
FSE 2023

Statistical Reachability Analysis
Seongmin Lee Marcel Böhme

Max Planck Institute for Security and Privacy (MPI-SP)

FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

🟥

P(¬in circle) = ?

Q. What is the probability of a thrown ball to the 🟥 square dropped not into the ⚪ circle?

r

🟥Q. What is the probability of a thrown ball to the 🟥 square dropped not into the ⚪ circle?

P(¬in circle)

=
Area(Square) − Area(Circle)

Area(square)

=
(2r)2 − πr2

(2r)2

=
4 − π

4
≈ 0.2146...

Analytic approach

r

🟥

Statistical approach

(e.g., Monte Carlo method)

P(¬in circle)

=
of balls outside the circle

of balls thrown

=
1
4

= 0.25

Q. What is the probability of a thrown ball to the 🟥 square dropped not into the ⚪ circle?

🟥Q. What is the probability of a thrown ball to the 🟥 square dropped not into the ⚪ circle?

Statistical approach

(e.g., Monte Carlo method)

P(¬in circle)

=
of balls outside the circle

of balls thrown

=
3
14

≈ 0.2143

🟥Q. What is the probability of a thrown ball to the 🟥 square dropped not into the ⚪ circle?

Statistical approach

(e.g., Monte Carlo method)

P(¬in circle)

=
of balls outside the circle

of balls thrown

=
65
303

≈ 0.2145

is precise and useful if we know the exact model. However, …

P(¬in circle)

=
Area(Square) − Area(Circle)

Area(square)

=
(2r)2 − πr2

(2r)2

=
4 − π

4
≈ 0.2146...

Analytic approach

Analytically computing the interaction is nearly impossible!

Spacecraft Molecules

Spacecraft

Atmosphere Entry

P(¬in circle)

=
Area(Square) − Area(Circle)

Area(square)

=
(2r)2 − πr2

(2r)2

=
4 − π

4
≈ 0.2146...

Instead, a simulation-based
statistical approach

works successfully.

is precise and useful if we know the exact model. However, …Analytic approach

Spacecraft

Atmosphere Entry

Solution:

Direct Simulation
Monte Carlo

Program analysis

An analytic approach for program analysis

• Conventional approach

• Based on the formal semantics of the program

• E.g.,

• Symbolic execution

• Model checking / Model counting

• Static analysis

def f(x0, x1) {

 if (x0 + 5*x1 - 9 < 0) return;

 if (x0 + x1 -5 > 0) return;

 if (-x0 + 3x1 - 7 > 0) return;

 if (x0 > 0) return;

 assert False

}

f(input() % 5, input() % 5)

What is the probability of a failure execution?

An analytic approach for program analysis

I89yr3*@($

@*#&@???

What is the probability of a failure execution?
Analysis of the modern software faces

• an industrial scale huge code base

• heterogenous in-analyzable features,
e.g., 3rd party/binary libraries or cross-language

• a nature of undecidability,

• an industrial scale huge code base

• heterogenous in-analyzable features,
e.g., 3rd party/binary libraries or cross-language

• a nature of undecidability,

Statistical Approach for Program Analysis

12

A statistical method is useful when Analysis of the modern software faces

• an industrial scale huge code base

• heterogenous in-analyzable features,
e.g., 3rd party/binary libraries or cross-language

• a nature of undecidability,

Statistical Approach for Program Analysis

12

• one wants an approximation of the quantity,

• even if the whole system is unknown,

• getting the samples is convenient.
a

Then,

• it performs regardless of the complexity of
the system.

A statistical method is useful when Analysis of the modern software faces

• an industrial scale huge code base

• heterogenous in-analyzable features,
e.g., 3rd party/binary libraries or cross-language

• a nature of undecidability,

Statistical Approach for Program Analysis

12

• one wants an approximation of the quantity,

• even if the whole system is unknown,

• getting the samples is convenient.
a

Then,

• it performs regardless of the complexity of
the system.

A statistical method is useful when Analysis of the modern software faces

• even if the whole system is unknown,

• getting the samples is convenient.
a

Then,

• it performs regardless of the complexity of
the system.

• an industrial scale huge code base

• heterogenous in-analyzable features,
e.g., 3rd party/binary libraries or cross-language

• a nature of undecidability,

Statistical Approach for Program Analysis

12

• one wants an approximation of the quantity,

• even if the whole system is unknown,

• getting the samples is convenient.
a

Then,

• it performs regardless of the complexity of
the system.

A statistical method is useful when Analysis of the modern software faces

• even if the whole system is unknown,

• getting the samples is convenient.
a

Then,

• it performs regardless of the complexity of
the system.

• getting the samples is convenient.
a

Then,

• it performs regardless of the complexity of
the system.

And,

• modern testing framework (eg. fuzzing) gives
> 1K executions per sec.

• an industrial scale huge code base

• heterogenous in-analyzable features,
e.g., 3rd party/binary libraries or cross-language

• a nature of undecidability,

Statistical Approach for Program Analysis

12

• one wants an approximation of the quantity,

• even if the whole system is unknown,

• getting the samples is convenient.
a

Then,

• it performs regardless of the complexity of
the system.

A statistical method is useful when Analysis of the modern software faces

• even if the whole system is unknown,

• getting the samples is convenient.
a

Then,

• it performs regardless of the complexity of
the system.

• getting the samples is convenient.
a

Then,

• it performs regardless of the complexity of
the system.

And,

• modern testing framework (eg. fuzzing) gives
> 1K executions per sec.

•
a

Then,

• it performs regardless of the complexity of
the system.

Quantitative Reachability Analysis (QRA)

13

Pr(s) = ∑
e∈E

Pr(e) ⋅ 1(s is reached by e)

A program state is a property one is interested in that is either
reached or unreached, given the program execution.

⋯
Program

i

o

s
Program

StateP

⋯

i′￼

o′￼

¬sP

Quantitative Reachability Analysis (QRA) measures the probability of
how likely a certain program state is reached given the workload
of the program.

: workload or execution profileE

Quantitative Reachability Analysis (QRA)

14

Software Testing Resource Management Other SE technology

How often the potentially
vulnerable method is executed?

How often is the resource
requested?

Ensemble testing model of

fuzzing & symbolic execution

Existing Method — Analytic Approach

15

pc1

pc2

#(pc1) = n1

#(pc2) = n2

Pr(pc1) =
n1

|E |

Pr(pc2) =
n2

|E |

Pr(s) = Pr(pc1) + Pr(pc2) + ⋯

Probabilistic Symbolic Execution (PSE), Geldenhuys et al. 2012
⋯

sym1, sym2, ⋯

P
pc1 = c1,1 ∧ c1,2 ∧ ⋯
pc2 = c2,1 ∧ c2,2 ∧ ⋯

Model Counter

⋯ ⋯ ⋯

Symbolic Execution

Existing Method — Analytic Approach

16

pc1

pc2

#(pc1) = n1

#(pc2) = n2

Pr(pc1) =
n1

|E |

Pr(pc2) =
n2

|E |

Pr(s) = Pr(pc1) + Pr(pc2) + ⋯

Probabilistic Symbolic Execution (PSE), Geldenhuys et al. 2012

sym1, sym2, ⋯

pc1 = c1,1 ∧ c1,2 ∧ ⋯
pc2 = c2,1 ∧ c2,2 ∧ ⋯ ⋯ ⋯ ⋯

Symbolic Execution

Model Counter⋯

P

Limitation 1. Need the system & Model

Existing Method — Analytic Approach

16

pc1

pc2

#(pc1) = n1

#(pc2) = n2

Pr(pc1) =
n1

|E |

Pr(pc2) =
n2

|E |

Pr(s) = Pr(pc1) + Pr(pc2) + ⋯

Probabilistic Symbolic Execution (PSE), Geldenhuys et al. 2012

sym1, sym2, ⋯

pc1 = c1,1 ∧ c1,2 ∧ ⋯
pc2 = c2,1 ∧ c2,2 ∧ ⋯ ⋯ ⋯ ⋯

Symbolic Execution

Model Counter⋯

P

Limitation 1. Need the system & Model

Symbolic Execution Limitation 2. Path Explosion

Existing Method — Analytic Approach

16

pc1

pc2

#(pc1) = n1

#(pc2) = n2

Pr(pc1) =
n1

|E |

Pr(pc2) =
n2

|E |

Pr(s) = Pr(pc1) + Pr(pc2) + ⋯

Probabilistic Symbolic Execution (PSE), Geldenhuys et al. 2012

sym1, sym2, ⋯

pc1 = c1,1 ∧ c1,2 ∧ ⋯
pc2 = c2,1 ∧ c2,2 ∧ ⋯ ⋯ ⋯ ⋯

Symbolic Execution

Model Counter⋯

P

Limitation 1. Need the system & Model

Symbolic Execution Limitation 2. Path Explosion

Model Counter

Limitation 3. Capability of Model counting

⋯

Existing Method — Analytic Approach

17

bc1

bc2

#(bc1) = n1,

#(bc2) = n2,

Pr(Truebc1) =
n1

|O1 |

PReach: A Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements, Saha et al., ICSE 2022

Symbolic Execution

Model Counter
P

Pr(Truebc2) =
n2

|O2 |

bc1
bc2bc3

s

⋯

Existing Method — Analytic Approach

17

bc1

bc2

#(bc1) = n1,

#(bc2) = n2,

Pr(Truebc1) =
n1

|O1 |

PReach: A Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements, Saha et al., ICSE 2022

Symbolic Execution

Model Counter
P

Pr(Truebc2) =
n2

|O2 |

Pr(s) =

bc1
bc2bc3

s

Derived by solving DTMC model

bc1
bc2bc3

s

🟥

18

Analytic Approach

Q. Quantitative Reachability Analysis?

P(¬in circle)

=
Area(Square) − Area(Circle)

Area(square)

=
(2r)2 − πr2

(2r)2

=
4 − π

4
≈ 0.2146...

r

sym1, sym2, ⋯

pc1 = c1,1 ∧ c1,2 ∧ ⋯

pc2 = c2,1 ∧ c2,2 ∧ ⋯

Symbolic Execution Model Counting

Q. What is the probability of a thrown ball to the 🟥 square dropped not into the ⚪ circle?

🟥

18

Analytic Approach

Q. Quantitative Reachability Analysis?

P(¬in circle)

=
Area(Square) − Area(Circle)

Area(square)

=
(2r)2 − πr2

(2r)2

=
4 − π

4
≈ 0.2146...

r

sym1, sym2, ⋯

pc1 = c1,1 ∧ c1,2 ∧ ⋯

pc2 = c2,1 ∧ c2,2 ∧ ⋯

P(¬in circle)

=
of balls outside the circle

of balls thrown

=
65
303

≈ 0.2145

Monte Carlo method

Statistical Approach

Symbolic Execution Model Counting

Q. What is the probability of a thrown ball to the 🟥 square dropped not into the ⚪ circle?Q. What is the probability of a thrown ball to the 🟥 square dropped not into the ⚪ circle?

Statistical Reachability Analysis (SRA)

19

̂Pr(s) =
Xs

n
⇒ Pr(s)

n → ∞

⋯

P

i1, i2, i3, ⋯ in

O, X, O, O, X,

O, X, O, O, O,

O, X, X, X, X,

X, X, O, X, O,

X, O, X, O, …

the number of O in samplesXs := n

Samples of inputs from

the operational distribution

 (workload)

Empirical Probability

s

Challenge of SRA : “Rare Program States”

20

𝔼 (Xs

n
Xs = 0) = 0

Problem of unseen events / Sunrise problem

If the state is rarely observable, i.e., ,s Pr(s) ≈ 0

If it is unobserved, the empirical probability

underapproximates to zero probability.

Existing Estimators for Sunrise Problem

21

1. Laplace estimator

2. Good-Turing estimator

GoTu(s) = {cs/n, if cs > 0,
f1/n, otherwise,

Case 1 Case 2 Case 3 Total

Count 7 3 0 10

Count + α 7 + α 3 + α 0 + α 10 + 3α

Laplace (7+α) / (10+3α) (3+α) / (10+3α) α / (10 + 3α) 1

• + count for every casesα

• The probability of seeing an unseen event in the next sample
is close to the probability of seeing a singleton event

Pr(next is unseen) =
f1
n

— For SRA —

(state)s

Lap(s) =
cs + α
n + 2α

Two cases for the state: either reached or unreached

If it’s seen, empirical probability,
otherwise, Good-Turing

Existing Estimators for Sunrise Problem

21

1. Laplace estimator

2. Good-Turing estimator

GoTu(s) = {cs/n, if cs > 0,
f1/n, otherwise,

Case 1 Case 2 Case 3 Total

Count 7 3 0 10

Count + α 7 + α 3 + α 0 + α 10 + 3α

Laplace (7+α) / (10+3α) (3+α) / (10+3α) α / (10 + 3α) 1

• + count for every casesα

• The probability of seeing an unseen event in the next sample
is close to the probability of seeing a singleton event

Pr(next is unseen) =
f1
n

Lap(s) =
cs + α
n + 2α

Two cases for the state: either reached or unreached

If it’s seen, empirical probability,
otherwise, Good-Turing

Blackbox estimators

One-step further

22

s1

... s2

...

Blackbox estimators are awesome, but…

 ...

 s1: if (pred)

 s2: stmt;

 ...

Control-flow

Source

; However

 and)

Pr(s1) ≥ Pr(s2)
Lap(s1, O) = Lap(s2, O) GoTu(s1, O) = GoTu(s2, O)

1⃣

: Reached
: Unreached

Black-box estimators are entirely unaware of the structural feature of the program.

One-step further

22

s1

... s2

...

Blackbox estimators are awesome, but…

 ...

 s1: if (pred)

 s2: stmt;

 ...

Control-flow

Source

; However

 and)

Pr(s1) ≥ Pr(s2)
Lap(s1, O) = Lap(s2, O) GoTu(s1, O) = GoTu(s2, O)

1⃣

: Reached
: Unreached

Black-box estimators are entirely unaware of the structural feature of the program.

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

2⃣

 has larger chances of being reached than s2 s4

One-step further

22

s1

... s2

...

Blackbox estimators are awesome, but…

 ...

 s1: if (pred)

 s2: stmt;

 ...

Control-flow

Source

; However

 and)

Pr(s1) ≥ Pr(s2)
Lap(s1, O) = Lap(s2, O) GoTu(s1, O) = GoTu(s2, O)

1⃣

: Reached
: Unreached

Unreached

Black-box estimators are entirely unaware of the structural feature of the program.

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

2⃣

 has larger chances of being reached than s2 s4

One-step further

22

s1

... s2

...

Blackbox estimators are awesome, but…

 ...

 s1: if (pred)

 s2: stmt;

 ...

Control-flow

Source

; However

 and)

Pr(s1) ≥ Pr(s2)
Lap(s1, O) = Lap(s2, O) GoTu(s1, O) = GoTu(s2, O)

1⃣

: Reached
: Unreached

Unreached

Black-box estimators are entirely unaware of the structural feature of the program.

Reached
Direct-

 predecessor

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

2⃣

 has larger chances of being reached than s2 s4

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

Total sample: 1000

Structure-aware Reachability Estimator

23

• Solution: reflect the (control) dependence relation between the program states.

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

Total sample: 1000

Structure-aware Reachability Estimator

23

• Solution: reflect the (control) dependence relation between the program states.

Previous (Laplace):

Pr(s4) = Pr(s2) =α=2
α

1000 + 2α

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

Total sample: 1000

Structure-aware Reachability Estimator

23

• Solution: reflect the (control) dependence relation between the program states.

Pr(s2) = Pr(s1) ×
α

1,000 + 2 × α

=α=2 1 ×
2

1,004
≈ 0.0020

Pr(s4) = Pr(s3) ×
α

3 + 2 × α

=α=2 0.003 ×
2
10

= 0.0006.

Structure-aware:

Previous (Laplace):

Pr(s4) = Pr(s2) =α=2
α

1000 + 2α

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

Total sample: 1000

Structure-aware Reachability Estimator

23

• Solution: reflect the (control) dependence relation between the program states.

Pr(s2) = Pr(s1) ×
α

1,000 + 2 × α

=α=2 1 ×
2

1,004
≈ 0.0020

Pr(s4) = Pr(s3) ×
α

3 + 2 × α

=α=2 0.003 ×
2
10

= 0.0006.

Structure-aware:
Pr(Pred)

Previous (Laplace):

Pr(s4) = Pr(s2) =α=2
α

1000 + 2α

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

Total sample: 1000

Structure-aware Reachability Estimator

23

• Solution: reflect the (control) dependence relation between the program states.

Pr(s2) = Pr(s1) ×
α

1,000 + 2 × α

=α=2 1 ×
2

1,004
≈ 0.0020

Pr(s4) = Pr(s3) ×
α

3 + 2 × α

=α=2 0.003 ×
2
10

= 0.0006.

Structure-aware:
Pr(Pred) Lap(Pred→Next)

Previous (Laplace):

Pr(s4) = Pr(s2) =α=2
α

1000 + 2α

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

Total sample: 1000

Structure-aware Reachability Estimator

24

• Solution: reflect the (control) dependence relation between the program states.

Pr(s2) = Pr(s1) ×
α

1,000 + 2 × α

=α=2 1 ×
2

1,004
≈ 0.0020

Pr(s4) = Pr(s3) ×
α

3 + 2 × α

=α=2 0.003 ×
2
10

= 0.0006.

Structure-aware:
Pr(Pred) Lap(Pred→Next)

Previous (Laplace):

Pr(s4) = Pr(s2) =α=2
α

1000 + 2α

...

R

...

s1 s2

s3 s4 s5

s6 H

Pr(H) = Pr(R) ×
α

#(R) + 2 × α
×

1
3

×
1
2

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

Total sample: 1000

Structure-aware Reachability Estimator

24

• Solution: reflect the (control) dependence relation between the program states.

Pr(s2) = Pr(s1) ×
α

1,000 + 2 × α

=α=2 1 ×
2

1,004
≈ 0.0020

Pr(s4) = Pr(s3) ×
α

3 + 2 × α

=α=2 0.003 ×
2
10

= 0.0006.

Structure-aware:
Pr(Pred) Lap(Pred→Next)

Previous (Laplace):

Pr(s4) = Pr(s2) =α=2
α

1000 + 2α

...

R

...

s1 s2

s3 s4 s5

s6 H

Pr(H) = Pr(R) ×
α

#(R) + 2 × α
×

1
3

×
1
2

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

Total sample: 1000

Structure-aware Reachability Estimator

24

• Solution: reflect the (control) dependence relation between the program states.

Pr(s2) = Pr(s1) ×
α

1,000 + 2 × α

=α=2 1 ×
2

1,004
≈ 0.0020

Pr(s4) = Pr(s3) ×
α

3 + 2 × α

=α=2 0.003 ×
2
10

= 0.0006.

Structure-aware:
Pr(Pred) Lap(Pred→Next)

Previous (Laplace):

Pr(s4) = Pr(s2) =α=2
α

1000 + 2α

...

R

...

s1 s2

s3 s4 s5

s6 H

Pr(H) = Pr(R) ×
α

#(R) + 2 × α
×

1
3

×
1
2

Laplace

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

Total sample: 1000

Structure-aware Reachability Estimator

24

• Solution: reflect the (control) dependence relation between the program states.

Pr(s2) = Pr(s1) ×
α

1,000 + 2 × α

=α=2 1 ×
2

1,004
≈ 0.0020

Pr(s4) = Pr(s3) ×
α

3 + 2 × α

=α=2 0.003 ×
2
10

= 0.0006.

Structure-aware:
Pr(Pred) Lap(Pred→Next)

Previous (Laplace):

Pr(s4) = Pr(s2) =α=2
α

1000 + 2α

...

R

...

s1 s2

s3 s4 s5

s6 H

Pr(H) = Pr(R) ×
α

#(R) + 2 × α
×

1
3

×
1
2

Laplace

1 / |childs|

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

Total sample: 1000

Structure-aware Reachability Estimator

24

• Solution: reflect the (control) dependence relation between the program states.

Pr(s2) = Pr(s1) ×
α

1,000 + 2 × α

=α=2 1 ×
2

1,004
≈ 0.0020

Pr(s4) = Pr(s3) ×
α

3 + 2 × α

=α=2 0.003 ×
2
10

= 0.0006.

Structure-aware:
Pr(Pred) Lap(Pred→Next)

Previous (Laplace):

Pr(s4) = Pr(s2) =α=2
α

1000 + 2α

...

R

...

s1 s2

s3 s4 s5

s6 H

Pr(H) = Pr(R) ×
α

#(R) + 2 × α
×

1
3

×
1
2

Laplace

1 / |childs|

1 / |childs|

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

Total sample: 1000

Structure-aware Reachability Estimator

25

• Solution: reflect the (control) dependence relation between the program states.

Pr(s2) = Pr(s1) ×
α

1,000 + 2 × α

=α=2 1 ×
2

1,004
≈ 0.0020

Pr(s4) = Pr(s3) ×
α

3 + 2 × α

=α=2 0.003 ×
2
10

= 0.0006.

Structure-aware:
Pr(Pred) Lap(Pred→Next)

Previous (Laplace):

Pr(s4) = Pr(s2) =α=2
α

1000 + 2α

...

R

...

s1 s2

s3 s4 s5

s6 H

Pr(H) = Pr(R) ×
α

#(R) + 2 × α
×

1
3

×
1
2

Laplace

1 / |childs|

1 / |childs|

By integrating light-weight structural information, the estimated becomes more grounded
being able to distinguish the reaching probability of unreached program states.

Evaluation

26

RQ 1. Statistical method vs. Analytic method for QRA

RQ 2. Blackbox estimator vs. Structure-aware estimator

• Analytic method: PSE, PReach (SOTA)

• Subjects: Programs used in PReach

• Target statement: Assertion

• Metric: Accuracy / Estimation time

• For SRA, ‘estimation time’ is the time taken until

the estimate gets close enough.

Evaluation 1: Statistical vs Analytic

27

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Seongmin Lee and Marcel Böhme

!.2 Then, the reaching probability of " in any loop iteration after
reaching the loop entry is:

!

2
+
1 − !

2
·
!

2
+

(

1 − !

2

)2

·
!

2
+ · · · =

!

1 + !
= ! ×

1

1 + !
. (8)

Thus, the probability of a path unit can be estimated by 1) starting
from the last node of the path unit, 2) multiplying the transition
probability in the reverse direction of the path unit, and 3) if it meets
the loop entry, adjust the transition probability to Pr(loop-entry →

loop-start) = 1
1+! , where ! is the probability computed until the

current process. As the cyclic call sequence works similarly in the
path-level, we can make the same adjustment to avoid computing
the stationary probability distribution of the Markov process.

We !nally mention the single exit assumption. In the general
case, a program can have multiple exits. When there is a program
exit between the frontier of the reaching program statements and
the target statement, our estimator may overestimate the reaching
probability of the target statement. The bias due to the imprecision
of the single exit assumption will decrease as the sample size in-
creases since there will be less chance of having a program exit
between the frontier and the target statement.

4 EXPERIMENTAL SETUP

4.1 Research Questions
We mainly ask two research questions to evaluate the performance
of the statistical reachability analysis.

RQ1: How does the statistical reachability analysis perform
compared to the probabilistic reachability analysis? In this
research question, we investigate the limitation of existing ana-
lytic methods and how the statistical reachability analysis performs
compared to the probabilistic reachability analysis. Our investiga-
tion considers both the accuracy of the estimation for the program
with nontrivial semantics, and the scalability of the method. We
use PSE and PReach as baseline probabilistic reachability analyzers
for comparison with the statistical reachability estimators on the
benchmark programs used in the PReach work.

RQ2: How do the structure-aware and the blackbox reachabil-
ity estimators perform on hard-to-reach states in a complex
program? We claim that the statistical reachability estimators are
scalable regardless of how complex the program semantic is. To
verify this claim, we investigate the performance of the statistical
reachability estimators for estimating the reaching probability of
hard-to-reach states in the program with bigger sizes and much
more complex semantics than the benchmark programs used in
RQ1. We also investigate the e"ciency of the structure-aware
model compared to the blackbox model.

4.2 Subject Programs and Target Statements
To evaluate the performance of statistical reachability estimators
compared to probabilistic reachability analyzers, we concretize
the problem of quantitative reachability analysis into the problem
of statement reachability analysis and use the same benchmark
programs used in the PReach work [26]: 142 java programs from
Competition on Software Veri!cation 2021 (SV-COMP). The target

2Pr(" →+ #) is the sum of the probabilities of the intra-procedural paths from " to #

Table 1: RQ1 subject programs from SV-COMP [26].

jpf-regress. (26) ExMIT-T, Exe1-F, Exe2-F, Exe4-F, Exe6-F, Exe8-
F, Exe10-F, Exe10-T, Exe12-F, Exe12-T, Exe13-T,
Exe14-T, Exe15-T, Exe18-F, Exe19-T, Exe20-F, Exe20-
T, Exe26-F, Exe27-F, FNEG-T, LCMP-T, Simple-F,
Simple-T, Suzette-F, Suzette-T, Assign-T

jbmc-regress. (4) assert3, if_icmp1, switch1, Token2

algorithms (2) InsertSort2, RBTree1

Table 2: Statistics of RQ2 subject programs from Siemens
suite (above !ve) and the real-world programs (below !ve)

Program NCLOC # Func # BB GT

tcas 146 9 63 5.37E-04
schedule2 332 17 138 3.99E-04
totinfo 349 7 132 9.2E-04
printtokens2 438 19 198 7.82E-03
replace 534 21 228 2.73E-04

gif2png* 988 27 700 2.95E-04
jsoncpp 7,251 1,328 5,938 2.28E-03
jasper* 17,385 720 14,417 2.48E-04
readelf 22,347 477 18,578 1.99E-07
freetype2 44,686 1,635 27,521 8.25E-08

statements are the assertions in the programs. Most 142 programs
have very primitive semantics to reach the assertion; a single com-
parison (<, >,==, ! =) to an input is the only condition for the
control #ow to the assertion. As our interest is in more realistic pro-
grams, we !ltered out those programs with primitive semantics and
left only the programs whose semantics have meaningful changes
to the reaching probability. Our selection criterion is that the pro-
gram semantics should update the domain of the value used in
the comparison for reaching the assertion and a$ecting the branch
probability. We manually investigate all 142 programs and select
32 programs after !ltering. Table 1 shows the selected programs.3

The average non-comment-line-of-code (NCLOC) is 35.2.
Since the program size is relatively small, there is no singleton

after a few iterations of the sampling process. Therefore, we only
use the Laplace estimator for the statistical reachability analysis
method in RQ1. To get the ground-truth reaching probability of the
assertion, we check the semantics of each program and manually
compute the reaching probability; we consider the same domain
(a signed 31-bit for an integer input and a length of 16 with all
printable ASCII characters for a string input) and assuming the
uniform distribution of the input domain as the PReach work. To
validate the ground-truth, we seperately run a su"ciently large
number of iterations of the sampling process and compare the
ground-truth with the empirical reaching probability.

Subjects used in RQ1 are relatively small-sized with less com-
plexity. To evaluate the performance of statistical reachability esti-
mators in realistic programs, we choose !ve middle-sized programs

3The program names are abstracted for the space issue.

331

Evaluation 1: Statistical vs Analytic

28

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Program GT Esti(PSE) T(PSE) Esti(PR) T(PR) Esti(Lap) T(Lap)

ExMIT-T ⇠0 4.7E-10 (O) .866s 7.6E-06 (O) 14.9s 1.0E-06 (O) 0.044s
Exe1-F 0.49 NL (X) - 0.500 (O) 13.5s 0.489 (O) 0.006s
Exe2-F 0.2 NL (X) - 0.125 (X) 14.6s 0.199 (O) 0.003s
Exe4-F 0.25 NL (X) - 0.125 (X) 14.7s 0.248 (O) 0.014s
Exe6-F 1.0 NL (X) - 2.3E-10 (X) 14.8s 0.990 (O) 0.001s
Exe8-F 0.3 NL (X) - 0.500 (X) 14.7s 0.300 (O) 0.005s
Exe10-F 0.25 NL (X) - 0.250 (O) 14.5s 0.250 (O) 0.005s
Exe10-T ⇠0 NL (X) - 1.2E-10 (O) 14.5s 1.0E-06 (O) 0.085s
Exe12-F 0.5 0.500 (O) .934s 0.500 (O) 14.6s 0.501 (O) 0.004s
Exe12-T 0.375 0.250 (X) .966s 0.375 (O) 14.6s 0.376 (O) 0.007s
Exe13-T ⇠0 0 (O) .909s 5.0E-11 (O) 13.7s 1.0E-06 (O) 0.087s
Exe14-T 0.25 0.5 (X) .860s 0.25 (O) 11.9s 0.251 (O) 0.018s
Exe15-T 0.25 0.125 (X) .910s 0.25 (O) 13.1s 0.251 (O) 0.011s
Exe18-F 0.5 NL (X) - 0.500 (O) 14.5s 0.502 (O) 0.011s
Exe19-T 0.25 0.375 (X) .950s 0.245 (O) 14.5s 0.251 (O) 0.015s
Exe20-F 0.25 NL (X) - 0.125 (X) 13.6s 0.249 (O) 0.008s
Exe20-T 0.5 0.500 (O) .903s 0.5 (O) 14.5s 0.500 (O) 0.008s
Exe26-F 0.5 NL (X) - 0.245 (X) 14.7s 0.500 (O) 0.006s
Exe27-F 0.5 0.500 (O) .849s 0.500 (O) 14.7s 0.500 (O) 0.004s
FNEG-T 0 0 (O) .850s 0.25 (X) 14.5s 1.0E-06 (O) 0.045s
LCMP-T 0 0 (O) .832s 0.5 (X) 14.9s 1.0E-06 (O) 0.044s
Simple-F 0 0 (O) .854s TO (X) - 1.0E-06 (O) 0.048s
Simple-T 0 0 (O) .844s TO (X) - 1.0E-06 (O) 0.047s
Suzette-F 0.25 0.250 (O) .910s 4.7E-10 (X) 13.8s 0.249 (O) 0.030s
Suzette-T ⇠0 2.6E-9 (O) .926s 2.6E-09 (O) 14.4s 1.0E-06 (O) 0.084s
Assign-T 0 0 (O) .841s 0.25 (X) 14.6s 1.0E-06 (O) 0.045s
InsertSort2 2.1E-02 TO (X) - 2.5E-11 (X) 15.8s 2.1E-02 (O) 4,904s
RBTree1 0.125 TO (X) - DTMC (X) 14.4s 0.124 (O) 0.002s
assert3 ⇠0 4.7E-10 (O) .847s 2.3E-10 (O) 10.6s 1.0E-06 (O) 0.044s
if_icmp1 0 0 (O) .856s 5.0E-11 (O) 10.5s 1.0E-06 (O) 0.045s
switch1 ⇠0 2.8-09 (O) 1.03s 0.0 (O) 11.9s 1.0E-06 (O) 0.044s
Token2 4.8E-04 NL (X) - TO (X) - 5.2E-04 (O) 0.545s

Table 3: Quantitative reachability estimation for SV-COMP
2021 benchmarks. Esti(·) and T(·) are the probability estimate
and the time spent for the estimator; (TO, NL, DTMC) are the
failure states of the estimation. O/X in the parenthesis after
the value represents whether the estimator succeeds.

for the sampling (program executions). Among the 31 programs,
the average time spent estimating the assertion statements with
feasible reaching probabilities (GT> 10�6) is 0.039 seconds (median:
0.007), and the average number of samples needed (#B) is 9,615
(median: 1,531). To achieve an estimated probability of 10�6 for
the statements infeasible to reach, the Laplace estimator requires
2 ⇥ 106 samples, and the average time spent for it is 0.055 seconds
(median: 0.045). Only InsertSort2 takes 4,904 seconds, mostly on
the sampling process, not the estimation. This is because InsertSort
runs the insertion sort in the worst-case scenario ($ (=2)) for a
random positive integer number length ([1, 231 � 1]) array.

Our result shows that the Laplace estimator can successfully
estimate the reaching probability of all subjects in Table 3 with
high precision, generally, in a short period of time. On the other
hand, PSE and Preach fail to estimate the accurate reaching
probability of nearly half of the subjects.

�alitative Analysis. We further investigate the properties of the
programs that prevent the analytic approach from estimating the
correct reaching probability of the program state.

Token2 (Figure 2a) epitomizes the limitation of the previously
proposed probabilistic reachability analysis. An arbitrary size of
the array signi�cantly increases the domain space (Line 1), whose
complexity becomes squared after the String API split is applied
(Line 2). It is non-trivial and requires manual e�ort to interpret the
semantics of any API call (Line 2). The loop in Lines 4-9 are a typical
example of the path explosion problem; the number of paths to
consider would grow exponentially with the size of the array if the

1 void test(String line) {
2 String [] toks =

line.split(� �);
3 int i = 0;
4 for (String t : toks) {
5 if (i == 3)
6 assert false;
7 ++i;
8 }
9 }

(a) TokenTest02

1 void test(int x, int z) {
2 if(z < 0) return;
3 // instead of int y = 3;
4 int y = call(�./ret3.sh�);
5 z = x - y - 4;
6 if (x < z)
7 assert false;
8 else
9 print(�b4�);
10 }

(b) Exe13-T

1 void test(int i) {
2 if (i >= 1000)
3 if (!(i > 1000))
4 assert false;
5 }

(c) assert3

1 void test(int z) {
2 z = z % 5 - 2;
3 if (z < 0) print(�b1�);
4 else assert false;
5 }

(d) Exe8-F

Figure 2: Simpli�ed pseudocodes of RQ1 subjects.

true branch were not terminating the loop. The non-deterministic
loop iterations (Line 4) also obstructs the scalability/precision of
the analysis as it needs to consider the maximum number of itera-
tions. Finally, the domain of variable i in Line 6 keeps changing at
each loop iteration, which makes branch selectivity-based analysis
di�cult to compute the correct probability. According to the result,
PSE fails to estimate the reaching probability for Token2 due to
the limited support for the String API. Even if the String API is sup-
ported, the path explosion problem would still make the analysis
hardly feasible, as we have seen for the programs InsertSort2 and
RBTree1 in Table 3. Both of the abstract interpretation (interval
and polyhedra) of PReach reaches the timeout limit for Token2.
The ground truth reaching probability of Token2 is

1�
✓
94
95

◆15
� 15⇠1

1
95

✓
94
95

◆14
� 15⇠2

✓
1
95

◆2 ✓ 94
95

◆13
= 4.82674 � 04,

which is the probability of the input string having more than two
spaces. The vanilla PReach without the abstract interpretation fails
to estimate (P̂r = 0.333) the correct reaching probability to the
assertion. Conversely, the Laplace estimator successfully estimates
the probability with less than 1% of log-scale error in a half-second.

By computing the branch selectivity probability and inducing
the path probability using DTMC, PReach avoids the path explosion
problem. However, applying the model counting to each branch
ignores the domain change of variables during execution, which
may lead to a signi�cant inaccuracy in the probability estimation.
For instance, without abstract interpretation, PReach computes
the reaching probability of the assertion in assert3 (Figure 2c) as
0.25 = 1/2 ⇥ 1/2, where 1/2 stands for the branch selectivity for
each branch, yet the true probability is 1/232. Abstract interpre-
tation, the solution by PReach, can partially solve the problem of
domain change. While it can assist the program like assert3, which
still has a uniform distribution after the domain change, it fails to
handle the case of Exe8-F (Figure 2d), where the domain space
becomes non-uniform; the value distribution of variable z at Line 3
in Figure 2d is a non-uniform distribution between [-6, 2], where
-2 has a double probability (2/10) than other values (1/10) due to
the previous instructions. Therefore, while the true probability of

8

Successful

estimation

[Accuracy]
PSE: 15 / 32 PReach: 17 / 32 SRA: 32 / 32

[Time]
PSE: < 1s PReach: < 1m SRA: ~ 0.01s

• Aim: Is the structural information useful to better estimate the reaching probability of the
unreached state?

Evaluation 2 : Structure-aware Estimator

29

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Seongmin Lee and Marcel Böhme

!.2 Then, the reaching probability of " in any loop iteration after
reaching the loop entry is:

!

2
+
1 − !

2
·
!

2
+

(

1 − !

2

)2

·
!

2
+ · · · =

!

1 + !
= ! ×

1

1 + !
. (8)

Thus, the probability of a path unit can be estimated by 1) starting
from the last node of the path unit, 2) multiplying the transition
probability in the reverse direction of the path unit, and 3) if it meets
the loop entry, adjust the transition probability to Pr(loop-entry →

loop-start) = 1
1+! , where ! is the probability computed until the

current process. As the cyclic call sequence works similarly in the
path-level, we can make the same adjustment to avoid computing
the stationary probability distribution of the Markov process.

We !nally mention the single exit assumption. In the general
case, a program can have multiple exits. When there is a program
exit between the frontier of the reaching program statements and
the target statement, our estimator may overestimate the reaching
probability of the target statement. The bias due to the imprecision
of the single exit assumption will decrease as the sample size in-
creases since there will be less chance of having a program exit
between the frontier and the target statement.

4 EXPERIMENTAL SETUP

4.1 Research Questions
We mainly ask two research questions to evaluate the performance
of the statistical reachability analysis.

RQ1: How does the statistical reachability analysis perform
compared to the probabilistic reachability analysis? In this
research question, we investigate the limitation of existing ana-
lytic methods and how the statistical reachability analysis performs
compared to the probabilistic reachability analysis. Our investiga-
tion considers both the accuracy of the estimation for the program
with nontrivial semantics, and the scalability of the method. We
use PSE and PReach as baseline probabilistic reachability analyzers
for comparison with the statistical reachability estimators on the
benchmark programs used in the PReach work.

RQ2: How do the structure-aware and the blackbox reachabil-
ity estimators perform on hard-to-reach states in a complex
program? We claim that the statistical reachability estimators are
scalable regardless of how complex the program semantic is. To
verify this claim, we investigate the performance of the statistical
reachability estimators for estimating the reaching probability of
hard-to-reach states in the program with bigger sizes and much
more complex semantics than the benchmark programs used in
RQ1. We also investigate the e"ciency of the structure-aware
model compared to the blackbox model.

4.2 Subject Programs and Target Statements
To evaluate the performance of statistical reachability estimators
compared to probabilistic reachability analyzers, we concretize
the problem of quantitative reachability analysis into the problem
of statement reachability analysis and use the same benchmark
programs used in the PReach work [26]: 142 java programs from
Competition on Software Veri!cation 2021 (SV-COMP). The target

2Pr(" →+ #) is the sum of the probabilities of the intra-procedural paths from " to #

Table 1: RQ1 subject programs from SV-COMP [26].

jpf-regress. (26) ExMIT-T, Exe1-F, Exe2-F, Exe4-F, Exe6-F, Exe8-
F, Exe10-F, Exe10-T, Exe12-F, Exe12-T, Exe13-T,
Exe14-T, Exe15-T, Exe18-F, Exe19-T, Exe20-F, Exe20-
T, Exe26-F, Exe27-F, FNEG-T, LCMP-T, Simple-F,
Simple-T, Suzette-F, Suzette-T, Assign-T

jbmc-regress. (4) assert3, if_icmp1, switch1, Token2

algorithms (2) InsertSort2, RBTree1

Table 2: Statistics of RQ2 subject programs from Siemens
suite (above !ve) and the real-world programs (below !ve)

Program NCLOC # Func # BB GT

tcas 146 9 63 5.37E-04
schedule2 332 17 138 3.99E-04
totinfo 349 7 132 9.2E-04
printtokens2 438 19 198 7.82E-03
replace 534 21 228 2.73E-04

gif2png* 988 27 700 2.95E-04
jsoncpp 7,251 1,328 5,938 2.28E-03
jasper* 17,385 720 14,417 2.48E-04
readelf 22,347 477 18,578 1.99E-07
freetype2 44,686 1,635 27,521 8.25E-08

statements are the assertions in the programs. Most 142 programs
have very primitive semantics to reach the assertion; a single com-
parison (<, >,==, ! =) to an input is the only condition for the
control #ow to the assertion. As our interest is in more realistic pro-
grams, we !ltered out those programs with primitive semantics and
left only the programs whose semantics have meaningful changes
to the reaching probability. Our selection criterion is that the pro-
gram semantics should update the domain of the value used in
the comparison for reaching the assertion and a$ecting the branch
probability. We manually investigate all 142 programs and select
32 programs after !ltering. Table 1 shows the selected programs.3

The average non-comment-line-of-code (NCLOC) is 35.2.
Since the program size is relatively small, there is no singleton

after a few iterations of the sampling process. Therefore, we only
use the Laplace estimator for the statistical reachability analysis
method in RQ1. To get the ground-truth reaching probability of the
assertion, we check the semantics of each program and manually
compute the reaching probability; we consider the same domain
(a signed 31-bit for an integer input and a length of 16 with all
printable ASCII characters for a string input) and assuming the
uniform distribution of the input domain as the PReach work. To
validate the ground-truth, we seperately run a su"ciently large
number of iterations of the sampling process and compare the
ground-truth with the empirical reaching probability.

Subjects used in RQ1 are relatively small-sized with less com-
plexity. To evaluate the performance of statistical reachability esti-
mators in realistic programs, we choose !ve middle-sized programs

3The program names are abstracted for the space issue.

331

• Subjects: 5 subjects from Siemens suite + 5 Open-
source C libraries

• Run greybox fuzzing to choose the target hard-to-reach

statement

• Evaluation setting:

Expected number of samples needed to reach10% of the data

1
GT

Evaluation 2: Structure-aware

30

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Seongmin Lee and Marcel Böhme

(a) Individual plots for each subject7(y: # of samples (%)) (b) Average log-err and di!erences

Figure 3: Three statistical reachability estimators’ (Good-Turing: orange, Laplace: blue, Structure-aware: green) reaching
probability estimation and the error of target statements in the programs from Siemens suite and FOS C/C++ programs/libraries.

rudimentary. The last three columns of Table 4 show the total (sam-
pling + estimation) time spent by the three estimators to reach
the estimated probability of log-err(!,"#) < 2 within 10% of the
executions, where the bold values denotes the least time among
the three estimators. ‘To reach’ means that every estimate after
the shown time is within the error bound. The structure-aware
estimator requires the least time for most programs. In contrast,
the Good-Turing estimator could not produce the estimate within
the error bound using 10% of the executions for several programs.
Since the structure-aware estimator gives a more accurate esti-
mation given the same number of samples, often the overall time
spent by the structure-aware estimator is less than the other two
estimators.

The statistical reachability estimators are able to estimate the
reaching probability for practical-sized programs. Our structure-
aware estimator is themost accurate among the three estimators:
within 10% of the expected number of executions needed to
reach the target statement, the the estimate is less than one
order of magnitude away from the ground-truth probability.

6 THREATS TO VALIDITY
Various threats to the validity need to be concerned about as we
evaluate the performance of the reachability estimators empirically.
External validity concerns whether the results from the study can
be generalized. To mitigate this concern, we use various programs

with di!erent sizes and complexity: SV-COMP 2021, Siemens suite,
and FOS software. In RQ1, we use the same benchmark used by the
former study for a fair comparison and choose the subjects based on
the selection criteria. We extend our investigation to the programs
with a larger size and complexity in RQ2 for a more general eval-
uation. Internal validity concerns the degree of con"dence of our
study, having not been in#uenced by any factor beyond the scope
of the study. First, to mitigate the randomness of the experiment,
we use numerous repetitions of greybox fuzzing campaigns and run
every estimator with ten repetitions. Second, to avoid missing any
potential error in our evaluation and to facilitate the reproduction
of our study, we make our scripts and data publicly available.

7 RELATEDWORK
Beyond the quantitative reachability analysis, Böhme and colleagues
study the empirical method and the statistical framework for pro-
gram analysis in general [4, 24] and for software testing speci"cally
[3, 5, 6]. For instance, they applied the statistical approach to ana-
lyze various properties of blackbox fuzzing campaigns, including
the total feasible branch coverage, the additional time required to
cover 10% more branches, and the residual risk that a vulnerability
exists when no vulnerability has been discovered so far. Later, they
extended the approach to greybox fuzzing, where the sampling
distribution is updated during the testing process, suggesting a
methodology to avoid the adaptive bias in the statistical model [6].

335

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Seongmin Lee and Marcel Böhme

(a) Individual plots for each subject7(y: # of samples (%)) (b) Average log-err and di!erences

Figure 3: Three statistical reachability estimators’ (Good-Turing: orange, Laplace: blue, Structure-aware: green) reaching
probability estimation and the error of target statements in the programs from Siemens suite and FOS C/C++ programs/libraries.

rudimentary. The last three columns of Table 4 show the total (sam-
pling + estimation) time spent by the three estimators to reach
the estimated probability of log-err(!,"#) < 2 within 10% of the
executions, where the bold values denotes the least time among
the three estimators. ‘To reach’ means that every estimate after
the shown time is within the error bound. The structure-aware
estimator requires the least time for most programs. In contrast,
the Good-Turing estimator could not produce the estimate within
the error bound using 10% of the executions for several programs.
Since the structure-aware estimator gives a more accurate esti-
mation given the same number of samples, often the overall time
spent by the structure-aware estimator is less than the other two
estimators.

The statistical reachability estimators are able to estimate the
reaching probability for practical-sized programs. Our structure-
aware estimator is themost accurate among the three estimators:
within 10% of the expected number of executions needed to
reach the target statement, the the estimate is less than one
order of magnitude away from the ground-truth probability.

6 THREATS TO VALIDITY
Various threats to the validity need to be concerned about as we
evaluate the performance of the reachability estimators empirically.
External validity concerns whether the results from the study can
be generalized. To mitigate this concern, we use various programs

with di!erent sizes and complexity: SV-COMP 2021, Siemens suite,
and FOS software. In RQ1, we use the same benchmark used by the
former study for a fair comparison and choose the subjects based on
the selection criteria. We extend our investigation to the programs
with a larger size and complexity in RQ2 for a more general eval-
uation. Internal validity concerns the degree of con"dence of our
study, having not been in#uenced by any factor beyond the scope
of the study. First, to mitigate the randomness of the experiment,
we use numerous repetitions of greybox fuzzing campaigns and run
every estimator with ten repetitions. Second, to avoid missing any
potential error in our evaluation and to facilitate the reproduction
of our study, we make our scripts and data publicly available.

7 RELATED WORK
Beyond the quantitative reachability analysis, Böhme and colleagues
study the empirical method and the statistical framework for pro-
gram analysis in general [4, 24] and for software testing speci"cally
[3, 5, 6]. For instance, they applied the statistical approach to ana-
lyze various properties of blackbox fuzzing campaigns, including
the total feasible branch coverage, the additional time required to
cover 10% more branches, and the residual risk that a vulnerability
exists when no vulnerability has been discovered so far. Later, they
extended the approach to greybox fuzzing, where the sampling
distribution is updated during the testing process, suggesting a
methodology to avoid the adaptive bias in the statistical model [6].

335

• The structure-aware estimator performed
significantly better than the blackbox estimators.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Seongmin Lee and Marcel Böhme

(a) Individual plots for each subject7(y: # of samples (%)) (b) Average log-err and di!erences

Figure 3: Three statistical reachability estimators’ (Good-Turing: orange, Laplace: blue, Structure-aware: green) reaching
probability estimation and the error of target statements in the programs from Siemens suite and FOS C/C++ programs/libraries.

rudimentary. The last three columns of Table 4 show the total (sam-
pling + estimation) time spent by the three estimators to reach
the estimated probability of log-err(!,"#) < 2 within 10% of the
executions, where the bold values denotes the least time among
the three estimators. ‘To reach’ means that every estimate after
the shown time is within the error bound. The structure-aware
estimator requires the least time for most programs. In contrast,
the Good-Turing estimator could not produce the estimate within
the error bound using 10% of the executions for several programs.
Since the structure-aware estimator gives a more accurate esti-
mation given the same number of samples, often the overall time
spent by the structure-aware estimator is less than the other two
estimators.

The statistical reachability estimators are able to estimate the
reaching probability for practical-sized programs. Our structure-
aware estimator is themost accurate among the three estimators:
within 10% of the expected number of executions needed to
reach the target statement, the the estimate is less than one
order of magnitude away from the ground-truth probability.

6 THREATS TO VALIDITY
Various threats to the validity need to be concerned about as we
evaluate the performance of the reachability estimators empirically.
External validity concerns whether the results from the study can
be generalized. To mitigate this concern, we use various programs

with di!erent sizes and complexity: SV-COMP 2021, Siemens suite,
and FOS software. In RQ1, we use the same benchmark used by the
former study for a fair comparison and choose the subjects based on
the selection criteria. We extend our investigation to the programs
with a larger size and complexity in RQ2 for a more general eval-
uation. Internal validity concerns the degree of con"dence of our
study, having not been in#uenced by any factor beyond the scope
of the study. First, to mitigate the randomness of the experiment,
we use numerous repetitions of greybox fuzzing campaigns and run
every estimator with ten repetitions. Second, to avoid missing any
potential error in our evaluation and to facilitate the reproduction
of our study, we make our scripts and data publicly available.

7 RELATEDWORK
Beyond the quantitative reachability analysis, Böhme and colleagues
study the empirical method and the statistical framework for pro-
gram analysis in general [4, 24] and for software testing speci"cally
[3, 5, 6]. For instance, they applied the statistical approach to ana-
lyze various properties of blackbox fuzzing campaigns, including
the total feasible branch coverage, the additional time required to
cover 10% more branches, and the residual risk that a vulnerability
exists when no vulnerability has been discovered so far. Later, they
extended the approach to greybox fuzzing, where the sampling
distribution is updated during the testing process, suggesting a
methodology to avoid the adaptive bias in the statistical model [6].

335

Sample size

vs. Bias

Curve

log-bias < 1 means

one order of magnitude difference

| log(GT) − log(esti) |

Individual

cases

Sample size Laplace Good-Turing Struct

10 % 1.28 2.41 0.91

0.01 % 3.00 4.67 1.77

log-bias

FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

Dr. Seongmin Lee
🏠 https://nimgnoeseel.github.io/

Dr. Marcel Böhme
MPI-SP Software Security
🏠 https://mpi-softsec.github.io/

