
Effectively Sampling Higher Order Mutants Using
Causal Effect

Saeyoon Oh
School of Computing

KAIST
Daejeon, Republic of Korea

saeyoon17@kaist.ac.kr

Seongmin Lee
School of Computing

KAIST
Daejeon, Republic of Korea

bohrok@kaist.ac.kr

Shin Yoo
School of Computing

KAIST
Daejeon, Republic of Korea

shin.yoo@kaist.ac.kr

Abstract—Higher Order Mutation (HOM) has been proposed
to avoid equivalent mutants and improve the scalability of mu-
tation testing, but generating useful HOMs remain an expensive
search problem on its own. We propose a new approach to
generate Strongly Subsuming Higher Order Mutants (SSHOM)
using a recently introduced Causal Program Dependence Analysis
(CPDA). CPDA itself is based on program mutation, and provides
quantitative estimation of how often a change of the value of a
program element will cause a value change of another program
element. Our SSHOM generation approach chooses pairs of
program elements using heuristics based on CPDA analysis,
performs First Order Mutation to the chosen pairs, and generates
an HOM by combining two FOMs.

I. INTRODUCTION

Mutation testing aims to inject artificial faults (i.e., mutate
the program under test) to evaluate the adequacy of the existing
test suite [1]. Since the evaluation of test adequacy is based
on concrete detection of actual faults (i.e., syntactic changes
made to the program under test), mutation testing has great
potential to improve the effectiveness of software testing.
However, a couple of problems limit the practical applicability
of mutation testing: the high cost of mutation analysis, in
which we generate, build, and test a large number of mutants,
and the existence of equivalent mutants, whose detection is
theoretically undecidable.

Higher Order Mutation, in which multiple mutations are
combined to create a Higher Order Mutant (HOM), has been
proposed as a solution to the equivalent mutant problem.
Through an empirical study, Offutt showed that approximately
10% of First Order Mutants (FOMs) are equivalent, while only
about 1% of the second order mutants are equivalent [2].

However, the number of possible HOMs is far greater than
that of FOMs, due to the combinatorial nature of HOMs. This
exacerbates the problem of efficiency and scalability. While it
is possible to devise a combinatorial approach for generation
and sampling of HOMs [3], a purely combinatorial approach
may fall short because HOMs are by definition easier to kill
(i.e., they deviate more from the original program due to
multiple mutations). A HOM that is trivial to kill may not
be beneficial.

The concept of Strongly Subsuming Higher Order Mutant
(SSHOM) was introduced by Jia and Harman [4]. SSHOMs
are higher order mutants that are harder to kill than its

constituent first order mutants. If it is possible to search for
SSHOMs efficiently, it may reduce the number of HOMs we
need to consider. A search based approach has been studied
for the generation of SSHOMs [5]: the fitness function guides
the search towards satisfying the conditions of SSHOMs.

In this paper, we propose constructive heuristics for gener-
ating SSHOMs based on a novel type of dependence analysis
called Causal Program Dependence Analysis (CPDA) [6].
Based on CPDA, we propose two heuristics that are designed
to sample SSHOMs not only more efficiently, but also in a
way that produces diverse mutants.

Unlike traditional static dependence analysis that determines
whether a program element depends on another element in a
Boolean fashion, CPDA assigns quantitative likelihood values
to each dependence: higher likelihood means that the change
of value in one element is highly likely to cause the change
in the value of another element. Using this, we can prioritise
pairs of program elements in the order of the likelihood of
FOMs generated at each location masking each other when
combined as a HOM, in turn resulting in a SSHOM. We
propose heuristics that will choose different pairs of program
elements based on the results of CPDA. A case study with two
small, easy to analyse programs suggests that CPDA based
generation of SSHOMs can be effective.

The remainder of this paper are as follows. In Section II, we
show how dependency between program elements can be used
to generate strongly subsuming higher order mutants, using a
motivating example. Section III introduces Causal Program
Dependence Analysis, an approach to calculate dependence.
Section IV introduces four heuristics for sampling higher order
mutants. Section V describes the setup of our evaluation, and
Section VI presents the results. Section VII presents related
work, and Section VIII concludes.

II. A MOTIVATING EXAMPLE

Consider a HOM h that is composed of two FOMs, f1 and
f2. In order for h to be a SSHOM, there must exist at least one
test, t, such that t fails due to f1 as a FOM, which is masked
by f2, so that t does not fail under h. For the masking to take
place, it is reasonable to assume that the locations of f1 and f2
are connected by program dependence: otherwise, a mutation

19

2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)

978-1-6654-4456-9/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSTW52544.2021.00017

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Te
st

in
g,

 V
er

ifi
ca

tio
n

an
d

V
al

id
at

io
n

W
or

ks
ho

ps
 (I

C
ST

W
) |

 9
78

-1
-6

65
4-

44
56

-9
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

ST
W

52
54

4.
20

21
.0

00
17

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:45:10 UTC from IEEE Xplore. Restrictions apply.

in one of the location is not likely to mask the mutation in
another.

Algorithm 1: Example Program

1 Function Main (b: int):
2 a = 1
3 a = a+ 1
4 if b % 2 = 0 then
5 a = a× 2

6 c = 100
7 return a

Algorithm 1 contains a concrete motivating example. We
are going to use Expression Replacement mutation operator to
generate HOMs. Let Line 2 be one of the constituent FOMs:
for example, we mutate it to a = 2. Now, let us consider
the program element in Line 3. Whenever a in Line 2 gets
mutated, the effect is delivered to program element in Line
3. In other words, program element in Line 3 is frequently
dependent on program element in Line 2. In contrast, the
variable a in Line 5 is affected by a in Line 2 only when
b is even. The element in Line 5 is, therefore, less frequently
dependent on element in Line 2 when compared to a in Line
3. Finally, program element in Line 6 is not dependent on a
in Line 2.

Now consider mutating either Line 3, 5, or 6, to mask the
effect of the mutation in Line 2 towards Line 7. Mutating
program element in Line 3 has highest chance of masking the
first mutation, since the effect of the mutation in Line 2 is
always delivered to Line 3. Mutating Line 5 can mask the
fault, but with a smaller probability, since the effect of the
mutation in Line 2 is only delivered when b is even. Finally,
no mutation in Line 6 can mask the mutation in Line 2, since
it cannot change the value of a.

Through the motivating example, we can observe that
the more frequently dependence relation occurs between two
program elements, the higher the chance of fault masking will
be. The fact that we need program dependence relationship
between two program elements for fault masking to happen
may be a trivial observation. However, what Causal Program
Dependence Analysis allows us to reason about is the relative
likelihood of a dependence relationship actually affecting the
value of a specific program element. Unlike traditional de-
pendence analysis whose outcome is binary (either dependent
or not), CPDA allows us to reason about the degree of
dependence quantitatively. We will present a brief introduction
to CPDA in Section III.

III. CAUSAL PROGRAM DEPENDENCE ANALYSIS

Causal Program Dependence Analysis (CPDA), a recently
introduced dynamic program dependence analysis technique,
can measure the degree of dependence between two program
elements [6]. Applying the causal inference [7] on the program
execution trajectory, CPDA estimates how often a change of

the value of a program element causes a change of the value
of another program element.

CPDA calculates the dependence by a given test suite.
CPDA first generates data on which program element’s values
are associated. It gets association data by running tests on
programs that have modified part of the code in various
ways, observing which program elements have simultaneously
changed compared to the values they had in the original
program. Given the association data, CPDA discovers the
causal structure of the program. The causal structure is a
directed graph that represents the direct dependence between
program elements; for each child node in the causal structure,
the set of parent nodes (immediate predecessor nodes) com-
prises a minimal Markov blanket of the behavior of the child
node [7]. Using the association data and discovered causal
structure, CPDA estimates two metrics representing the degree
of dependence. A causal effect is an aggregate of the effect
of each program element’s change causing a change in other
program elements. A direct effect is the effect of one program
element on another, excluding all the indirect effects through
other program elements.

Given association data O, the causal effect from a program
element Si to the other program element Sj , denoted as
CEO(S1, Sj), is calculated as follows:

CEO(Si, Sj) = PO(Sj = 1 | do(Si = 1))

× (1− PO(Sj = 1 | do(Si = 0))).

. In the equation, Sj = 1 implies the value of the program
element Sj is changed compared to the original program, or
otherwise, Sj = 0. PO(x | do(y)) calculates the probability of
an event x caused by the event y [7]. The causal effect aims
to measure the difference of the effect that Sj gets when Si

moves its state from unchanged (0) to changed (1). Instead of
subtracting the probability, we multiply the probability when
Si = 1 and the complementary probability when Si = 0, keeps
the causal effect having a positive value.

From the example in Sec. II, SSHOMs can be created
more easily from pairs of program locations that affect more
frequently. Thus, we claim that we could efficiently search the
higher-order mutant space to sample SSHOMs by utilizing the
CPDA. Our main hypothesis is that the causal effect could pri-
oritize the second-order mutation position for SSHOMs. Our
empirical evaluation investigates whether there is a positive
correlation between the high causal effect and the strongly
subsuming rate. Assuming the hypothesis is plausible, setting
up an actual guideline for searching on the higher-order mutant
space is needed. In the next section, we introduce several
heuristics that can efficiently sample the higher-order mutant
using the causal effect.

IV. HEURISTICS FOR SSHOM GENERATION

In this section, we introduce heuristics to effectively sample
second order mutants (SOM).

20

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:45:10 UTC from IEEE Xplore. Restrictions apply.

A. Heuristics for selecting SOM
In order to search for efficient methods of sampling second

order mutants we came up with four heuristics: Random, Prop,
Dsort, and MWM. The purpose of each heuristic is to 1) sample
as much SSHOM as possible with fixed number of mutants,
2) sample diverse mutants. Therefore, each heuristic tries to
find the best pair of program elements to generate the second
order mutants along with the number of mutants to generate
per pair. While we investigate through second order mutants,
it can easily be extended to select three for more mutation
locations utilizing the causal effect (e.g., choosing n locations
whose sum of the pairwise causal effect is high.)

All heuristics other than Random approach make use of the
dependency calculated in terms of causal effect. Therefore,
modeling CPDA and calculating the causal effect comes
firsthand for the three last heuristics.

The four heuristics are as follows.
1) Random: Among all possible pairs of program elements,

we choose a random pair. We repeat this process independently
for number of total mutants, while allowing duplicates. If
a certain pair is selected k times, we create k mutants by
mutating the pair of program elements.

2) Prop (Proportional): We first weight each pair of pro-
gram elements with their causal effect values. Subsequently,
we choose a pair with a probability proportional to its weight.
Let PP be the set of all pairs of program elements. Let CE(pi)
be the causal effect value of pi ∈ PP . The probability of pi
being selected, P (pi) is:

P (pi) =
CE(pi)∑

pj∈PP CE(pj)
(1)

Note that, according to Equation 1, a pair with causal
effect value of 0 cannot be selected. We repeat this process
of choosing a pair for number of total mutants. Similar to
Random, if a pair of program elements is selected k times,
we build k mutants by mutating the pair.

3) Dsort (Descending Sort): With Dsort, we sort all pairs
of program elements according to their causal effect values,
and choose the top n pairs. Subsequently, we distribute the
number of mutants to generate, k, equally to the chosen n
pairs. In our evaluation, we set n for Dsort as the number of
pairs selected by the MWM heuristic.

4) MWM (Maximum Weight Matching): While Dsort picks
program pairs by considering solely causal effect, MWM
considers the diversity of the mutant set. Since the purpose
of each mutant is to mimic real faults of developers a good
mutant set should contain diverse mutants rather than mutants
with similar faults.

To sample diverse set of mutants, we utilize maximum
weight matching from graph theory. A set M of independent
edges in a graph G = (V,E) is called a matching [8]. A
maximum weight matching M of graph G = (V,E) where
every edge e ∈ E have weight we is set M of independent
edges maximizing the sum of weights of edges in M .

To perform maximum weight matching with respect to
causal effects in the program, we modify the causal structure

G. Whenever there is a path from v1 to v2, we add a directed
edge from v1 to v2. Subsequently, we weight all edges: the
weight of e from v1 to v2 is the causal effect v2 gets from v1.

After modifying the causal structure G we compute the
maximum weight matching of G. The aim is not only to select
pairs with high dependency, but also to select a diverse set of
program pairs across the entire program. Similar to Dsort, total
number of mutants to be made is then distributed equally to all
program pairs, making same number of second order mutants
per pair.

V. EXPERIMENTAL SETUP

A. Research Questions

RQ1. Causal Effect and SSHOM: Does high Causal Effect
lead to strongly subsuming second order mutant? To answer
this question, we first calculate causal effects between program
elements of studied programs. We then distribute the pairs
with non-zero causal effect values into ten equal size buckets;
we also group all pairs with causal effect value of 0 in
a separate bucket. Subsequently, we randomly select five
program element pairs from each of the 11 buckets, and
generate 100 second order HOMs from each pair. We then
calculated the number of SSHOM made from each bucket.
We repeat this ten times to remove the sampling bias.

RQ2. SSHOM Heuristics: How do different heuristics com-
pare to each other in terms of the number of SSHOMs
generated, as well as their diversity? We implemented all
introduced heuristics and calculated the rate of SSHOMs, as
well as the diversity metric. We generate 1,000 HOMs for
each heuristic, and repeat the process five times to remove the
sampling bias.

RQ3. HOM Survival Rate: Which algorithm achieves the
highest survival rate? We compared the survival rate of HOMs
generated with each heuristic, along with the FOMs. The
purpose of RQ3 is to see to what extent higher order mutants
can survive compared to current First Order Mutation testing.
For FOMs, we sample 1,000 mutants generated by MUSIC [9].

B. Diversity Metric

We measure the diversity of mutant set by comparing the
set of test cases that kill each mutant . For a mutant m of
original program P with test suite T , a kill vector v ∈ R|T |
of m is defined as follows.

vi =

1 if Ti kills m;

0 otherwise.

where Ti refers to i-th test case of T . (1 ≤ i ≤ |T |)
The diversity of set of mutants M = {m1,m2, . . . ,mk} is

then defined as follows.

dScore(M) =
|{v1, v2, . . . }|

|M |
(2)

where vi is the kill vector of mi, and the numerator repre-
sents the number of distinct kill vectors. A higher dScore
is achieved if the mutant set contains more mutants with

21

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:45:10 UTC from IEEE Xplore. Restrictions apply.

distinct kill vectors. The reason we define diversity with kill
vectors is because two mutants with same kill vectors are not
distinguishable from the point of test suite [10].

C. Benchmark Programs

We study two C programs: a toy example called Bill’s Car,
and schedule from the SIR benchmark [11].

1) Bill’s Car: Algorithm 2 shows Bill’s Car, which is a
C program that calculates parking fees. The fee depends on
the day of the week, the car type, and minutes stayed in the
parking zone. There are three kinds of vehicle types. Senior,
car, and truck. The fee structure, as well as discounts based on
the day of week, means that the program contains nontrivial
dependence structure.

Algorithm 2: Pseudo code of Bill’s Car
1 Function Main(vehicle, minutes, day):
2 if vehicle = senior then
3 fee = 0
4 else
5 if vehicle 6= car && vehicle 6= truck then
6 InvalidV ehicle
7 else
8 if vehicle = car then
9 cost = ComputeCarFee(minutes)

10 else
11 cost = ComputeTruckFee(minutes)

12 if cost = −1 then
13 fee = −1
14 else
15 if day = Thursday then
16 cost = 0.9× cost
17 else
18 if day = Saturday then
19 cost = 1.1× cost

20 fee = cost
21 PrintFee(vehicle, day,minutes, fee)

22 Function ComputeCarFee(duration):
23 hours = duration/60
24 if hours ≤ 2 then
25 fee = 0
26 else
27 if hours ≤ 5 then
28 fee = 0.5× (hours− 2)
29 else
30 if hours ≤ 15 then
31 fee = 0.5× 3 + 0.25× (hours− 5)
32 else
33 fee = −1

34 return fee

35 Function ComputeTruckFee(duration):
36 hours = duration/60
37 if hours ≤ 1 then
38 fee = 0
39 else
40 if hours ≤ 3 then
41 fee = 1.0× (hours− 1)
42 else
43 if hours ≤ 15 then
44 fee = 1.0× 2 + 0.75× (hours− 3)
45 else
46 fee = −1

47 return fee

The test suite for Bill’s Car is consisted of 101 test cases
and is constructed in a combinatorial manner. It covers three

TABLE I
CAUSAL EFFECT AND AVERAGE NUMBER OF SSHOMS PER BUCKET

Bill’s Car Schedule
Buc. Pairs CE Range Avg. SSHOMs Pairs CE Range Avg. SSHOMs

0 2,094 0 0.1 1,392 0 0.6
1 0.004 - 0.144 0.0 0.008 - 0.021 0.0
2 0.145 - 0.229 0.0 0.021 - 0.030 0.1
3 0.229 - 0.297 0.0 0.030 - 0.051 1.8
4 0.297 - 0.349 0.0 0.051 - 0.080 3.7
5 0.349 - 0.397 0.0 0.080 - 0.133 0.1
6 0.397 - 0.437 1.1 0.133 - 0.167 5.4
7 0.437 - 0.486 1.7 0.167 - 0.218 0.0
8 0.487 - 0.553 0.7 0.222 - 0.322 1.9
9 0.553 - 0.669 1.1 0.326 - 0.495 4.1

10 0.669 - 1.000 12.9 0.495 - 0.997 11.8

vehicle types, three categories of days of week, and 11
different time intervals (0 to 1,000 minutes at intervals of 100):
this results in 3× 3× 11 test cases. We add two edge cases,
one with invalid car type and the other with missing arguments
(only car type specified). We use 6,400 mutants (100 mutants
for each of 64 program elements) to build CPDA.

2) Schedule: Schedule is a C program from the Software-
artifact Infrastructure Repository [11]. It is a schedule that
calculates an ordering of given tasks. We use the coverage-
extended test suite 456, which contains 81 test cases. To
build CPDA, we use 940 mutants (10 mutants for each of
94 program elements).

D. Implementation and Environment

Every first order mutants are made by C mutation testing
tool, MUSIC [9]. Second order HOMs are generated by
independently mutating program elements in the given pair,
and combining the mutated lines. We use the networkx
Python library to compute maximum weight matching.

Experiments for Bill’s Car was ran on Ubuntu 18.04,
Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz with GeForce
RTX 3070. Experiments for schedule was ran on Ubuntu
16.04.5, Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with
GeForce GTX 1080.

VI. RESULTS

A. RQ1: Causal Effect and number of SSHOM

Table I shows the results of the bucketing analysis for RQ1.
While Bill’s Car had more program element pairs with zero
causal effect, Schedule had more program element pairs with
positive causal effects. For Bill’s Car, 2.25% of the total pair
of program elements turned out to have causal effect value
over 0.5 while for Schedule 18% of pairs were. The range of
causal effect values for each bucket tends to increase. Average
range of first three buckets for the two benchmark programs
was 0.056, while the average range of final three buckets was
0.214. This suggests that the space of program pairs get sparse
as the causal effect value goes up.

Figure 1(a) and 1(b) shows the number of SSHOM for the
two benchmark programs. From all SSHOM made from all
trials, 73.71% SSHOM were from the top bucket for Bill’s Car
while for Schedule, 40.83% SSHOM were. Specific number of
average SSHOM made per bucket for each trial (5 pairs from

22

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:45:10 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7 8 9 10
Bucket Number

0

5

10

15

20

25

30

35

of

 S
SH

OM

(a) Bill’s car

0 1 2 3 4 5 6 7 8 9 10
Bucket Number

0

10

20

30

40

50

60

of

 S
SH

OM

(b) Schedule

Fig. 1. Boxplot of Number of SSHOMs per Bucket

bucket with 100 HOMs each) is shown in Table I. We were
able to observe that the top bucket does significantly better
job of generating SSHOM than other buckets.

Since number of program element pairs in the top bucket
are much smaller than total pairs (6.85% for Schedule, 2.40%
for Bill’s Car), we can significantly reduce the search space for
second order HOMs by focusing on the pairs in the top bucket.
Based on these results, we conclude that mutating program
elements with high causal effect can lead to the generation of
SSHOMs with higher probability.

random prop Dsort mwm
Heuristics

0

10

20

30

40

50

60

70

of

 S
SH

OM

(a) Bill’s Car - Number of SSHOMs

random prop Dsort mwm
Heuristics

1

2

3

4

5

6

of

 d
ist

in
ct

 k
ill

ve
ct

or
s

(b) Bill’s Car - Unique SSHOMs

random prop Dsort mwm
Heuristics

0

10

20

30

40

50

60

70

of

 S
SH

OM

(c) Schedule - Number of SSHOMs

random prop Dsort mwm
Heuristics

2

4

6

8

10

12

14

of

 d
ist

in
ct

 k
ill

ve
ct

or
s

(d) Schedule - Unique SSHOMs

Fig. 2. Number of Total and Unique SSHOMs Generated by Heuristics

TABLE II
MUTANT DIVERSITY OF HEURISTICS

Heuristic Bill’s Car Schedule
dScore SSHOM Uniq. SSHOM dScore SSHOM Uniq. SSHOM

Random 0.282 3.0 2.4 0.457 3.2 3.2
Prop 0.226 10.8 4.4 0.471 4.8 4.4
Dsort 0.096 65.6 2.8 0.135 54.0 11.0
MWM 0.118 38.2 5.6 0.282 41.8 6.6

B. RQ2: Performance of each Heuristic

Figure 2 shows for each benchmark programs the number
of evaluated SSHOM, dScore, and the number of distinct
kill vectors for the generated SSHOM. Table II shows the
average number of calculated metrics. Column dScore contains

5

92

102
103

109

10

115

117

114

113

106

14

17

22

26

29

65

77

123

119
121

125

126

130

30

32

33

37
42

39
45

48

118
85

116

49

51

122

124

127

128

129 120

68

50

52

53

54

56
57

58

61
62

88

69

70

72

74

78

79

81

83 86

93

107

94

110

(a) MWM

5

92

102
103

109

10

115

117

114

113

116

14

17

106

22

26

29

65

77

119
121

123

125

126

130

30

32

33

37
42

39
45

48

118

49

51

122

124

127

128

129 120

50

52

53

54

56
57

58

61
62

68

69

70

72

74

78

79

81

83

85

86

88

93

107

94

110

(b) Dsort

Fig. 3. Pairs of Program Elements in Schedule Chosen by MWM and Dsort

the diversity score of all generated HOMs (not necessarily
strongly subsuming); column SSHOM contains the average
number of generated SSHOMs, and column Uniq. SSHOM
contains the average number of generated SSHOMs with
unique kill vectors. Dsort generates the largest number of
SSHOMs, which is 21.87, and 16.88 times more than Random
for Bill’s Car and Schedule, respectively. Although MWM
produced fewer SSHOMs, it still generates 12.73, and 13.06
times more SSHOM than Random, respectively. This reflects
the fact that Dsort only prioritises the selection of pairs based
causal effects.

Prop is less successful in generating many SSHOMs: by
definition it ends up choosing more program pairs than Dsort
or MWM, resulting in generation of fewer mutants per chosen
pair. For Schedule, Prop selects 818.8 pairs on average,
while Random selects 897.8, and Dsort and MWM only 21.
However, the higher diversity of chosen pairs results in higher
dScore.

Figure 2(b) and 2(d) shows boxplots of the unique number
of SSHOMs generated by different heuristics. MWM produces
more unique SSHOMs for Bill’s Car than Dsort, but the trend
is the opposite in Schedule. We suspect that diversity of HOMs
in general (captured by dScore in Table II), and the diversity
of SSHOMs, may not align perfectly.

random prop Dsort mwm FOM
Heuristics

0

50

100

150

200

of

 S
ur

vi
ve

d
M

ut
an

ts

(a) Bill’s Car - # of Survived Mutants

random prop Dsort mwm FOM
Heuristics

20

40

60

80

100

120

of

 S
ur

vi
ve

d
M

ut
an

ts

(b) Schedule - # of Survived Mutants

Fig. 4. Survived Mutants

MWM heuristic successfully diversified the generated mu-
tants. Figure 3(a) and 3(b) visualises the program element
pairs chosen by MWM and Dsort. The causal structure is

23

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:45:10 UTC from IEEE Xplore. Restrictions apply.

shown in gray edges, while chosen pairs are shown with blue
arrowed edges. While chosen pairs from MWM tend to be
spread out in various places by not sharing common vertices,
pairs from Dsort does overlap and tend to cover only some
specific regions of the program, as expected.

TABLE III
AVERAGE NUMBER OF SURVIVED MUTANTS

Bill’s Car Schedule

Random 90.4 18.8
Prop 33.2 14.8
Dsort 12.6 14.6
MWM 94.0 18.2
FOM 194.0 104.8

C. RQ3: Survival Rate of each Heuristic

Figure 4 shows the number of surviving mutants generated
by each heuristic, along with the number of surviving FOMs.
The average values are reported in Table III. It shows that
HOMs are easier to kill, possibly due to the larger semantic
differences.

Among the proposed heuristics, MWM showed highest
number of surviving mutants, followed by Random. Dsort
shows the lowest survival rate. The survival rate differs a lot
for Bill’s Car while there are not so much variance in Schedule.

We observe that, in Bill’s Car, there are specific program
locations that produce more surviving mutants than others.
For example, mutants generated in the flow of PrintFee
function tend to survive more. Since the main objective of
the function is to print status, the return value is not used
anywhere. Consequently, it is harder to kill.

We also observe that pairs with high causal effect values
tend to exist in the part of program with main functionalities.
For example, pairs chosen by Dsort from Bill’s Car are mostly
from functions calculating the fee, while MWM also chooses
from the PrintFee function, resulting in a higher survival
rate. Random and Prop all showed high survival rate due to a
similar reason. In Schedule, survival rates of mutants are not
significantly affected by the location of mutation.

VII. RELATED WORK

The concept of Subsuming Higher Order Mutants was
proposed by Jia et al. [4], as a way to avoid equivalent mutants
and to reduce the number of mutants to examine. Jia et al.
present more detailed classification of HOMs, but we focus
only on SSHOMs in this preliminary study.

One of the most widely studied topic in Higher Order
Mutation Testing is how to efficiently generate SSHOMs.
Harman et al. generates SSHOMs using genetic algorithm [5].
Since the fitness evaluation involves executing all candidate
SSHOMs, the cost of the search-based approach can be high.
Wong et al. [12] uses variational execution and SAT solver to
efficiently find SSHOMs. Our approach depends on CPDA,
which in turn uses mutation analysis to compute concrete
causal effect values [6]. However, compared to fitness guided
search, the cost of CPDA can be controlled by the parameters
(i.e., how many mutants to consider for CPDA).

VIII. CONCLUSION

We propose a new approach of sampling higher order mu-
tants by using Causal Program Dependence Analysis (CPDA).
Specifically, we show that causal effect can effectively guide
the generation of SSHOMs. We compare four different
SSHOM generation heuristics and the SSHOMs generated
by them. The quality of mutant set is measured in terms of
two metrics, number of SSHOM and diversity. Our results
show that MWM and Dsort heuristics can effectively sample
SSHOMs. For future work, we plan to add more benchmark
programs, and investigate more sophisticated heuristic design
that considers factors other than causal effects simultaneously.

REFERENCES

[1] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE transactions on software engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[2] A. J. Offutt, “Investigations of the software testing coupling effect,”
ACM Trans. Softw. Eng. Methodol., vol. 1, no. 1, pp. 5–20, Jan. 1992.
[Online]. Available: https://doi.org/10.1145/125489.125473

[3] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala, “Overcoming
the equivalent mutant problem: A systematic literature review and a
comparative experiment of second order mutation,” IEEE Transactions
on Software Engineering, vol. 40, no. 1, pp. 23–42, 2014.

[4] Y. Jia and M. Harman, “Higher order mutation testing,” Information and
Software Technology, vol. 51, no. 10, pp. 1379–1393, 2009.

[5] M. Harman, Y. Jia, P. Reales Mateo, and M. Polo, “Angels and
monsters: An empirical investigation of potential test effectiveness
and efficiency improvement from strongly subsuming higher order
mutation,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’14. New
York, NY, USA: Association for Computing Machinery, 2014, p.
397–408. [Online]. Available: https://doi.org/10.1145/2642937.2643008

[6] S. Lee, D. Binkley, R. Feldt, N. Gold, and S. Yoo, “Causal program
dependence analysis and causal fault localization,” Korea Advanced In-
stitute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon,
Korea 34141, Tech. Rep. CS-TR-2021-423, January 2021.

[7] J. Pearl, Causality. Cambridge University Press, 2009.
[8] R. Diestel, Graph Theory, 5th ed., Springer-Verlag, Heidelberg, August

2016, vol. 173.
[9] D. L. Phan, Y. Kim, and M. Kim, “Music: Mutation analysis tool with

high configurability and extensibility,” in Proceedings of IEEE Inter-
national Conference on Software Testing, Verification and Validation
Workshops (ICSTW), ser. Mutation 2018, April 2018, pp. 40–46.

[10] D. Shin and D. H. Bae, “A theoretical framework for understanding
mutation-based testing methods,” in 2016 IEEE International Confer-
ence on Software Testing, Verification and Validation (ICST), April 2016,
pp. 299–308.

[11] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact.” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
2005.

[12] C.-P. Wong, J. Meinicke, L. Chen, J. a. P. Diniz, C. Kästner,
and E. Figueiredo, “Efficiently finding higher-order mutants,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 1165–1177. [Online]. Available:
https://doi.org/10.1145/3368089.3409713

24

Authorized licensed use limited to: Max Planck Institute for Security and Privacy. Downloaded on September 19,2024 at 15:45:10 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T11:43:19-0400
	Preflight Ticket Signature

