
Minimal Bias Estimator M̂B
0

(2) Relation between  gk(n)

gk(n + 1) = ∑x pk
x(1 − px)n+1

= ∑x pk
x(1 − px)n − ∑x pk+1

x (1 − px)n+1

= gk(n) − gk+1(n + 1)
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No data Zone𝔼[M0]

• By recursively applying (2) on (1), we get the following: 

𝔼(M0) =(1) g1(n + 1)
=(2) g1(n) − g2(n + 1)
=(2) g1(n) − g2(n) + g3(n + 1)
=(2) ⋯
=(2) g1(n) − g2(n) − ⋯ + (−1)ngn+1(n + 1)

=
𝔼(Φ1)

n
−

𝔼(Φ2)

(n
2)

+
𝔼(Φ3)

(n
3)

− ⋯ + Rn+1
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Missing Mass Problem.
Given the sample  from the unknown multinomial distribution , what is the 
probability  that the next sample  has never been seen before?

Xn 𝒟
M0 Xn+1

In this work, 

• We show exactly to what extent  can be estimated from the sample  
and how much remains ⇒ minimal bias estimator  🎯. 

• We define a class of nearly unbiased estimators of  🛍 from different 
representations of . 

• We cast the distribution-free estimation of  as a search problem from 🛍 
whose goal is to find a distribution-specific estimator with a minimized MSE 
⇒ minimal MSE estimator  🤩.

𝔼[M0] Xn

M̂B
0

M0
𝔼[M0]

M0

MEvo
0

Problem Definition

Example. Sample  of size 10Xn

‣ Missing mass represents the representativeness of the training data; if the missing mass regarding the 
training data is high 😨, the model trained by the data will often face unseen labels in the test data 😢.

Image

1 1 2 3 4 2 5 6 3 1

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

• Frequency: 

Nx(Xn) =
n

∑
i=1

1(Xi = x)

• Frequency of frequencies: 

 Φk(Xn) =
S

∑
x=1

1(Nx(Xn) = k)
• , , 

, , 
, 

N1 = 3 N2 = 2
N3 = 2 N4 = 1
N5 = 1 N6 = 1

• , 
, 

Φ1 = 3
Φ2 = 2
Φ3 = 1

Missing Mass: 
     ?Pr(X11 ∉ [1,6])

• Missing Mass:  

• Good-Turing estimator [1]: 

M0 =
S

∑
x=1

px1(Nx(Xn) = 0)

M̂G
0 =

Φ1

n

• Expected : 

 

Φ
fk(n) = 𝔼Xn∼𝒟 [Φk(Xn)]

=
S

∑
x=1

𝔼Xn∼𝒟 [1(Nx(Xn) = k)]

= (n
k)

S

∑
x=1

pk
x(1 − px)n−k gk(n)

Two key equations How to find a minimal MSE estimator?
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Minimal Bias Estimator  🎯M̂B
0

M̂B
0 = −

n

∑
i=1

(−1)i Φi

(n
i )

•  
= chance of the same class picked n + 1 times 
⇒ Decays exponentially by . 

•  is smaller by exponential factor than .

Bias(M̂B
0) = |Rn+1 | = gn+1(n + 1) = ∑ pn+1

i

n

Bias(M̂B
0) Bias(M̂G

0 )

𝔼[M̂B
0]

𝔼[M̂G
0 ]

Bias(M̂B
0)

Bias(M̂G
0 )

[Experiment 1]  n ∼ Bias [Experiment 2]  n ∼ MSE

100
3.6973E-03 2.3372E-03 2.3508E-03

1.0000E-200 2.3515E-03 2.3515E-03

500
6.6369E-05 1.1430E-05 1.1434E-05

1.0000E-200 1.1445E-05 1.1445E-05

1,000
4.3607E-07 4.3439E-08 4.3439E-08

1.0000E-200 4.3441E-08 4.3441E-08

n M̂0 Bias Var MSE
M̂G

0

M̂G
0

M̂G
0

M̂B
0

M̂B
0

M̂B
0

“The average missing mass  depends chiefly 
on the average frequencies of frequencies !”

𝔼[M0]
𝔼[Φk]

“The MSE of  is larger than  due to the 
variance terms, , .”

M̂B
0 M̂G

0
Var(Φk) Cov(Φk, Φl)

 Triangle 
- Sample size  -
gk(n)

n = 10

① Define a class of nearly unbiased estimators of M0

• In the  triangle,  remains 
invariant under any sequence of the 
three mutations. 
⇒ Numerous representations of 

gk(n) 𝔼[M0]

𝔼[M0]

Three mutations

gk(n) = gk−1(n − 1)
− gk−1(n)

1⃣
gk(n) = gk(n − 1)

− gk+1(n)

gk(n) = gk(n + 1)
+ gk+1(n + 1)

2⃣

3⃣

+ 0⃣  gk(n) = cgk(n) + (1 − c)gk(n)

𝔼[M0]
= g1(n) − g2(n) − ⋯
+ (−1)ngn+1(n + 1)

Or, 𝔼[M0]
= .24g1(n − 1)
−.11g2(n − 4)
+.03g3(n − 1)

−.37g2(n − 4)
−.01g6(n − 4)+.12g5(n − 2)

−.03g2(n − 3)
+.5g3(n − 3)
+.01g3(n − 6)

−.04g4(n − 7)

⋯

• Each representation of  
gives the estimator 

𝔼[M0]
M̂0

M̂B
0

A sack 🛍 of nearly 
unbiased estimators

M̂G
0

M̂B
0

Estimator form: 

M̂c
0 = ∑

1≤i≤ j≤n

ci,jΦi( j)

② Search for the minimal MSE estimator from 🛍

   M̂0 = .12Φ1(Xn+1)
−.01Φ2(Xn−4)
+.01Φ3(Xn−1)

−.07Φ2(Xn−4)
−.01Φ6(Xn−4)+.02Φ5(Xn−2)

−.01Φ2(Xn−3)
+.15Φ3(Xn−3)
+.01Φ3(Xn−6)

−.01Φ4(Xn−7)

⋯

̂MSEemp(M̂c
0) = ̂Varemp(M̂c

0) + ̂Biasemp(M̂c
0, M0)

= ∑
1≤i≤ j≤n

c2
i, j

̂Varemp(Φi( j)) + ∑
1 ≤ i1 ≤ j1 ≤ n
1 ≤ i2 ≤ j2 ≤ n
(i1, j1) ≠ (i2, j2)

ci1, j1ci2, j2
̂Covemp(Φi1( j1), Φi2( j2)) + (�̂�emp[M̂c

0] −
S

∑
i=1

̂pn+1
i,emp)

2

• Computes the MSE of each estimator in 🛍 using empirically estimated  [2].pemp

M̂G
0M̂B

0
[Experiment 3] Minimal MSE estimator

Table 3: The MSE of the best evolved estimator MEvo
0 and GT estimator M̂G

0 for the missing mass
M0, the success rate Â12, and the ratio (Ratio, MSE(M̂Evo

0 )/MSE(MG
0 )) for three sample sizes n

and six distributions with support size S = 100.

Dist. n = S/2 n = S n = 2S
MSE(M̂G

0 ) MSE(MEvo
0 ) Â12 Ratio MSE(M̂G

0 ) MSE(MEvo
0 ) Â12 Ratio MSE(M̂G

0 ) MSE(MEvo
0 ) Â12 Ratio

uniform 1.09e-02 7.94e-03 0.88 72% 6.05e-03 4.29e-03 0.97 70% 1.93e-03 1.73e-03 0.96 89%
half&half 1.14e-02 7.16e-03 0.90 63% 5.46e-03 4.07e-03 0.98 74% 1.57e-03 1.42e-03 0.93 90%
zipf-1 8.09e-03 7.37e-03 0.87 91% 3.42e-03 3.04e-03 0.89 88% 1.26e-03 1.08e-03 0.94 85%
zipf-0.5 1.08e-02 8.13e-03 0.91 75% 5.23e-03 4.16e-03 0.96 79% 1.73e-03 1.54e-03 0.97 88%
diri-1 1.10e-02 7.97e-03 0.92 72% 4.36e-03 3.47e-03 0.92 79% 1.23e-03 1.05e-03 0.91 85%
diri-0.5 9.90e-03 8.02e-03 0.87 81% 3.47e-03 2.86e-03 0.88 82% 9.41e-04 8.08e-04 0.86 85%

Avg. 0.89 76% 0.93 79% 0.93 87%

Dist. c = 2 c = 5 c = 10
Ratio p < .05 Ratio p < .05 Ratio p < .05

uniform 1.00 False 1.00 False 0.99 True
half&half 0.95 True 0.96 True 0.98 True
zipf-0.5 0.97 True 0.98 True 0.99 True
zipf-1 0.93 True 0.95 True 0.97 True
diri-1 0.91 True 0.93 True 0.95 True
diri-0.5 0.93 True 0.95 True 0.96 True

Table 4: The MSE comparison for the missing mass
M0 (S = 100, n = 100) for extended samples
X

cn (c → {2, 5, 10}) between the GT estimator M̂G
0

and the adapted estimator from the evolved estima-
tor M̂

Evo
0 for X

n. ‘Ratio’ is the ratio of the MSE
(MSE(M̂Evo

0 )/MSE(MG
0 )) and ‘p < .05’ is the re-

sult of the (one-sided) Wilcoxon signed-rank test.

Figure 3: The MSE of an estimator discov-
ered using a sample (S, n = 100, 200) from
one distribution (individual boxes) applied
to another target distribution (box clusters).

To handle the randomness in our evaluation, we repeat each experiment we repeat the experiments
100 times, i.e., we take 100 different samples X

n of size n. More details about our experimental
setup can be found in Appendix E.

RQ.1 (Effectiveness). Table 3 shows average MSE of the estimator MEvo
0 discovered by our genetic

algorithm and that of the GT estimator M̂G
0 for the missing mass M0 across three sample sizes. We

measure effect size using Vargha-Delaney Â12 (Vargha & Delaney, 2000) (success rate), i.e., the
probability that the MSE of the estimator discovered by our genetic algorithm has a smaller MSE
than the GT estimator (larger is better). Moreover, we measure the MSE of our estimator as a
proprtion of the MSE of GT, called ratio (smaller is better). Results for other S is in Appendix F.

Overall, the estimator discovered by our GA performs significantly better than GT estimator in terms
of MSE (avg. Â12 > 0.89; ratio < 87%). The performance difference increases with sample size n.
When the sample size is twice the support size (n = 2S), in 93% of runs our discovered estimator
performs better. The average MSE of our estimator is somewhere between 76% and 87% of the MSE
of GT. The high success rate and the low ratio of the MSE shows that the GA is effective in finding
the estimator with the minimal MSE for the missing mass M0. A Wilcoxon signed-rank test shows
that all performance differences are statistically significant at ω < 10→9. In terms of distributions,
the performance of our estimator is similar across all distributions, showing the generality of our
algorithm. The worst performance is for the zipf-1 distribution, though it is still 85-91% of the
GT estimator’s MSE. The potential reason for this is due to the overfitting to the approximated
distribution p̂x. Since the zipf-1 is the most skewed distribution, there are more elements unseen in
the sample than in other distributions, which makes the approximated distribution p̂x less accurate.

RQ.2 (Efficiency). The time GA takes is reasonable; to compute an estimator in Table 3, it takes
57.2s on average (median: 45.3s). The average time per iteration is 0.19s (median: 0.16s).

RQ.3 (Larger Sample). Table 4 shows how the estimator M̂Evo
0 that is discovered for a given sample

X
n of size n performs on an extended larger sample X

cn (c → {2, 5, 10}) by adapting the coefficients
ωi,j for the larger sample as described in Eqn. (17). To evaluate the performance, we sample X

cn→n

additional samples from the same distribution and compute the missing mass M0 for the extended
sample X

cn using the adapted estimator as well as the GT estimator M̂
G
0 ; the entire process is

repeated 10K times to calculate the MSE. The results show that the adapted estimator performs

9

“The found estimator has  
~80% of MSE compared to 
the Good-Turing estimator .”M̂G

0

(1) Expected Missing Mass 

𝔼[M0] =
S

∑
x=1

px(1 − px)n = g1(n + 1)
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Try it out!   https://github.com/niMgnoeSeeL/UnseenGA

Unknown Multinomial 
Distribution over : 

; 
S

𝒟S(p) p = ⟨p1, p2, ⋯, pS⟩ Samples

⊂

Xn Then, what is

🧐
Unseen 

class 

XnXn+1Pr( ∣ ) ?

SPOTLIGHT


