.081 

Table 6 

The selection probability for FOS with effect for each deletion operator. 

Criteria Dw with δ = Dvsm with γ = Dlda with γ = 

1 2 3 4 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 

cli-1 0.064 0.054 0.097 0.093 0.140 0.138 0.134 0.152 0.024 0.029 0.035 0.040 

cli-2 0.053 0.042 0.091 0.072 0.131 0.148 0.133 0.137 0.046 0.046 0.051 0.048 

cli-3 0.053 0.050 0.084 0.087 0.126 0.142 0.131 0.135 0.043 0.045 0.053 0.051 

cli-4 0.046 0.032 0.065 0.055 0.132 0.155 0.142 0.129 0.035 0.062 0.087 0.062 

cli-5 0.054 0.053 0.082 0.087 0.121 0.143 0.129 0.128 0.046 0.053 0.055 0.049 

csv-1 0.053 0.058 0.112 0.124 0.113 0.121 0.124 0.132 0.039 0.040 0.040 0.044 

csv-2 0.053 0.063 0.120 0.124 0.118 0.120 0.118 0.122 0.037 0.041 0.042 0.041 

csv-3 0.052 0.060 0.131 0.125 0.116 0.118 0.117 0.120 0.039 0.038 0.041 0.043 

esc-1 0.041 0.025 0.043 0.047 0.159 0.163 0.165 0.165 0.047 0.046 0.050 0.048 

esc-2 0.040 0.025 0.036 0.040 0.167 0.172 0.170 0.171 0.043 0.046 0.044 0.046 

esc-3 0.044 0.028 0.047 0.053 0.164 0.168 0.169 0.171 0.041 0.039 0.040 0.037 

esc-4 0.032 0.020 0.038 0.042 0.113 0.113 0.114 0.114 0.104 0.103 0.108 0.100 

esc-5 0.040 0.026 0.040 0.044 0.165 0.169 0.170 0.170 0.046 0.047 0.045 0.037 

net-1 0.050 0.061 0.101 0.123 0.135 0.122 0.117 0.113 0.040 0.041 0.044 0.053 

net-2 0.051 0.063 0.101 0.122 0.139 0.127 0.123 0.117 0.032 0.033 0.044 0.048 

net-3 0.045 0.055 0.088 0.112 0.123 0.113 0.110 0.105 0.049 0.059 0.069 0.074 

net-4 0.050 0.050 0.094 0.112 0.141 0.128 0.126 0.121 0.035 0.040 0.049 0.053 

net-5 0.050 0.059 0.097 0.123 0.131 0.121 0.118 0.113 0.045 0.044 0.050 0.050 

prttok 0.050 0.067 0.087 0.106 0.101 0.085 0.074 0.074 0.093 0.092 0.088 0.082 

prttok2 0.091 0.111 0.219 0.182 0.053 0.043 0.051 0.057 0.042 0.042 0.048 0.061 

replace 0.140 0.067 0.034 0.040 0.074 0.073 0.107 0.136 0.076 0.076 0.088 0.089 

sched 0.135 0.076 0.079 0.035 0.047 0.079 0.082 0.100 0.085 0.091 0.091 0.100 

sched2 0.102 0.047 0.084 0.025 0.075 0.085 0.082 0.076 0.102 0.102 0.115 0.104 

totinfo 0.087 0.067 0.074 0.138 0.083 0.084 0.086 0.087 0.081 0.070 0.071 0.071 
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7.3. Operator selection strategy 

Tables 5 and 6 contain the probability of each operators

calculated using applicability and effect for FOS, respectively

( Section 4.2.2 ). Table 5 shows that operators that delete fewer

lines tend to take higher probability (i.e., opportunities to delete

a large number of lines together are rare) for all subjects. Dw 

1 has

the highest probability, and consequently will be most frequently

selected by FOS-MOBS when using applicability. However, in an

interesting contrast, Table 6 shows that Dvsm has a much higher

probability than other deletion operators for the Java projects (i.e.,

when those rare opportunities arise, Dvsm can delete a sufficiently
arge number of lines to overcome its rareness). Among the Dw op-

rators, applicability shows a negative correlation while a positive

orrelation is observed between δ and effect. Note that there does

ot exist an observable trend in effect for the C subjects. We sus-

ect the higher verbosity of Java code compared to C may yield the

igher applicability of Dvsm , due to the richer lexical information

n the source code: however, further study is required to confirm

his. Finally, probabilities of Dlda remain relatively low across all

ubjects. 

Fig. 8 shows the result of Vargha-Delaney ˆ A 12 statis-

ic ( Vargha and Delaney, 20 0 0 ) for the TPD values of the four dif-

erent operator selection strategies used by MOBS. Each of ROS ,
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Table 7 

Statistics on execution time and the number of deleted lines for W-ORBS and MOBS. 

Criteria Strategy μdel σ del μtime σ time μtpd σ tpd Criteria Strategy μdel σ del μtime σ time μtpd σ tpd 

cli-1 

(W-ORBS 

Iter.:5) 

ROS-MOBS 721.40 28.64 11272.02 906.65 15.65 1.41 esc-5 

(W-ORBS 

Iter.:4) 

ROS-MOBS 140.70 8.50 2434.85 128.74 17.37 1.47 

FOS-uni-MOBS 608.20 17.33 10961.53 513.61 18.06 1.26 FOS-uni-MOBS 154.00 8.88 2457.16 103.25 16.03 1.36 

FOS-app-MOBS 597.50 21.38 11175.68 480.81 18.74 1.25 FOS-app-MOBS 137.70 8.12 2542.52 114.95 18.53 1.39 

FOS-eff-MOBS 598.90 23.42 11158.46 320.87 18.67 1.05 FOS-eff-MOBS 129.30 7.07 2418.29 118.81 18.77 1.56 

W-ORBS 979.30 0.46 28134.40 1088.38 28.73 1.11 W-ORBS 216.00 0.00 8069.86 355.38 37.36 1.65 

cli-2 

(W-ORBS 

Iter.:6) 

ROS-MOBS 791.40 139.13 9593.28 1932.33 12.09 0.90 net-1 

(W-ORBS 

Iter.:5) 

ROS-MOBS 561.00 90.04 5558.79 1396.09 9.79 1.37 

FOS-uni-MOBS 726.40 16.04 10276.15 476.00 14.16 0.85 FOS-uni-MOBS 621.80 14.08 6776.59 349.01 10.91 0.65 

FOS-app-MOBS 709.20 16.15 10568.47 406.63 14.91 0.70 FOS-app-MOBS 617.90 20.76 6821.67 328.34 11.05 0.69 

FOS-eff-MOBS 690.10 23.39 10316.25 404.77 14.97 0.91 FOS-eff-MOBS 645.30 19.74 6778.88 333.59 10.52 0.76 

W-ORBS 1123.00 0.00 25224.20 702.45 22.46 0.63 W-ORBS 877.00 0.00 16250.56 878.72 18.53 1.00 

cli-3 

(W-ORBS 

Iter.:6) 

ROS-MOBS 872.70 114.47 10837.41 1376.55 12.47 0.92 net-2 

(W-ORBS 

Iter.:5) 

ROS-MOBS 497.80 93.83 4589.39 1364.66 9.06 1.03 

FOS-uni-MOBS 763.40 16.05 11228.13 437.73 14.71 0.57 FOS-uni-MOBS 637.60 17.10 6902.16 376.68 10.84 0.72 

FOS-app-MOBS 774.00 26.24 11226.59 521.40 14.53 0.94 FOS-app-MOBS 638.30 17.75 6952.53 314.39 10.90 0.55 

FOS-eff-MOBS 752.20 19.16 11110.52 459.07 14.79 0.88 FOS-eff-MOBS 659.20 14.10 6668.74 335.09 10.12 0.60 

W-ORBS 1160.00 0.00 26109.18 737.05 22.51 0.64 W-ORBS 905.00 0.00 15605.63 753.18 17.24 0.83 

cli-4 

(W-ORBS 

Iter.:5) 

ROS-MOBS 645.20 17.91 12126.29 593.73 18.78 0.48 net-3 

(W-ORBS 

Iter.:5) 

ROS-MOBS 474.80 76.77 4212.45 1394.51 8.70 1.69 

FOS-uni-MOBS 504.20 17.38 11692.39 392.95 23.21 1.01 FOS-uni-MOBS 623.10 16.63 6826.59 300.39 10.97 0.60 

FOS-app-MOBS 493.40 22.50 11899.10 487.58 24.19 1.88 FOS-app-MOBS 609.60 13.37 6893.63 273.25 11.31 0.51 

FOS-eff-MOBS 434.90 16.02 11616.53 532.42 26.76 1.86 FOS-eff-MOBS 613.30 17.05 6666.82 361.27 10.89 0.77 

W-ORBS 817.20 0.75 31665.95 930.87 38.75 1.13 W-ORBS 844.00 0.00 16499.28 681.01 19.55 0.81 

cli-5 

(W-ORBS 

Iter.:6) 

ROS-MOBS 826.80 119.27 10490.76 1205.87 12.79 0.95 net-4 

(W-ORBS 

Iter.:4) 

ROS-MOBS 471.20 86.42 5243.92 944.86 11.16 0.95 

FOS-uni-MOBS 726.60 13.45 10914.85 564.61 15.03 0.91 FOS-uni-MOBS 518.80 15.33 6432.89 279.95 12.40 0.51 

FOS-app-MOBS 725.20 18.48 11124.64 531.14 15.35 0.92 FOS-app-MOBS 516.70 9.57 6451.88 306.13 12.49 0.66 

FOS-eff-MOBS 702.10 16.36 10916.40 513.33 15.56 0.80 FOS-eff-MOBS 527.60 17.20 6347.30 252.24 12.05 0.78 

W-ORBS 1144.00 0.00 29801.89 1227.73 26.05 1.07 W-ORBS 842.00 0.00 17701.25 838.83 21.02 1.00 

csv-1 

(W-ORBS 

Iter.:5) 

ROS-MOBS 507.70 74.33 9581.00 1155.33 19.17 2.58 net-5 

(W-ORBS 

Iter.:5) 

ROS-MOBS 505.00 95.67 4072.71 1325.93 7.89 1.11 

FOS-uni-MOBS 439.80 12.28 9117.84 364.35 20.73 0.66 FOS-uni-MOBS 659.60 22.26 6521.51 330.75 9.90 0.61 

FOS-app-MOBS 443.10 13.09 9541.62 506.47 21.58 1.67 FOS-app-MOBS 651.50 20.91 6692.08 362.52 10.29 0.74 

FOS-eff-MOBS 456.10 13.22 9072.71 461.40 19.91 1.24 FOS-eff-MOBS 674.20 16.96 6394.88 330.91 9.50 0.62 

W-ORBS 696.00 0.00 27677.29 3280.38 39.77 4.71 W-ORBS 925.00 0.00 15093.32 748.07 16.32 0.81 

( continued on next page ) 
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Table 7 ( continued ) 

csv-2 

(W-ORBS 

Iter.:6) 

ROS-MOBS 673.50 103.54 6872.09 1054.63 10.28 1.15 prttok2 

(W-ORBS 

Iter.:5) 

ROS-MOBS 158.20 14.57 182.38 76.60 1.14 0.46 

FOS-uni-MOBS 601.30 12.03 7629.31 365.57 12.70 0.73 FOS-uni-MOBS 145.40 8.67 245.81 60.02 1.70 0.43 

FOS-app-MOBS 622.20 10.67 7726.95 346.49 12.42 0.59 FOS-app-MOBS 160.50 8.19 255.50 70.59 1.60 0.48 

FOS-eff-MOBS 629.50 17.63 7530.18 333.35 11.97 0.61 FOS-eff-MOBS 171.20 4.51 218.37 42.34 1.28 0.27 

W-ORBS 903.00 0.00 16996.75 837.50 18.82 0.93 W-ORBS 223.00 0.00 601.91 4.78 2.70 0.02 

csv-3 

(W-ORBS 

Iter.:6) 

ROS-MOBS 723.60 71.90 5956.72 1068.92 8.23 1.34 prttok 

(W-ORBS 

Iter.:5) 

ROS-MOBS 175.40 9.11 361.10 63.76 2.07 0.40 

FOS-uni-MOBS 642.10 22.72 6945.58 436.10 10.85 1.00 FOS-uni-MOBS 167.70 6.33 464.75 24.12 2.78 0.21 

FOS-app-MOBS 684.50 23.41 6791.43 395.51 9.93 0.66 FOS-app-MOBS 170.90 5.43 489.20 31.97 2.87 0.21 

FOS-eff-MOBS 699.80 22.44 6759.21 231.33 9.67 0.52 FOS-eff-MOBS 164.00 6.05 429.71 36.88 2.62 0.24 

W-ORBS 1017.00 0.00 13378.98 504.69 13.16 0.50 W-ORBS 210.80 1.83 860.68 151.17 4.08 0.70 

esc-1 

(W-ORBS 

Iter.:4) 

ROS-MOBS 158.10 11.39 2419.24 128.02 15.35 1.02 replace 

(W-ORBS 

Iter.:6) 

ROS-MOBS 118.70 10.37 700.25 137.06 5.90 1.01 

FOS-uni-MOBS 166.80 8.45 2385.50 148.60 14.35 1.26 FOS-uni-MOBS 98.20 10.32 586.78 78.29 5.96 0.37 

FOS-app-MOBS 148.00 6.77 2460.76 89.41 16.66 0.93 FOS-app-MOBS 113.90 7.13 652.74 72.45 5.74 0.63 

FOS-eff-MOBS 148.20 7.85 2400.78 40.82 16.25 0.95 FOS-eff-MOBS 109.70 6.81 662.87 77.21 6.05 0.72 

W-ORBS 239.00 0.00 7875.26 290.58 32.95 1.22 W-ORBS 150.40 7.03 1421.99 211.15 9.42 1.05 

esc-2 

(W-ORBS 

Iter.:5) 

ROS-MOBS 163.70 7.72 2972.71 147.53 18.21 1.38 sched2 

(W-ORBS 

Iter.:3) 

ROS-MOBS 64.70 5.95 117.17 24.86 1.80 0.30 

FOS-uni-MOBS 166.00 11.86 2963.51 186.19 17.93 1.62 FOS-uni-MOBS 61.20 4.24 97.31 7.11 1.60 0.17 

FOS-app-MOBS 150.40 4.20 3016.77 122.80 20.08 1.16 FOS-app-MOBS 62.50 3.07 113.17 17.45 1.82 0.32 

FOS-eff-MOBS 139.10 7.08 2923.23 117.45 21.06 1.17 FOS-eff-MOBS 61.40 3.01 104.53 11.35 1.71 0.21 

W-ORBS 228.00 0.00 9522.98 357.31 41.77 1.57 W-ORBS 86.00 0.00 254.91 2.58 2.96 0.03 

esc-3 

(W-ORBS 

Iter.:5) 

ROS-MOBS 209.90 15.95 2680.11 116.08 12.85 1.17 sched 

(W-ORBS 

Iter.:4) 

ROS-MOBS 58.20 10.49 88.28 5.91 1.57 0.30 

FOS-uni-MOBS 204.80 9.34 2626.56 166.92 12.87 1.20 FOS-uni-MOBS 53.20 7.81 65.11 8.02 1.27 0.37 

FOS-app-MOBS 186.40 9.17 2704.12 90.17 14.55 1.04 FOS-app-MOBS 56.70 6.62 83.43 9.62 1.50 0.28 

FOS-eff-MOBS 179.30 8.04 2617.82 118.46 14.63 0.87 FOS-eff-MOBS 58.70 6.87 83.38 7.78 1.44 0.24 

W-ORBS 309.00 0.00 7030.67 326.03 22.75 1.06 W-ORBS 93.00 0.00 220.23 10.44 2.37 0.11 

esc-4 

(W-ORBS 

Iter.:5) 

ROS-MOBS 223.30 21.39 2635.30 309.91 11.82 1.13 totinfo 

(W-ORBS 

Iter.:3) 

ROS-MOBS 68.20 6.05 17.79 0.69 0.26 0.03 

FOS-uni-MOBS 221.30 10.06 2610.84 145.66 11.84 1.06 FOS-uni-MOBS 67.60 4.45 17.84 0.58 0.27 0.02 

FOS-app-MOBS 198.30 8.78 2760.42 91.40 13.95 0.86 FOS-app-MOBS 65.00 5.14 18.06 0.68 0.28 0.02 

FOS-eff-MOBS 177.60 10.32 2617.47 186.62 14.80 1.49 FOS-eff-MOBS 67.30 7.01 18.24 1.26 0.27 0.04 

W-ORBS 337.00 0.00 7118.56 240.77 21.12 0.71 W-ORBS 98.00 0.00 54.79 1.55 0.56 0.02 



S. Lee, D. Binkley and N. Gold et al. / The Journal of Systems and Software 160 (2020) 110459 15 

Fig. 8. Vargha-Delaney ˆ A 12 on TPD between selection strategies. Each of ROS , APP , EFF , and UNI represents MOBS with rolling operator selection, fixed operator selection 

using ‘applicability’, ‘effect’, and uniform proportion, respectively. 
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PP , EFF , and UNI appearing in the name of columns represents

OBS with rolling operator selection, fixed operator selection us-

ng ‘applicability’, ‘effect’, and uniform proportion, respectively. To

acilitate the comparison to W-ORBS, we terminate MOBS after the

umber of iterations W-ORBS requires to complete a slice, and

ompute TPD values until that iteration. In column P : Q , the ˆ A 12 

tatistic is the probability that a score sampled at random from the

rst population, P , will be greater than a score sampled at random

rom the second, Q . Columns starting with ROS contain more dark

lue cells than others, indicating that ROS tends to show higher

fficiency (marked by lower TPD). Variants of FOS show little dif-

erence from each other. Based on these results, we answer RQ3 by

oncluding that the Rolling Operator Selection (ROS) has the best

erformance. 

.4. Comparison between MOBS and W-ORBS 

We compare MOBS to W-ORBS. Table 7 shows the means and

tandard deviations for the wall clock execution time, the number

f deleted lines, and per-deletion efficiency for W-ORBS and MOBS

sing the four different operator selection strategies. The largest

umber of deleted lines, the shortest execution time, and the low-

st TPD values among the four strategies are typeset in bold. The

ox plots shown in Fig. 9 show the distributions of these values at

he end of each iteration for four slicing criteria. Note that the y -

xis for the execution time box plots on the right use a logarithmic

cale. 

ROS-MOBS (found to be the most efficient variant in RQ3)

eletes 63% to 83% of lines deleted by W-ORBS in 27%–45% of the

ime required by W-ORBS. The worst case efficiency of ROS-MOBS

s observed in sched , whose TPD value is highest when compared

o that of W-ORBS. For this program ROS-MOBS only deletes 63%

f the lines deleted by W-ORBS, while taking only 40% of its execu-

ion time. However, even in this worst case, the trade-off is better

han linear. Based on these results, we answer RQ4 by concluding

hat ROS-MOBS can be both effective and efficient, being capable

f deleting an average of 69% of the number of lines deleted by

-ORBS, while requiring only 36% of wall clock execution time re-

uired by W-ORBS. 
.5. Qualitative analysis of the slices 

This section answers RQ5 with a qualitative analysis of the

lices. We investigate the differences between the slices generated

y W-ORBS, VSM-ORBS, and MOBS. We omit LDA-ORBS from the

nalysis as the results hitherto clearly suggest it is not as effective

s VSM-ORBS. 

.5.1. Similarity between W-ORBS and MOBS slices 

Fig. 10 shows our modified Jaccard similarity computed be-

ween the results of ROS-MOBS and W-ORBS for two slicing cri-

eria, net-3 and replace . The values on the leftmost column

epresent the similarity between the slice produced by W-ORBS

nd ten trials of MOBS; values above the diagonal represent the

imilarity between the ten trials of MOBS where darker squares

ndicate greater similarity between the two slices. Except for small

uctuations, slices generated by MOBS are much more similar to

ach other, than they are similar to the slices generated by W-

RBS. This implies that, despite stochasticity, slices generated by

OBS share common patterns that are different from those gener-

ted by W-ORBS. We next consider whether lexical approximation

f dependence is particularly effective or ineffective against spe-

ific types of statements. 

.5.2. Characteristics of slices 

Table 8 shows the top thirty lines that are most frequently

ound in slices by VSM-ORBS but not in those by W-ORBS. We ob-

erve the following patterns that make it difficult for VSM-ORBS to

elete these lines: 

• Multi-line Statements : Lexical deletion operators do not try to

delete consecutive lines. Thus, they may attempt to delete

one line from a multi-line statement, raising compilation er-

rors. This case includes lines ending with a left bracket that

marks the beginning of a compound statement, such as if
(it.hasNext()){ . 

• Declarations : As can be seen in Section 7.1 , the lexical dele-

tion operators cannot delete as many lines as W-ORBS. Conse-

quently, they often fail to delete all uses of a variable before

attempting to delete its declaration. Similarly, they often fail to
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Fig. 9. Box plots of execution time and number of deleted lines for W-ORBS and variants of MOBS over 10 repeated runs. 
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delete the body of a method before attempting to delete the

method declarations. This means that declaration statements

are harder for VSM-ORBS to delete than for W-ORBS. 
• Frequent Lexemes : certain lexemes occur frequently throughout

the code in many different, and potentially unrelated, semantic

contexts. They may be lexically similar to each other, but this

does not necessarily mean that there also exists dependence.

For example, return this; is a lexeme that can be found

in many different methods: attempting to delete all instances
 f
of return this; is most likely to fail, even if the specific

instance under consideration can actually be deleted. 

We investigate how capable W-ORBS, VSM-ORBS, and MOBS are

t deleting lines having these characteristics. Fig. 11 contains box

lots that show how many lines of interest (i.e., either lines that

re part of multi-line statements or declarations) can be deleted

y each technique. Fig. 12 shows the results of a similar analysis

or frequent lexemes. 
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Fig. 10. Jaccard similarity between ROS-MOBS and W-ORBS for net-3 and replace . 

Table 8 

Lines that are retained in VSM-ORBS slices but not in W-ORBS slices. 

Code line (top thirty with frequency) Freq. 

} 10,228 

import static com.google.common.base.Preconditions.checkNotNull; 212 

checkArgument( 168 

throw new IllegalArgumentException( 144 

public String toString() { 140 

return (TRUE); 136 

currentOption = null; 135 

eatTheRest = true; 120 

return (this); 104 

if (it.hasNext()) { 92 

{ 92 

public int hashCode() { 84 

import java.util.Iterator; 80 

return (token); 80 

hostPortString); 76 

return (s); 75 

return (false); 73 

quote = true; 72 

opt = Util.stripLeadingHyphens(opt); 68 

return (true); 64 

this.option = option; 60 

import java.util.List; 60 

if (opt == null) { 60 

}else if (matchingOpts.size() > 1) { 60 

else{ 60 

import static com.google.common.base.Preconditions.checkArgument; 60 

return (dest); 60 

dest[3] = '%'; 60 

import java.util.ArrayList; 56 

import javax.annotation.Nullable; 56 
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The box plots in Fig. 11 show that, for all slicing criteria, VSM-

RBS deletes the fewest lines of interest, followed by MOBS, and

-ORBS, which deletes the most lines of interest. The results sug-

est that syntactic structures in source code presents challenges to

he lexical deletion operators, while the window deletion used by

-ORBS can circumvent this challenge. 

Analysis of frequent lexemes requires a more subtle approach,

s we cannot anticipate all such lexemes. Instead, we posit that

hese lexemes are more likely to consist of stop words, as our

haracterising definition of frequent lexemes is a lexeme that can

ppear in many different contexts. Non-stop words (i.e., solution-

omain identifiers) are more likely to be bound to specific local

ontexts. Consequently, we compare the average number of non-

top word tokens per deleted line in Fig. 12 . 

While there is variance in the difference, VSM-ORBS deletes

ore non-stop word tokens per deleted line than W-ORBS. One
mplication of this is that lexical deletion operators may find it

ore difficult to delete irrelevant control structures, as deleting

hem would require deleting lines with frequent lexemes that are

elated to control flow, such as return; or } else { . How-

ver, as long as lines that mostly consist of unique identifiers are

eleted, the resulting slices may still be useful in cases where

he user is interested more in understanding the dependencies be-

ween individual lines than in slicing out entire control flow struc-

ures. 

.6. Scalability 

To investigate how lexical dependency scales to both larger and

ulti-lingual systems, we consider the open-source project mis-
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Fig. 11. Number of deleted characterized lines. 

Fig. 12. Average number of non-stop word tokens on a deleted line. 
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6 as a benchmark program. Misaka is a CFFI-based binding

for Hoedown, a fast markdown processing library written in C.

The project consists of ten C files from Hoedown, which performs

text parsing, and five Python files that wrap the C functions to

produce a Python module. Misaka has a rich test suite contain-

ing 92 test cases written in Python that focus on evaluating the

linkage between the Python and C functions, rather than the Hoe-

down library itself. The test suite consists of two unit tests that test

the input arguments and 39 integration tests that test the binding

of the C functions to Python methods. The remaining 41 system-

level tests involve 41 different markdown text files and their cor-

responding HTML files. 

We consider six slicing criteria for misaka , in an attempt to

cover as diverse a set of functionalities as possible. We select slic-

ing criteria in the C code, which are eventually reached from the

Python test scripts through the CFFI binding. The first slicing crite-

rion ( crit-1 ) involves a variable tracking the index of the beginning

of each line in a buffer while rendering a regular markdown doc-

ument. The second slicing criterion ( crit-2 ) targets the size of the
6 https://misaka.61924.nl 

d  

i  
ext to render. The third slicing criterion ( crit-3 ) is a variable con-

aining the maximum size of the custom stack before it is changed

y a method that grows the stack to a given size. The fourth slicing

riterion ( crit-4 ) targets the size of misaka ’s renderer object while

llocating a regular HTML renderer. The fifth slicing criterion ( crit-

 ) is a temporary variable which discriminates the starting index

f the row from the padding when parsing a markdown table row.

he last slicing criterion ( crit-6 ) is the index of the beginning of a

arkdown link in the method that calculates the index of the end

f the markdown link. 

We ran W-ORBS, VSM-ORBS, and LDA-ORBS on the six slicing

riteria using a threshold of 0.9 for γ with both Dvsm and Dlda ,

nd n = 500 topics for Dlda . We also ran ROS-MOBS ten times

or each slicing criteria. The results for VSM-ORBS and LDA-ORBS

hen compared to W-ORBS shows a similar trend to those of the

revious experiments. On average for all slicing criterion, VSM-

RBS and LDA-ORBS slice the code 2.82 times and 2.31 times faster

han W-ORBS while they delete 32.1% and 33.5% of lines that W-

RBS could delete, respectively. 

Table 9 shows the result comparing W-ORBS and ROS-MOBS,

nd box plots in Fig. 13 show the ratio between two. In Fig. 13 , the

ed box plot on the left represents how many times ROS-MOBS run

aster compare to W-ORBS, and the blue box plot on the right rep-

esents the ratio of the number of deleted lines by ROS-MOBS to

he number of deleted lines by W-ORBS. According to the result,

rit-1 shows good performance from MOBS, where it deletes 71%

f the lines deleted by W-ORBS while executing 2.6 times faster.

OBS shows poor performance on crit-4 and crit-5 . For crit-5 it is

nly 1.4 times faster while for crit-4 the timing is essentially the

ame with the average speed up of 1.01. For these slices it deletes

8% and 57% of the lines deleted by W-ORBS, respectively. We in-

estigated this difference in performance. The main cause is the

ize of the slice. For slicing criterion crit-4 , the size of the ren-

erer object calculated by simply calling sizeof method on the

bject, has no control or data dependence between the surround-

ng source code. The dependency chains reaching crit-4 are also

imple and shallow, making most of the code easy to delete in

arly stages of W-ORBS and MOBS. The small number of remain-

ng lines reduce MOBS’s advantage of fewer deletion attempts on a

ingle line when compared to W-ORBS. Similarly, the dependence

f crit-5 is limited. It focuses solely on parsing the markdown ta-

le, which is a local function of the program, and has little depen-

ence on other parsing methods in the program; thus, its slice size

s the second smallest among all slicing criteria. On the other hand,
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Table 9 

Statistics comparing ROS-MOBS and W-ORBS on the six misaka slicing criteria. The data for 

ROS-MOBS is an average of ten trial runs. Misaka has a total of 5125 lines of code. 

Criterion Strategy Iteration Compile Execute Deleted lines Time 

crit-1 ROS-MOBS 5.9 17,683 5135 2209 34,890 

W-ORBS 6.0 42,292 16,027 2950 92,305 

crit-2 ROS-MOBS 5.1 13,561 2937 2145 22,765 

W-ORBS 6.0 25,612 8849 3880 50,970 

crit-3 ROS-MOBS 5.4 13,316 3133 2284 23,930 

W-ORBS 6.0 23,978 8448 3956 47,203 

crit-4 ROS-MOBS 4.9 10,579 1602 2626 10,953 

W-ORBS 6.0 12,700 2787 4642 10,683 

crit-5 ROS-MOBS 4.8 11,697 2019 2140 18,036 

W-ORBS 6.0 15,370 3723 4465 24,704 

crit-6 ROS-MOBS 5.4 16,231 3994 2488 30,922 

W-ORBS 6.0 26,878 9163 3794 50,762 

Fig. 13. Ratios comparing the number of deleted lines and time taken by ROS-MOBS and W-ORBS . 
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riterion crit-1 targets the central logic of the Hoedown library. It

ccurs inside a while loop calculating the beginning index of every

ine of the document. Thus, the dependence chains weave through

uch of the code, and the final slice is the largest over all slicing

riteria. A large number of remaining lines enhances the advantage

f MOBS over W-ORBS, making the slice much faster than W-ORBS.

he other three slicing criteria ( crit-2 , crit-3 , and crit-6 ) show a

imilar trend. Their slices are smaller than the slice of crit-1 , but

arger than the slices of crit-4 and crit-5 . Both crit-2 and crit-6 in-

olves greater dependence with other parsing methods than crit-5 .

inally, slicing criterion crit-3 targets a function that increases the

tack’s size limit, which is used as a data structure to buffer parts

f a document. 

Table 10 shows examples of successful multi-lingual deletion

y the lexical deletion operators. The first column shows which

perator was used; both of Dvsm and Dlda are successfully ap-

lied to the code lines in the last row. Dvsm successfully deletes

hree lines: two from ‘callbacks.py’ and one from ‘html.c’. Terms

 table ’, ‘ align ’, and ‘ left ’ are shared among the three caus-

ng them to be considered similar by the Vector Space Model.

lda successfully delete lines from ‘api.py’, ‘document.c’, and

html_smartypants.c’, together. In this case, the terms ‘ hoedown ’,
 buffer ’, and ‘ text ’ are shared among three lines making

hem similar under LDA. Both Dvsm and Dlda successfully deletes

he lines result = renderer.blockhtml(text) from ‘call-
acks.py’ and renderer- > blockhtml = NULL; from ‘html.c’,

ogether. This result exemplifies that our new lexical deletion oper-

tors can capture (an approximation to) inter-language dependence

n a multi-lingual program. 

.7. Threats to validity 

This section considers three threats to the validity of our exper-

ments: external validity, internal validity, and construct validity. To

egin with, external validity consider how well our results general-

ze to other environments. The subjects studied, shown in Table 1 ,

nclude imperative and object-oriented codes of modest size. It is

ossible that our technique is not effective when larger programs

r programs written in other languages are considered. Mitigating

oth of these threats is the previous application of ORBS to larger

rograms written in a range of programming languages. In fact this

s one of ORBS strengths. The more serious external threat that

arger programs bring is that the naming would become cluttered

esulting in a lowering of the effectiveness of the IR based lexical

pproximations. In general, IR systems scale to very large corpora

here then often perform better in the presence of more data. 

Next, internal validity is the causal effect of the explanatory

ariables on the response variables. The use of ORBS, which em-

irically identifies the exact dynamic dependencies provides an ex-

ellent bellwether for assessing the lexical approximation of pro-
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Table 10 

Example successful multi-lingual deletions by the lexical deletion operators. 

Operator File-name:Line-num Code line 

Dvsm callbacks.py:97 elif align_bit == TABLE_ALIGN_LEFT: 
callbacks.py:98 align = 'left'
hoedown/html.c:393 case HOEDOWN_TABLE_ALIGN_LEFT: 

Dlda api.py:29 lib.hoedown_buffer_puts(ib, text.encode('utf-8')) 
hoedown/document.c:2490 hoedown_buffer_free(text); 
hoedown/html_smartypants.c:195 hoedown_buffer_putc(ob, text[0]); 

Dvsm , 

Dlda 

callbacks.py:125 result = renderer.blockhtml(text) 
hoedown/html.c:635 renderer- > blockhtml = NULL; 
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gram dependence. When a lexical operator successful deletes a set

of lexically related lines the ORBS’s framework ensures that these

lines are not semantically related to the slicing criterion and thus

they can all be safely removed. In the other direction, just because

one of a set of lexically similar lines can not be deleted, does not

mean that other members of this set can not be deleted. There-

fore we have strong evidence when a deletion is accepted, but the

approximation is more suspect when a deletion is rejected. 

The final threat considered is the threat to construct validity,

which considers how well our approach measures what it claims.

In our experiments construct validity is not a significant issue be-

cause we can directly measure dynamic dependence by running

the program using the given test suite. 

8. Related work 

Lexical analysis, especially techniques borrowed from Informa-

tion Retrieval, have been widely studied and applied in soft-

ware engineering. For example, LDA has been applied to pro-

gram comprehension ( Binkley et al., 2014b ) and traceability recov-

ery ( Panichella et al., 2013 ); Vector Space Models have been ap-

plied to fault localisation, based on the intuition that bug reports

and the faulty program code may tend to be lexically similar ( Saha

et al., 2013; Le et al., 2014; 2015; Wang et al., 2015 ). More broadly,

application of Natural Language Processing (NLP) techniques to

source code has been studied in the context of subjects such as the

natural language model of source code ( Hindle et al., 2012 ), coding

conventions ( Allamanis et al., 2014 ), and code snippet recommen-

dation ( Campbell and Treude, 2017 ). As far as we know, MOBS is

the first approach to program slicing and, more generally, depen-

dence analysis that exploits lexical information in program source

code. 

Since its introduction by Weiser in the 1970s ( Weiser, 1979 ),

program slicing has been widely studied and developed ( Anderson

and Teitelbaum, 2001; Horwitz et al., 1990; Amtoft and Banerjee,

2016; Hur et al., 2014 ). Static program slicing ( Weiser, 1981 ) pro-

duces slices that are correct for all possible program executions,

whereas dynamic slicing aims to tailor slices to a particular set of

program inputs ( Korel and Laski, 1988 ). 

Many flavours of static slicing algorithms attempt to reduce the

size of the resulting slice. Incremental Slicing ( Orso et al., 2001 )

allows selection of the type of data dependencies that are consid-

ered while slicing. Stop-list slicing ( Gallagher et al., 2006 ) allows

the programmer to define variables that are not of interest, infor-

mation that is subsequently used to purge the dependence graph

before computing slices, resulting in smaller slices. Barrier Slic-

ing ( Krinke, 2003 ) allows the programmer to specify which parts

of the program can and cannot be traversed while constructing the

slice. A barrier is specified with a set of nodes or edges of the pro-

gram’s program dependence graph that cannot be passed during

the graph traversal, also resulting in a focused and thus smaller

slice. 
Amorphous Slicing ( Harman and Danicic, 1997 ) is an approach

hat aims to preserve the semantics of the program, but not its

yntax. Amorphous slices use program transformation to simplify

rograms, preserving the semantics of the program with respect to

he slicing criterion. In contrast MOBS (and ORBS) only transform

 program using deletion. 

Korel and Laski (1988, 1990) considered several algorithms to

ompute dynamic slices based on their definition. In contrast,

ost later work on dynamic slicing ‘defines’ dynamic slicing based

n the algorithms used to compute it (e.g., Agrawal and Hor-

an, 1990 and DeMillo et al., 1996 ). Although many research pro-

otypes and approaches exist ( Beszedes et al., 20 01; 20 06; Mund

nd Mall, 2006; Szegedi and Gyimóthy, 2005; Zhang and Gupta,

004; Zhang et al., 2007; Barpanda and Mohapatra, 2011 ), all these

pproaches are for a single specific programming language and re-

uires additional analysis for the interface between languages to

upport multi-language programs. 

Finally, union slicing ( Beszédes et al., 2002 ) is also related

o ORBS. Union slicing approximates a static slice by union-

ng dynamic slices obtained using a set of inputs. However,

nion slicing inherits the critical difference between dynamic

nd observation-based slicing: dependencies considered by union

licing are dynamically occurring (but statically determined) de-

endencies, rather than dynamically observed dependencies as in

RBS. Moreover, unioning of slices does not necessarily lead to

orrect slices ( De Lucia et al., 2003 ), whereby ORBS computes dy-

amic slices for multiple criteria without unioning. 

MOBS builds upon Observation-Based Slicing (ORBS), a type

f dynamic slicing: it only preserves program dependencies that

re observable ( Binkley et al., 2014a ) via program execution.

he dynamic nature of ORBS means it under-approximates the

emantics of program dependence, limited by the test suites

sed as input. However, accepting deletions of source code lines

ased on purely dynamic observation has its own benefits, such

s being able to handle dependencies that no static slicers

an cope with ( Binkley et al., 2015 ), slicing multi-lingual sys-

ems ( Binkley et al., 2015 ), and slicing languages with highly un-

onventional program semantics such as Picture Description Lan-

uage ( Yoo et al., 2017 ). While MOBS and ORBS uses deletions of

ource code lines, a later variant ( Gold et al., 2017; Binkley et al.,

019 ) represents source code as a tree structure and the proceeds

o delete subtrees. Binkley et al. (2014a) also introduced a parallel

RBS. Rather than applying window deletion successively, the par-

llel version applies all deletion operators of different window size

n parallel and then selects the largest deletion that succeeds. By

efinition, MOBS is very much parallelisable. Furthermore, if the

eletion operators MOBS uses subsume all the window deletion

perators used by W-ORBS, parallel MOBS is a super set of par-

llel W-ORBS. Theoretically, its worst case performance will match

hat of parallel W-ORBS, but it has the potential to opportunisti-

ally take advantage of successful lexical deletions. In this paper,

e focus evaluating the impact of lexical dependence; thus, we

eave the study of parallelisation’s impact to future work. 
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The notion of deleting parts of a program or inputs also fea-

ures prominently in Delta Debugging ( Zeller, 1999; Cleve and

eller, 20 0 0; Zeller and Hildebrandt, 2002 ). Some variants of

elta debugging try to reduce the cost of the original Delta De-

ugging by exploiting language syntax and semantics. For ex-

mple, Hierarchical Delta Debugging ( Misherghi and Su, 2006 )

xploits tree structures providing a tree-based Delta Debugging

pproach. Delta ( McPeak et al., 2006 ), a well known imple-

entation of Delta Debugging, uses a separate tool to flatten

he tree structures in source code, before applying delta debug-

ing. Regehr et al. (2012) exploit the syntax and semantics of

 for four delta-debugging based algorithms to minimize C pro-

rams that trigger compiler bugs. Coarse Hierarchical Delta Debug-

ing ( Hodován et al., 2017 ) is a recently introduced variant of Hi-

rarchical Delta Debugging that filters out tree nodes that are not

llowed to be deleted by the grammar of the language, thereby

peeding up Hierarchical Delta Debugging. 

Finally, Jiang et al. (2014) introduced a forward dynamic slicing

pproach similar to ORBS: their technique mutates the value of the

ariable at the location of the slicing criterion, and subsequently

bserves the computed values in the state trajectory. The dynamic

lice consists of all statements for which the computed values have

hanged compared to the trajectory of the original program. 

. Conclusion 

Given program slicing’s wide range of applications, an efficient,

anguage-independent slicing technique can bring significant ben-

fits to developers. The small increase in slice size produced by

OBS is likely acceptable if it is accompanied by a significant de-

rease in slicing time. 

This paper makes two novel technical contributions. First, we

resent a novel generalisation of observational slicing that can take

dvantage of a wide range of deletion operators rather than the

riginal algorithm’s use of only one, the deletion window. Second,

e introduce lexical deletion operators that exploit lexical similar-

ties between source code lines to improve the efficiency of ORBS.

OBS is the resulting observational slicer that uses multiple dele-

ion operators including the existing deletion window operators

nd the newly-introduced lexical deletion operators. 

The results of our empirical evaluation of MOBS show a signif-

cantly improve in efficiency over W-ORBS, which is based solely

n window deletion: MOBS deletes approximately 69% of the lines

eleted by W-ORBS, while taking only about 36% the wall clock ex-

cution time. Furthermore, ROS’s ability to learn the relative appli-

ability of different operators dynamically during slicing produced

he best result for MOBS. Finally, we qualitatively considered the

exically deletable lines of code and the scalability of MOBS using

he multi-lingual open-source project misaka , which include both

ython and C code. 

These results show that using a lexical approximation of depen-

ence is viable. Future work will include investigating the impact

f involving reserved words and comments in the lexical similarity

omputations as well as the impact of increasing the size of the

est corpus and programs. 
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