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Abstract

It might seem counter-intuitive at first: We find
that, in expectation, the proportion of data points
in an unknown population—that belong to classes
that do not appear in the training data—is almost
entirely determined by the number fk of classes
that do appear in the training data the same num-
ber of times. While in theory we show that the
difference of the induced estimator decays expo-
nentially in the size of the sample, in practice
the high variance prevents us from using it di-
rectly for an estimator of the sample coverage.
However, our precise characterization of the de-
pendency between fk’s induces a large search
space of different representations of the expected
value, which can be deterministically instantiated
as estimators. Hence, we turn to optimization and
develop a genetic algorithm that, given only the
sample, searches for an estimator with minimal
mean-squared error (MSE). In our experiments,
our genetic algorithm discovers estimators that
have a substantially smaller MSE than the state-of-
the-art Good-Turing estimator. This holds for over
96% of runs when there are at least as many sam-
ples as classes. Our estimators’ MSE is roughly
80% of the Good-Turing estimator’s.

1. Introduction
Suppose, we are drawing balls with replacement from an
urn with colored balls. What is the proportion of balls in
that urn that have a color not observed in the sample; or
equivalently, what is the probability that the next ball has
a previously unobserved color? What is the distribution of
rarely observed colors in that urn? These questions represent
a fundamental problem in machine learning: How can we
extrapolate from properties of the training data to properties
of the unseen, underlying distribution of the data?
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1.1. Background

Consider a multinomial distribution p = ⟨p1, · · · pS⟩ over a
support set X where support size S = |X | and probability
values are unknown. Let Xn = ⟨X1, · · ·Xn⟩ be a set of
independent and identically distributed random variables
representing the sequence of elements observed in n sam-
ples from p. Let Nx be the number of times element x ∈ X
is observed in the sample Xn. For k : 0 ≤ k ≤ n, let Φk be
the number of elements appearing exactly k times in Xn.

Nx =

n∑
i=1

1(Xi = x) and Φk =
∑
x∈X

1(Nx = k)

Let fk(n) be the expected value of Φk (Good, 1953), i.e.,

fk(n) =

(
n

k

)∑
x∈X

pkx(1− px)
n−k = E [Φk]

Estimating the multinomial. Suppose, we want to estimate
p. We cannot expect all elements to exist in Xn. While the
empirical estimator p̂Emp

x = Nx/n is generally unbiased,
p̂Emp
x distributes the entire probability mass only over the

observed elements. This leaves a “missing probability mass”
over the unobserved elements. In particular, p̂Emp

x given that
Nx > 0 overestimates px, i.e., for observed elements

E
[
Nx

n

∣∣∣∣ Nx > 0

]
=

px
1− (1− px)n

.

We notice that the bias increases as px decreases. Bias is
maximized for the rarest observed element.

Missing mass, realizability, and natural estimation. Good
and Turing (GT) (Good, 1953) discovered that the expected
value of the probability Mk =

∑
x∈X px1(Nx = k) that

the (n+1)-th observation Xn+1 is an element that has been
observed exactly k times in Xn (incl. k = 0) is a function
of the expected number of colors fk+1(n+ 1) that will be
observed k + 1 times in an enlarged sample Xn ∪Xn+1.

E [Mk] =
k + 1

n+ 1
fk+1(n+ 1). (1)

We also call Mk as total probability mass over the elements
that have been observed exactly k times. Since our sample
Xn is only of size n, GT suggested to estimate fk+1(n+1)
using Φk+1. Concretely, M̂G

k = k+1
n Φk+1.
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For k = 0, M0 gives the “missing” (probability) mass over
the elements not in the sample. In genetics and biostatistics,
the complement 1−M0 measures sample coverage, i.e., the
proportion of individuals in the population belonging to a
species not observed in the sample (Chao & Jost, 2012). In
the context of supervised machine learning, assuming the
training data is a random sample, the sample coverage of
the training data gives the proportion of all data (seen or
unseen) with labels not observed in the training data.

Using an estimate M̂k of Mk, we estimate the probability
px of an element x ∈ X that appears k times as M̂k/Φk.
The estimation of p in the presence of unseen elements
x ̸∈ Xn is a fundamental problem in machine learning (Or-
litsky et al., 2003; Orlitsky & Suresh, 2015; Painsky, 2022;
Acharya et al., 2013; Hao & Li, 2020). For instance, in
natural language processing the estimation of the probabil-
ity of a given sequence of words occurring in a sentence is
the main challenge of language models, particularly in the
presence of sequences that appear in the training data rarely
or not at all. Different smoothing and backoff techniques
have been developed to tackle this data sparsity challenge.

A natural estimator of px assigns the same probability to
all elements x appearing the same number of times in the
sample Xn (Orlitsky & Suresh, 2015). For k > 0, p̂x =
Mk/Φk gives the hypothetical1 best natural estimator of px
for every element x that has been observed k times.

Bias of Good-Turing (GT). In terms of bias, Juan and Lo
(Juang & Lo, 1994) observe that the GT estimator M̂G

k =
k+1
n Φk+1 is an unbiased estimate of Mk(X

n−1), i.e., where
the n-th sample was deleted from Xn and find:∣∣∣E [M̂G

k −Mk

]∣∣∣ = ∣∣E [Mk(X
n−1)−Mk(X

n)
]∣∣

≤ k + 2

n+ 1
= O

(
1

n

)
.

Convergence of GT. McAllester and Schapire (McAllester
& Schapire, 2000) analyzed the convergence. With high
probability,

|M̂G
k −Mk(n)|

=δ


O (1/

√
n) for k = 0 (missing mass)

O (log(n)/
√
n) for small k (rare elements)

O (k/
√
n) for large k (abundant elements).

This result was improved by Drukh and Mansour (Drukh
& Mansour, 2004) and more recently by Painsky (Painsky,
2022) who showed that GT estimator converges at a rate of
O(1/

√
n) for all k based on worst-case mean squared error

analysis.

1The best natural estimator is also called oracle-aided estimator
for its knowledge about px (Orlitsky & Suresh, 2015) but cannot
actually be used for estimation.

Competitiveness of GT. Using the Poisson approximation,
Orlitsky and Suresh (Orlitsky & Suresh, 2015) showed that
natural estimators from GT, i.e., p̂Gx = M̂G

Nx
/ΦNx , per-

forms close to the best natural estimator. Regret, the metric
of the competitiveness of an estimator against the best nat-
ural estimator, is measured as KL divergence between the
estimate p̂ and the actual distribution p, DKL(p̂||p). Orl-
itsky and Suresh also showed that finding the best natural
estimator for p is same as finding the best estimator for
M = {Mk}nk=0.

Poisson approximation. The Poisson approximation with
parameter λx = pxn has often been used to tackle a major
challenge in the formal analysis of the missing mass and
natural estimators (Orlitsky & Suresh, 2015; Orlitsky et al.,
2016; Acharya et al., 2013; Efron & Thisted, 1976; Valiant
& Valiant, 2016; Good, 1953; Good & Toulmin, 1956; Hao
& Li, 2020). The challenge is the dependencies between fre-
quencies Nx for different elements x ∈ X . In this Poisson
Product model, a continuous-time sampling scheme with
S = |X | independent Poisson distributions is considered
where the frequency Nx of an element x is represented as
a Poisson random variable with mean pxn. In other words,
in the Poisson approximation, the frequencies Nx are mod-
elled as independent random variables. Consequently, GT
estimator is an unbiased estimator for the Poisson Product
model (Orlitsky et al., 2016), yet it is biased in the multi-
nomial distribution (Juang & Lo, 1994). Hence, we tackle
the dependencies between frequencies analytically, without
approximation via the Poisson Product model.

1.2. Contribution of the Paper

In this paper, we reinforce the foundations of multinomial
distribution estimation with a precise characterization of the
the dependencies between Nx =

∑n
i=1 1(Xi = x) across

different x ∈ X (rather than assuming independence and us-
ing the Poisson approximation). The theoretical analysis is
based on the expected value of the frequency of frequencies
E [Φk] = fk(n) between different k and n, which is

fk(n)(
n
k

) =
fk(n+ 1)(

n+1
k

) − fk+1(n+ 1)(
n+1
k+1

) . (2)

Exploring this new theoretical tool, we bring two contribu-
tions to the estimation of the total probability mass Mk for
any k : 0 ≤ k ≤ n. Firstly, we show exactly to what extent
E [Mk] can be estimated from the sample Xn and how much
remains to be estimated from the underlying distribution p
and the number of elements |X |. Specifically, we show the
following.
Theorem 1.1.

E [Mk] =

(
n

k

)[
n−k∑
i=1

(−1)i−1fk+i(n)

/(
n

k + i

)]
+Rn,k

where Rn,k =
(
n
k

)
(−1)n−kfn+1(n+ 1) is the remainder.

2
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This decomposition shows that the GT estimator is the first
term of E [Mk] using the plug-in estimator Φ1 for f1(n).
Hence, it gives the exact bias of the GT estimator in the
multinomial setting (which would incorrectly be identified
as unbiased using the Poisson approximation).

Our second contribution is the development of a class of
natural estimators. We start by defining a nearly unbiased
estimator M̂B

k =
(
n
k

) [∑n−k
i=1 (−1)i−1Φk+i

/(
n

k+i

)]
that

uses the plug-in estimator Φl for fl(n) in Theorem 1.1 and
drops Rn,k. While the bias of M̂B

k decays exponentially,
the variance of M̂B

k is too high to be practical.

We observe that we can cast the estimation of the expected
total mass as an optimization problem. From Theorem 1.1
and Eqn. 2, we can see that there are many representa-
tions of E [Mk], all of which suggest different estimators for
E [Mk]. We introduce a deterministic method to construct a
unique estimator from a representation, and show how to es-
timate the mean squared error (MSE) for such an estimator.
Equipped with a large search space of representations and a
fitness function to estimate the MSE of a candidate estima-
tor, we develop a genetic algorithm that finds an estimator
with a minimal MSE (and at most N terms).

We compare the performance of the minimal-bias estimator
M̂B

k and the minimal-MSE estimators discovered by our
genetic algorith to the that of the widely used GT estimator
on a variety of multinomial distributions used for evaluation
in previous work. Our results show that 1) the minimal-bias
estimator has a substantially smaller bias than the GT esti-
mator by thousands of order of magnitude, 2) Our genetic
algorithm can produce estimators with MSE smaller than
the GT estimator over 96% of the time when there are at
least as many samples as classes; their MSE is roughly 80%
of the GT estimator. We also publish all data and scripts to
reproduce our results.

2. Dependencies Between Frequencies Nx

Firstly, we propose a new, distribution-free2 methodology
for reasoning about properties of estimators of the missing
and total probability masses for multinomial distributions.
The main challenge for the statistical analysis of Mk has
been reasoning in the presence of dependencies between
frequencies Nx for different elements x ∈ X . As discussed
in Section 1.1, a Poisson approximation with parameter
λx = pxn is often used to render these frequencies as in-
dependent (Orlitsky & Suresh, 2015; Orlitsky et al., 2016;
Acharya et al., 2013; Efron & Thisted, 1976; Valiant &
Valiant, 2016; Good, 1953; Good & Toulmin, 1956; Hao

2A distribution-free analysis is free of assumptions about the
shape of the probability distribution generating the sample. In this
case, we make no assumptions about parameters p or n.
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Figure 1. Lower triangle matrix of gk(n).

& Li, 2020). In the following, we tackle this challenge by
formalizing these dependencies between frequencies. Thus,
we establish a link between the expected values of the cor-
responding total probability masses.

2.1. Dependency Among Frequencies

Recall that the expected value fk(n) of the number of el-
ements Φk that appear exactly k times in the sample Xn

is defined as fk(n) =
∑

x∈X
(
n
k

)
pkx(1− px)

n−k. For con-
vencience, let gk(n) = fk(n)/

(
n
k

)
. We notice the following

relationship among k and n:

gk(n+ 1) =

S∑
x=1

pkx(1− px)
n−k · (1− px)

= gk(n)− gk+1(n+ 1) (3)

=

n−k∑
i=0

(−1)igk+i(n) + (−1)n−k+1gn+1(n+ 1)

We can now write the expected value E [Mk] of the total
probability mass in terms of the frequencies with which
different elements x ∈ X have been observed in the sample
Xn of size n as follows

E [Mk] =
∑
x∈X

(
n

k

)
pk+1
x (1− px)

n−k

=

(
n

k

)
gk+1(n+ 1) (4)

=

(
n

k

)[n−k∑
i=1

(−1)i−1gk+i(n)

]
+Rn,k (5)

where Rn,k =
(
n
k

)
(−1)n−kfn+1(n+1) is a remainder term.

This demonstrates Theorem 1.1.

Figure 1 illustrates the relationship between the expected
frequency of frequencies fk(n) = gk(n)/

(
n
k

)
, the frequency

3
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k, and the sample size n. The y- and x-axis represents the
sample size n and the frequency k, respectively. As per
Eqn. (3), for every 2x2 lower triangle matrix, the value of
the lower left cell (gk(n+ 1)) is value of the upper left cell
(gk(n)) minus the value of the lower right cell (gk+1(n+1)).

We can use this visualization to quickly see how to rewrite
gk(n) as an alternating sum of values of the cells in the
upper row, starting from the cell in the same column to
the rightmost cell, and adding/subtracting the value of the
rightmost cell in the current row. For instance, the value
g0(13) in the bottom red cell (row n = 13, column k = 0)
in the figure can be equally calculated as the various linear
combinations of its surrounding cells: (1) with g0(12) and
g1(13) (blue colored), (2) with g0(11), g1(11), · · · , g4(13)
(purple colored), or (3) with g0(11), g1(11), · · · , g8(13)
(green colored).

Missing Mass. The missing probability mass M0 gives
the proportion of all possible observations for which the
elements x ∈ X have not been observed in Xn. By Eqn. (4)
and (5), the expected value of M0 is

E [M0] = g1(n+ 1)

=

[
n∑

k=1

(−1)k−1gk(n)

]
+ (−1)nfn+1(n+ 1).

The values in the second column of Figure 1 (k = 1) rep-
resents the expected values of missing mass; E [M0] being
the cumulative sum of (−1)k−1gk(n) is intuitively clear
from the figure (the red cell in the row n = 7). It is here
where we observe that E [M0] = g1(n + 1) is almost en-
tirely determined by the g∗(n), the expected frequencies of
frequencies in the sample Xn, and not by the number of
elements |X | or their underlying distribution p. In fact, the
influence of p in the remainder term decays exponentially,
i.e., fn+1(n + 1) =

∑
x∈X pn+1

x ≤
∑

x∈X
(
e1−px

)−n−1

which is dominated by the discovery probability of the most
abundant element max(p).

Total Mass. Similarly, the expected value of the total prob-
ability mass E [Mk] (the red cell in the row n = 10), which
is equal to

(
n
k

)
gk+1(n+1), is almost entirely determined by

the expected frequencies of the sample Xn with remainder
Rn,k =

(
n
k

)∑
x∈X pn+1

x .

3. A Large Class of Estimators
From the representation of E [Mk] in terms of frequencies in
Eqn. (4) and the relationship across frequencies in Eqn. (3),
we can see that there is a large number of representations of
the expected total probability mass E [Mk]. Each represen-
tation might suggest different estimators.

We start by defining the minimal bias estimator M̂B
k from

the representation in Eqn. (5) and explore its properties.

3.1. Estimator with Exponentially Decaying Bias

Let

M̂B
k = −

(
n

k

) n−k∑
i=1

(−1)iΦk+i(
n

k+i

)
Bias. For some constant k : 0 ≤ k ≤ n and some constant
c > 1, the bias of M̂B

k is in the order of O(nkc−n), i.e.,

E
[
M̂B

k −Mk

]
= −Rn,k = (−1)n−k−1

(
n

k

)∑
x∈X

pn+1
x∣∣∣E [M̂B

k −Mk

]∣∣∣ ≤ (n
k

)∑
x∈X

c−n
x ≤ nk

∑
x∈X

c−n
x

where cx > 1 for all x ∈ X are constants.

Variance. The variance of M̂B
k is given by the variances

and covariances of the frequencies Φk+i for i = 1, · · · , n−
k. Under the certain conditions, the variance of M̂B

k also
decays exponentially in n.

Theorem 3.1. The variance of M̂B
k decreases exponen-

tially with n if pmax < 0.5 or (1−pmax)(1−pmin)
pmax

< 1, where
pmax = maxx∈X px and pmin = minx∈X px.

The proof is postponed to Appendix B.

Comparison to Good-Turing (GT). The bias of M̂B
k not

only decays exponentially in n but is also smaller than that
of GT estimator M̂G

k by an exponential factor. For a sim-
pler variant of GT estimator, M̂G′

k = k+1
n−kΦk+1 (suggested

in (McAllester & Schapire, 2000)), which corresponds to
the first term in the expected total probability mass E [Mk]
in Eqn. (5), we show that its bias is larger by an exponential
factor than the absolute bias of M̂B

k . To see this, we provide
bounds on the individual sums and then on the bias ratio:

BiasG′ = E
[
M̂G′

k −Mk

]
≥
(
n

k

)
pk+2
min (1− pmin)

n−k−1

(6)

|BiasB | =
∣∣∣E [M̂B

k −Mk

]∣∣∣ ≤ (n
k

)
Spn+1

max (7)

where S = |X |, such that∣∣∣∣BiasG′

BiasB

∣∣∣∣ ≥ pk+2
min

Spk+2
max

(
1− pmin

pmax

)n−k−1

.

Notice that (1− pmin)/pmax > 1 for all distributions over
X , except where S = 2 and p = {0.5, 0.5}. The same can
be shown for the original GT estimator M̂G

k = k+1
n Φk+1

for a sufficiently large sample size (see Appendix A).

Example (Missing mass for the uniform). Suppose, we seek
to estimate the missing mass from a sequence of elements
Xn observed in n samples from the uniform distribution;
px = 1/S for all x ∈ X . M̂G

0 overestimates M0 on the

4
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average by (S−1)n−1/Sn while our new estimator M̂B
0 has

a bias of (−1)n/Sn. Hence, for the uniform distribution,
our estimator exhibits a bias that is lower by a factor of
1/(S − 1)n−1.

While the bias of our estimator M̂B
k is lower than that of

M̂G
0 by an exponential factor, the variance is higher. The

variance of M̂B
k depends on the variances of and covariances

between Φk+1,Φk+2, . . . ,Φn, i.e.,

Var
(
M̂B

k

)
=

n−k∑
i=1

c2iVar (Φk+i)

+
∑
i ̸=j

(−1)i+jcicjCov (Φk+i,Φk+j) ,

(8)

where ci =
(
n
k

)/ (
n

k+i

)
. In contrast, the variance of M̂G

k

depends only on the variance of Φk+1. In the empirical
study, we investigate the difference of the two estimators in
terms of the bias and the variance.

3.2. Estimation with Minimal MSE as Search Problem

There are many representations of E [Mk] =
(
n
k

)
gk+1(n+1)

that can be constructed by recursively rewriting terms ac-
cording to the dependency among frequencies we identified
(cf. Eqn. (3 & 4)). The representation used to construct our
minimal-bias estimator M̂B

k was one of them. However, we
notice that the variance of M̂B

k is too high to be practical.
To find a representation from which an estimator with a min-
imal mean squared error (MSE) can be derived, we cast the
efficient estimation of Mk as an optimization problem. To
efficiently navigate the large search space of representations
of E [Mk], we develop a genetic algorithm.

Search space. Let E [Mk] be represented by a suitable
choice of coefficients αi,j such that

E [Mk] =

n+1∑
i=1

n+1∑
j=i

αi,jgi(j). (9)

One representation of E [Mk] =
(
n
k

)
gk+1(n+ 1) is

r0 =

{
αi,j =

{(
n
k

)
for i = k + 1 and j = n+ 1

0 otherwise.

}
(10)

Mutation. Given any representation r of E [Mk], we can
construct a new representation r′ of E [Mk], s.t. Eqn. (9)
holds by recursively considering the following identities:

αi,j · gi(j) = αi,j · ((1− δ)gi(j) + δgi(j)) (11)
= αi,j · (gi(j + 1) + gi+1(j + 1)) (12)
= αi,j · (gi(j − 1)− gi+1(j)) (13)
= αi,j · (gi−1(j − 1) + gi−1(j)) (14)

for any choice of δ : 0 ≤ δ ≤ 1. Importantly, after applying
these identities, we must work out the new coefficients

Algorithm 1 Genetic Algorithm
Input: Target frequency k, Sample Xn

Input: Iteration limit G, mutant size m
1: Population P0 = {r0}
2: Fitness f best = f0 = fitness(r0)
3: Limit GL = G
4: for g from 1 to GL do
5: P = selectTopM(Pg−1,m)
6: P ′ = lapply(P,mutate)
7: Pg = P ′ ∪ {r0} ∪ selectTopM(Pg−1, 3)
8: fg = min(lapply(Pg, fitness))
9: if (g = GL) ∧ ((fg = f0) ∨ (f best > 0.95 · fg)) then

10: GL = GL +G
11: f best = fg
12: end if
13: end for
14: Estimator M̂Evo

k = instantiate(selectTopM(PGL , 1))

Output: Minimal-MSE Estimator M̂Evo
k

accordingly. For instance, applying Eqn. (11) with δ = 0.5
and Eqn. (13) to r0, we obtain the following representation
r1 of E [Mk]:

r1 =

αi,j =


(
n
k

)/
2 for i = k + 1 and j = n+ 1(

n
k

)/
2 for i = k + 1 and j = n

−
(
n
k

)/
2 for i = k + 2 and j = n+ 1

0 otherwise.


Estimator instantiation. To construct a unique estimator
M̂r

k of Mk from a representation r of E [Mk], we propose
a deterministic method. But first, we define our random
variables on subsamples of Xn. For any m ≤ n, let Nx(m)
be the number of times element x ∈ X is observed in the
subsample Xm = ⟨X1, · · ·Xm⟩ of Xn. Let Φk(m) be the
number of elements appearing exactly k times in Xm, i.e.,

Nx(m) =

m∑
i=1

1(Xi = x) Note that Nx = Nx(n).

Φk(m) =
∑
x∈X

1(Nx(m) = k) Note that Φk = Φk(n).

Hence, given a representation r, we can construct M̂r
k as

M̂r
k =

 n∑
i=1

n∑
j=i

αi,j(
j
i

) Φi(j)

+

[
n∑

i=1

αi,n+1(
n+1
i

) Φi

]

Notice that Φi(j)
/(

j
i

)
is just the plug-in estimator for gi(j).

Fitness function. To define the quantity to optimize, any
meta-heuristic search requires a fitness function. Our fitness
function takes a candidate representation r and returns an
estimate of the MSE of the corresponding estimator M̂r

k .
We decompose the MSE as the sum of its variance and
squared bias. For convenience, let gn+1(n) = 0.

5
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MSE(M̂r
k ) =

[
n+1∑
i=1

αi,n+1[gi(n+ 1)− gi(n)]

]2
(15)

+

n∑
i=1

n∑
j=i

(
αi,j(
j
i

) )2

Var (Φi(j))

+

n∑
i=1

n∑
j=i

n∑
l=1
l ̸=i

n∑
m=l
m̸=j

αi,j(
j
i

) αl,m(
m
l

) Cov (Φi(j),Φl(m))

We expand on the computation of the MSE in Appendix C.

Since the underlying distribution {px}x∈X is unknown, we
can only estimate the MSE. For any element x that has been
observed exactly k > 0 time in the sample Xn, we use
p̂x = M̂G

k /Φk as natural estimator of px, where M̂G
k is the

GT estimator. To handle unobserved elements (k = 0), we
first estimate the number of unseen elements E [Φ0] = f0(n)

using Chao’s nonparamteric species richness estimator f̂0 =
n−1
n

Φ2
1

2Φ2
(Chao, 1984), and then estimate the probability of

each such unseen element as p̂y = M̂G
0 /f̂0, where M̂G

0

is the GT estimator. Finally, we plug these estimates into
Eqn. (15) to estimate the MSE. It is interesting to note that
it is precisely the GT estimator whose MSE our approach is
supposed to improve upon.

Genetic algorithm. With the required concepts in place, we
are ready to introduce our genetic algorithm (GA) (Mitchell,
1998). Algorithm 1 sketches the general procedure. Given a
target frequency k (incl. k = 0), the sample Xn, an iteration
limit G, and the number m of candidate representations to
be mutated in every iteration, the algorithm produces an
estimator M̂Evo

k with minimal MSE.

Starting from the initial representation r0 (Eqn. (10);
Line 1), our GA iteratively improves a population of candi-
date representations Pg, called individuals. For every gen-
eration g (Line 4), our GA selects the m fittest individuals
from the previous generation Pg−1 (Line 5), mutates them
(Line 6), and creates the current generation Pg by adding the
initial representation r0 and the Top-3 individuals from the
previous generation (Line 7). The initial and previous Top-3
individuals are added to mitigate the risk of convergence
to a local optimum. To mutate a representation r, our GA
(i) chooses a random term r, (ii) applies Eqn. (11) where δ is
chosen uniformly at random, (iii) applies a random identity
from Eqn. (12–14), and (iv) adjusts the coefficients for the
resulting representation r′ accordingly. The iteration limit
GL is increased if the current individuals do not improve on
the initial individual r0 or substantially improve on those
discovered recently (Line 9–12).

Distribution-free. While our approach itself is distribution-
free, the output is distribution-specific, i.e., the discovered
estimator has a minimal MSE on the specific, unknown
distribution. We explore this property in our experiments.

4. Experiment
We design experiments to evaluate the performance (i) of
our minimal-bias estimator M̂B

k and (ii) of our the minimal-
MSE estimator M̂Evo

k that is discovered by our genetic al-
gorithm against the performance of the widely-used Good-
Turing estimator M̂G

k (Good, 1953).

Distibutions. We use the same six multinomial distributions
that are used in previous evaluations (Orlitsky & Suresh,
2015; Orlitsky et al., 2016; Hao & Li, 2020): a uniform
distribution (uniform), a half-and-half distribution where
half of the elements have three times of the probability of the
other half (half&half), two Zipf distributions with parameters
s = 1 and s = 0.5 (zipf-1, zipf-0.5, respectively), and
distributions generated by Dirichlet-1 prior and Dirichlet-
0.5 prior (diri-1, diri-0.5, respectively).

Open Science and Replication. For scrutiny and replica-
bility, we publish all our evaluation scripts at:
https://anonymous.4open.science/r/Better-Turing-157F.

4.1. Evaluating our Minimal-Bias Estimator

• RQ1. How does our estimator for the missing mass M̂B
0

compare to the Good-Turing estimator M̂G
0 in terms of

bias as a function of sample size n?

• RQ2. How does our estimator for the total mass M̂B
k

compare to the Good-Turing estimator M̂G
k in terms of

bias as a function of frequency k?

• RQ3. How do the estimators compare in terms of vari-
ance and mean-squared error?

We focus specifically on the bias of M̂B
k , i.e., the aver-

age difference between the estimate and the expected value
E [Mk]. We expect that the bias of the missing mass esti-
mate M̂B

0 as a function of n across different distributions
provides empirical insight for our claim that how much is
unseen chiefly depends on information about the seen.

RQ.1. Figure 2a illustrates how fast our estimator M̂B
k

and the baseline estimator M̂G
k (GT) approach the expected

missing mass E [M0] as a function of sample size n. As it
might difficult for the reader to discern differences across
distributions for the baseline estimator, we refer to Figure 2b,
where we zoom into a relevant region.

The magnitude of our estimator’s bias is significantly
smaller than the magnitude of GT’s bias for all distribu-
tions (by thousands of orders of magnitude).3 Figure 2a also
nicely illustrates the exponential decay of our estimator in
terms of n and how our estimator is less biased than GT
by an exponential factor. In Figure 2b, we can observe that
GT’s bias also decays exponentially, although not nearly at
the rate of our estimator.

3Recall that the plot shows the logarithm of the absolute bias.
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(c) Mk (S = 1000, n = 2000).

n M̂0 Bias Var MSE

100 GT 3.6973e-003 2.3372e-03 2.3508e-03
ours 1.0000e-200 2.3515e-03 2.3515e-03

500 GT 6.6369e-005 1.1430e-05 1.1434e-05
ours < 1.00e-200 1.1445e-05 1.1445e-05

1000 GT 4.3607e-007 4.3439e-08 4.3439e-08
ours < 1.00e-200 4.3441e-08 4.3441e-08

(d) M0 (uniform, S = 100).

Figure 2. Results for our minimal-bias estimator M̂B
k . For our and baseline estimators, we show the logarithm of the absolute bias (a&b)

as a function of n for k = 0 and (c) as a function of k for n = 2000. We also show (d) the bias, variance, and MSE of our and baseline
estimator for three values of n. More plots can be found in Appendix E.

Table 1. The MSE of the best evolved estimator MEvo
0 and GT estimator M̂G

0 for the missing mass M0, the success rate Â12, and the ratio
(Ratio, MSE(M̂Evo

0 )/MSE(MG
0 )) for three sample sizes n and six distributions with support size S = 200.

Dist. n = S/2 n = S n = 2S

MSE (M̂G
0 ) MSE (MEvo

0 ) Â12 Ratio MSE (M̂G
0 ) MSE (MEvo

0 ) Â12 Ratio MSE (M̂G
0 ) MSE (MEvo

0 ) Â12 Ratio

uniform 3.32e-03 2.04e-03 0.95 61% 1.17e-03 8.90e-04 0.99 76% 2.01e-04 1.70e-04 0.93 84%
half&half 3.33e-03 1.97e-03 0.96 59% 1.09e-03 8.58e-04 0.99 78% 2.11e-04 1.72e-04 1.00 81%
zipf-1 2.32e-03 2.41e-03 0.74 103% 8.16e-04 7.24e-04 0.88 88% 2.39e-04 2.11e-04 0.96 88%
zipf-0.5 3.23e-03 2.29e-03 0.89 71% 1.09e-03 8.52e-04 0.97 78% 2.30e-04 1.93e-04 1.00 83%
diri-1 2.99e-03 2.36e-03 0.85 78% 8.88e-04 6.65e-04 1.00 74% 1.96e-04 1.65e-04 0.96 84%
diri-0.5 2.55e-03 1.81e-03 0.94 71% 6.88e-04 4.86e-04 0.98 70% 1.61e-04 1.31e-04 0.93 81%

Avg. 0.88 74% 0.96 77% 0.96 84%

In terms of distributions, a closer look at the performance
differences confirms our suspicion that the bias of our es-
timator is strongly influenced by the probability pmax of
the most abundant element while the bias of GT is strongly
influenced by the probability pmin of the rarest element. In
fact, by Eqn. (7) the absolute bias of our estimator is min-
imized when pmax is minimized. By Eqn. (6), GT’s bias
is minimized if pmin is maximized. Since both is true for
the uniform, both estimators exhibit the lowest bias for the
uniform across all six distributions. GT performs similar on
all distributions apart from the uniform (where bias seems
minimal) and zipf-1 (where bias is maximized). For our esti-
mator, if we ranked the distributions by values of pmax with
the smallest value first ⟨uniform, half&half, zipf-0.5, zipf-1⟩,4
we would arrive at the same ordering in terms of perfor-
mance of our estimator as shown in Figure 2a.

RQ2. Figure 2c illustrates for both estimators of the total
mass Mk how the bias behaves as k varies between 0 and
n = 2000 when S = 1000. The trend is clear; the bias
of our estimator is strictly smaller than the bias of GT for
all k and all the distributions. The difference is the most
significant for rare elements (small k) and gets smaller as
k increases. The bias of our estimator is maximized when
k = 1000 = 0.5n, the bias for GT when k = 0.

RQ3. Table 2d shows variance and MSE of both estimators
for the missing mass M0 for the uniform and three values
of n. As we can see, the MSE of our estimator is approxi-

4diri-1 and diri-0.5 are not considered in the order because
multiple distributions are sampled from the Dirichlet prior.

mately the same as that of GT. The reason is that the MSE is
dominated by the variance. We make the same observation
for all other distributions (see Appendix E). The MSEs of
both estimators are comparable.

4.2. Evaluating our Estimator Discovery Algorithm

• RQ1 (Effectiveness). How does our estimator for the
missing mass M̂Evo

0 compare to the Good-Turing estima-
tor M̂G

0 in terms of MSE?

• RQ2 (Efficiency). How long does it take for our genetic
algorithm to generate an estimator MEvo

k given a sample?

• RQ3 (Distribution-awareness). How well does an esti-
mator discovered from a sample from one distribution
perform on another distribution in terms of MSE?

To handle the randomness in our evaluation, we repeat each
experiment 100 times: 10 runs of the GA with 10 different
samples Xn.5 More details about our experimental setup
can be found in Appendix D.

RQ.1 (Effectiveness). Table 1 shows average MSE of the
estimator MEvo

0 discovered by our genetic algorithm and that
of the GT estimator M̂G

0 for the missing mass M0 across
three sample sizes. We measure effect size using Vargha-
Delaney Â12 (Vargha & Delaney, 2000) (success rate), i.e.,
the probability that the MSE of the estimator discovered
by our genetic algorithm has a smaller MSE than the GT

5For diri-1, diri-0.5, each of the ten samples Xn is sampled
from 10 distributions sampled from the Dirichlet prior with the
same parameter α = 0.5, 1, respectively.
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Figure 3. The MSE of an estimator discovered using a sample
from one distribution (individual boxes) applied to another target
distribution (clusters of boxes).

estimator (larger is better). Moreover, we measure the MSE
of our estimator as a proprtion of the MSE of GT, called
ratio (smaller is better). Results for other support sizes S
can be found in Appendix E.

Overall, the estimator discovered by our GA performs sig-
nificantly better than GT estimator in terms of MSE (avg.
Â12 > 0.9; ratio < 85%). The performance difference
increases with sample size n. When the sample size is twice
the support size (n = 2S), in 96% of runs our discovered
estimator performs better. The average MSE of our esti-
mator is somewhere between 70% and 88% of the MSE
of GT. The high success rate and the low ratio of the MSE
shows that the GA is effective in finding the estimator with
the minimal MSE for the missing mass M0. A Wilcoxon
signed-rank test shows that all performance differences are
statistically significant at α < 10−9.

In terms of distributions, the performance of our estimator
is similar across all distributions, showing the generality of
our algorithm. The only exception is the zipf-1, where the
success rate is lower than for other distribution for n = S/2
and S, and the average ratio is 103% (yet, the median ratio
is 85%) for n = S/2. The potential reason for this is due
to the overfitting to the approximated distribution p̂x. Since
the zipf-1 is the most skewed distribution, there are more
elements unseen in the sample than in other distributions,
which makes the approximated distribution p̂x less accurate.
Yet, the performance already improves and become similar
to other distributions for n = S and n = 2S.

RQ.2 (Efficiency). The time it takes to discover the estima-
tor is reasonable. To compute an estimator fo Table 1, it
takes about seven (7) minutes on average and five (5) min-
utes on median. The average time for each iteration is 1.25s
(median: 0.92).

RQ.3 (Distribution-awareness). Figure 3 shows the perfor-
mance of an estimator discovered from a sample from one
distribution (source) when applied to another distribution

(target). Applying an estimate from the zipf-1 on the zipf-1
gives the optimal MSE (right-most red box). However, ap-
plying an estimator from the zipf-1 on the uniform (left red
box) yields a huge increase in variance. In terms of effect
size, we measure a Vargha Delaney Â12 > 0.84 between the
“home” and “away” estimator. While each of the uniform
and half&half also shows that the home estimator performs
best on the home distribution (Â12 = 0.68 (medium), 0.58
(small), respectively), the difference between the estimators
from uniform, half&half, and zipf-0.5 is less significant. Per-
haps unsurprisingly, an estimator performs optimal when
the source of the samples is similar to the target distribution.

Summary. To summarize, our GA is effective in finding
the estimator with the minimal MSE for the missing mass
M0 with the smaller MSE than GT estimator M̂G

0 for all
distributions and sample sizes. The effect is substantial and
significant and the average decrease of the MSE is roughly
one fifth against GT estimator M̂G

0 .

5. Discussion
Beyond the General Estimator. In this study, we propose
a meta-level estimation methodology that can be applied
to a set of samples from a specific unknown distribution.
The conventional approach is to develop an estimator for
an arbitrary distribution. Yet, each distributions has its
own characteristics, and, because of that, the manner of the
(frequencies of) frequencies of the classes in the sample can
be differ from, for example, the uniform distribution to the
Zipf distribution. In contrast to the conventional approach,
we propose a distribution-free methodology to discover the
a distribution-specific estimator with low MSE (given only
the sample). Note that, while we use the genetic algorithm
to discover the estimator, any optimization method can be
used to discover the estimator, for instance, a constrained
optimization solver.

Extrapolating the Future Sampling. Estimating the num-
ber of unseen species is a well-known problem in many
scientific fields, such as ecology, linguistics, and machine
learning. Given n samples, the expected number of hitherto
unseen species that would be uncovered if t times more sam-
ples were taken is E [U(t)] = f0(n) − f0(n + nt). Good
& Toulmin (1956) proposed a seminal estimator using the
frequencies of frequencies Φk, similar to the Good-Turing
estimator. Until recently, various subsequent studies have
been conducted to improve the estimator (Efron & Thisted,
1976; Orlitsky et al., 2016; Hao & Li, 2020), while most of
them still relies on the Poisson approximation to design the
estimator. We believe that our analysis can be extended to
the Good-Toulmin estimator seeking more accurate estima-
tors for U(t).
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A. Comparing the Bias of the Estimators
In Section 3.1, we have shown that the bias of a simpler variant of GT, M̂G′

k = k+1
n−kΦk+1, is larger by an exponential factor

than the absolute bias of our minimal bias estimator M̂B
k . In this section, we show that the bias of the original GT estimator

M̂G
k = k+1

n Φk+1 is also larger by an exponential factor than the absolute bias of M̂B
k for a sufficiently larger sample size.

Recall that

BiasG′ = E
[
M̂G

k −Mk

]
=

k + 1

n− k
fk+1(n)−

(
n

k

)
gk+1(n+ 1) =

∑
x

(
n

k

)
pk+2
x (1− px)

n−k−1, (16)

and

BiasG = E
[
M̂G

k −Mk

]
=

(
n

k

)
gk+2(n+ 1)− k(k + 1)

n(n− k)
fk+1(n) (17)

=

(
n

k

)
gk+2(n+ 1)−

(
n− 1

k − 1

)
gk+1(n) (18)

=
∑
x

pk+2
x (1− px)

n−k−1

((
n

k

)
− 1

px
·
(
n− 1

k − 1

))
(19)

=
∑
x

(
n

k

)
pk+2
x (1− px)

n−k−1

(
1− k

n · px

)
(20)

≥
(
1− k

n · pmax

)
BiasG′ , (21)

where 1− k
n·pmin

> 0 when n is sufficiently large. Above inequality leads to the following:

BiasG
BiasG′

≥
(
1− k

n · pmax

)
, while

BiasB
BiasG′

≤ Spk+2
max

pk+2
min

(
1− pmin

pmax

)−n+k+1

, (22)

which proves our claim.

B. Bounding the Variance and the MSE of M̂B
k

The MSE of an estimator ê for an estimand e is defined as MSE(ê) = E[(ê − e)2] = Var (ê) + Bias2(ê). As we have
shown the bias of M̂B

k in Section 3.1, the remaining part to compute the MSE of M̂B
k is to compute its variance.

The variance of the linear combination of random variables is given by

Var

(∑
i

ciXi

)
=
∑
i

c2iVar (Xi) +
∑
i̸=j

cicjCov (Xi, Xj) . (23)

Therefore, the variance and the covariance of Φi(n)s are the missing pieces to compute the variance of M̂B
k .

Theorem B.1. Given the multinomial distribution p = (p1, . . . , pS) with support size S, the variance of Φi = Φi(n) from
n samples Xn is given by

Var (Φi(n)) =

{
fi(n)− fi(n)

2 +
∑

x ̸=y
n!

i!2(n−2i)!p
i
xp

i
y(1− px − py)

n−2i if 2i ≤ n,

fi(n)− fi(n)
2 otherwise.

(24)
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Proof.

Var (Φi) = E
[
Φ2

i

]
− E [Φi]

2 (25)

E
[
Φ2

i

]
= E

(∑
x

1(Nx = i)

)2
 (26)

= E

∑
x

1(Nx = i) +
∑
x ̸=y

1(Nx = i ∧Ny = i)

 (27)

=

{
fi(n) +

∑
x ̸=y

n!
i!2(n−2i)!p

i
xp

i
y(1− px − py)

n−2i if 2i ≤ n,

fi(n) otherwise.
(28)

∴ Var (Φi) =

{
fi(n) +

∑
x ̸=y

n!
i!2(n−2i)!p

i
xp

i
y(1− px − py)

n−2i − fi(n)
2 if 2i ≤ n,

fi(n)− fi(n)
2 otherwise.

(29)

Now we compute the upper bound of the variance of M̂B
k .

Lemma B.2.

Var (Φi)

{
≤ Sfi(n)− fi(n)

2 if 2i ≤ n.
= fi(n)− fi(n)

2 otherwise.
(30)

Proof. From Theorem B.1,

E
[
Φ2

i

]
= fi(n) + E

∑
x̸=y

1(Nx = i ∧Ny = i)

 (31)

≤ fi(n) + (S − 1)E

[∑
x

1(Nx = i)

]
(32)

= Sfi(n) (if 2i ≤ n). (33)
(34)

The lemma directly follows from the above inequality.

Lemma B.3.
gi(n) ≤ S · β−n

mino
i
max,

where S = |X |, pmax = maxx∈X px, βmin = 1
1−pmin

, and omax = pmax

1−pmax
.

Proof. 1
1−x and x

1−x are increasing functions for x ∈ (0, 1). Therefore,

gi(n) =
∑
x∈X

pix(1− px)
n−i =

∑
x∈X

(
1

1− px

)−n(
px

1− px

)i

≤ |X | · β−n
mino

i
max.

Theorem B.4. The variance of the estimator M̂B
k is bounded as follows:

Var(M̂B
k ) ≤ c1 · n2k+1 · c−n

2 ,

where c1 = S ·
(
e
k

)2k
, c2 = min

(
1

1−pmin
, 1−pmax

pmax(1−pmin)

)
. In other words, Var(M̂B

k ) = O(n2k+1 · β−n
min ·max(1, onmax)).

11



How Much is Unseen Depends Chiefly on Information About the Seen

Proof. From Lemma B.2 in the supplementary, we have Var(Φi) ≤ Sfi(n)− fi(n)
2. Thus,

Var

(
Φk+i(

n
k+i

)) ≤ Sfk+i(n)− fk+i(n)
2(

n
k+i

)2 ≤ S · gk+i(n)(
n

k+i

) ≤ S2 · β−n
mino

k+i
max(

n
k+1

) (by Lemma B.3)

(
n

k

)2

Var

(
Φk+i(

n
k+i

)) ≤ Sβ−n
min

(
n
k

)2(
n

k+1

)ok+i
max ≤ Sβ−n

min

(
e2n2

k2

)k
(

n
k+i

)k ok+i
max ≤ Sβ−n

min

(
e2n(k + i)

k2

)k

ok+i
max

≤ Sβ−n
min

(
e2n2

k2

)k

OM = Sβ−n
min

(en
k

)2k
OM , where OM = max(okmax, o

n
max),

Var(M̂B
k ) =

(
n

k

)2

Var

(
n−k∑
i=1

(−1)i−1 Φk+1(
n

k+1

))

≤ (n− k)

(
n

k

)2

Var

(
Φk+1(

n
k+1

)) (35)

≤ S(n− k)
(en
k

)2k
· β−n

minOM = O(n2k+1) · β−n
minOM ,

where (35) follows from Cauchy-Schwarz inequality (Var(
∑M

j=1 Xi) ≤ M ·
∑M

j=1 Var(Xi)). The proof follows from
dividing the variance of the estimator into two cases: omax < 1 and omax > 1: If omax < 1, OM = okmax, and
Var(M̂B

k ) = O(n2k+1β−n
min). If omax > 1, OM = onmax, and, Var(M̂B

k ) = O(n2k+1β−n
mino

n
max).

Therefore, the variance exponentially decreases with n if pmax < 0.5 or 1−pmax

pmax(1−pmin)
< 1.

Corollary B.5. There exists a constant c > 1 such that

MSE(M̂B
k ) ≤ O(n2k+1c−n).

Proof. From Equ. (7) in the manuscript, the bias |E(M̂B
k )−Mk| ≤ S · pmax · nk · pnmax. The proof follows from the fact

that MSE = Var + Bias2 and the bound of the variance and the bias.

C. Computing the Variance and the MSE of the Evolved Estimators
Same as M̂B

k , the evolved estimators from the genetic algorithm are also linear combinations of Φk(n)s (while varying
both k and n unlike M̂B

k ). Given the evolved estimator M̂Evo
k =

∑
i ciΦki(ni), the expected value of M̂Evo

k is given by
substituting Φk(n) with fk(n):

E(M̂Evo
k ) =

∑
i

cifki
(ni). (36)

Given the multinomial distribution p, the covariance between Φk(n) and Φk′(n′), which is needed to compute the variance
of M̂Evo

k as Equ. (23), can be computed as follows:

Theorem C.1. Given the multinomial distribution p = (p1, . . . , pS) with support size S, let Xntotal be the set of ntotal

samples from p. Let Xn and Xn′
be the first n and n′ samples from Xntotal , respectively; WLOG, we assume 1 ≤ n′ ≤

n ≤ ntotal. Then, the covariance of Φk(n) = Φk(X
n) and Φk′(n′) = Φk′(Xn′

) (1 ≤ k ≤ n, 1 ≤ k′ ≤ n′) is given by
following:

Cov (Φk(n),Φk′(n′)) = E [Φk(n) · Φk′(n′)]− fk(n) · fk′(n′) (37)

= E

[(∑
x

1(Nx = k)

)
·

(∑
x′

1(N ′
x′ = k′)

)]
− fk(n) · fk′(n′) (38)

=
∑
x

∑
x′

E [1(Nx = k ∧N ′
x′ = k′)]− fk(n) · fk′(n′), (39)

12
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where N ′
x′ is the number of occurrences of x′ in Xn′

. Depending on the values of n, n′, k, k′, x, and x′, the
E [1(Nx = k ∧N ′

x′ = k′)] can be computed as follows:

∀n, n′ s.t. ∀x, x′ s.t. ∀k, k′ s.t. E [1(Nx = k ∧N ′
x′ = k′)]

n = n′
x = x′ k = k′

(
n
k

)
pkx(1− px)

n−k

k ̸= k′ 0 (infeasible)

x ̸= x′ k + k′ ≤ n n!
k!k′!(n−k−k′)!p

k
xp

k′

x′(1− px − px′)n−k−k′

k + k′ > n 0 (infeasible)

n ̸= n′
x = x′ k′ ≤ k

(
n′

k′

)
pk

′

x (1− px)
n′−k′ ·

(
n−n′

k−k′

)
pk−k′

x (1− px)
(n−n′)−(k−k′)

k′ > k 0 (infeasible)

x ̸= x′ k + k′ ≤ n
∑min(k,n−k′)

i=max(0,k−(n−n′))
n′!

k′!i!(n′−k′−i)!
(n−n′)!

(k−i)!((n−n′)−(k−i))!p
k′

x′pk
′

x′(1− px − px′)n
′−k′−ipkx(1− px)

(n−n′)−(k−i)

k + k′ > n 0 (infeasible)

Proof. The proof is straightforward from the definition of Nx and N ′
x′ .

Given the expected value and the variance of M̂Evo
k , the MSE of M̂Evo

k naturally follows.

D. Details of the Hyperparameters of the Evolutionary Algorithm
For evaluating Algorithm 1, we use the following hyperparameters:

• Same as the Orlitsky’s study (Orlitsky & Suresh, 2015), which assess the performance of the Good-Turing estimator,
we use the hybrid estimator p̂ of the empirical estimate and the Good-Turing estimate to approximate the underlying
distribution {px}x∈X for estimating the MSE of the evolved estimator. The hybrid estimator p̂ is defined as follows: If
Nx = k,

p̂x =

{
c · k

N if k < Φk+1,

c · M̂G
k

Φk
otherwise,

where c is a normalization constant such that
∑

x∈X p̂x = 1.

• The number of generations G = 100. To avoid the algorithm from converging to a local minimum, we limit the
maximum number of generations to be 2000.

• The mutant size m = 40.

• When selecting the individuals for the mutation, we use tournament selection with tournament size t = 3, i.e., we
randomly choose three individuals with replacement and select the best one, and repeat this process m times.

• When choosing the top three individuals when constructing the next generation, we use elitist selection, i.e., choosing
the top three individuals with the smallest fitness values.

• To avoid the estimator from being too complex, we limit the maximum number of terms in the estimator to be 20.

The actual script implementing Algorithm 1 can be found at the publically available repository
https://anonymous.4open.science/r/Better-Turing-157F.
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E. Additional Experimental Results

Table 2. The MSE of the Good-Turing estimator M̂G
0 , minimal bias estimator M̂B

0 , and the best evolved estimator M̂Evo
0 and for the

missing mass M0, the success rate Â12 of the evolved estimator (X2) against the Good-Turing estimator (X1), and the ratio (Ratio,
MSE(MEvo

0 )/MSE(M̂G
0 )) for two support sizes S = 100 and 200, three sample sizes n and six distributions.

S n/S Distribution MSE (M̂B
0 ) MSE (M̂G

0 ) MSE (M̂ evo
0 ) Â12 Ratio

100

0.5

uniform 6.834e-03 6.681e-03 6.267e-03 62% 93%
half&half 6.821e-03 6.694e-03 4.489e-03 85% 67%
zipf-0.5 6.676e-03 6.565e-03 3.311e-03 94% 50%
zipf-1 4.995e-03 4.943e-03 3.065e-03 98% 62%
diri-1 6.166e-03 6.086e-03 3.202e-03 96% 52%

diri-0.5 5.223e-03 5.167e-03 2.708e-03 100% 52%

1.0

uniform 2.365e-03 2.351e-03 1.905e-03 88% 81%
half&half 2.200e-03 2.190e-03 1.439e-03 97% 65%
zipf-0.5 2.207e-03 2.194e-03 1.982e-03 75% 90%
zipf-1 1.713e-03 1.704e-03 1.705e-03 75% 100%
diri-1 1.787e-03 1.778e-03 1.066e-03 100% 60%

diri-0.5 1.388e-03 1.381e-03 8.747e-04 97% 63%

2.0

uniform 4.047e-04 4.028e-04 3.428e-04 89% 85%
half&half 4.237e-04 4.221e-04 3.035e-04 97% 71%
zipf-0.5 4.580e-04 4.561e-04 3.321e-04 95% 72%
zipf-1 4.826e-04 4.810e-04 3.633e-04 98% 75%
diri-1 3.946e-04 3.932e-04 2.473e-04 100% 62%

diri-0.5 3.276e-04 3.264e-04 2.587e-04 87% 79%

200

0.5

uniform 3.361e-03 3.323e-03 2.044e-03 95% 61%
half&half 3.357e-03 3.326e-03 1.968e-03 96% 59%
zipf-0.5 3.254e-03 3.227e-03 2.293e-03 89% 71%
zipf-1 2.335e-03 2.324e-03 2.410e-03 74% 103%
diri-1 3.011e-03 2.992e-03 2.359e-03 85% 78%

diri-0.5 2.563e-03 2.550e-03 1.813e-03 94% 71%

1.0

uniform 1.172e-03 1.169e-03 8.900e-04 99% 76%
half&half 1.092e-03 1.090e-03 8.584e-04 99% 78%
zipf-0.5 1.091e-03 1.088e-03 8.525e-04 97% 78%
zipf-1 8.185e-04 8.165e-04 7.244e-04 88% 88%
diri-1 8.898e-04 8.876e-04 6.652e-04 100% 74%

diri-0.5 6.900e-04 6.882e-04 4.861e-04 98% 70%

2.0

uniform 2.017e-04 2.012e-04 1.702e-04 93% 84%
half&half 2.113e-04 2.109e-04 1.716e-04 100% 81%
zipf-0.5 2.307e-04 2.302e-04 1.929e-04 100% 83%
zipf-1 2.390e-04 2.387e-04 2.109e-04 96% 88%
diri-1 1.961e-04 1.958e-04 1.648e-04 96% 84%

diri-0.5 1.609e-04 1.607e-04 1.315e-04 93% 81%
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