How Much is Unseen Depends Chiefly On Information About the Seen

Seongmin Lee and Marcel Böhme

Abstract & Contribution

Missing Mass Problem.

Given the sample X^n from the unknown multinomial distribution \mathcal{D} , what is the probability M_0 that the next sample X_{n+1} has never been seen before?

• Missing mass represents the <u>representativeness of the training data</u>; if the missing mass regarding the training data is <u>high</u> 😨, the model trained by the data will <u>often face unseen labels</u> in the test data 😥.

In this work,

- We show exactly to what extent $\mathbb{E}[M_0]$ can be estimated from the sample X^n and how much remains \Rightarrow minimal bias estimator \hat{M}_0^B of.
- We define a class of nearly unbiased estimators of M_0 is from different representations of $\mathbb{E}[M_0]$.
- We cast the distribution-free estimation of M_0 as a search problem from \mathbf{m} whose goal is to find a distribution-specific estimator with a minimized MSE \Rightarrow minimal MSE estimator M_0^{Evo} $\textcircled{\bullet}$.

Problem Definition

• Frequency: Example. Sample X^n of size 10 $N_x(X^n) = \sum \mathbf{1}(X_i = x)$ $X_2 \mid X_3 \mid X_4 \mid$ X_5 X_1 • Frequency of frequencies: $\Phi_k(X^n) = \sum \mathbf{1}(N_x(X^n) = k)$ • $N_1 = 3, N_2 = 2, • \Phi_1 = 3,$ $N_3 = 2, N_4 = 1, \Phi_2 = 2,$ • Expected Φ : $f_k(n) = \mathbb{E}_{X^n \sim \mathcal{D}} \left[\Phi_k(X^n) \right]$ $N_5 = 1, N_6 = 1$ $\Phi_{3} = 1$ $= \sum \mathbb{E}_{X^n \sim \mathcal{D}} \left[\mathbf{1}(N_x(X^n) = k) \right]$ • Missing Mass: M_0 = - - - - - - - - - -Good-Turing estim

K ₇	X_8	<i>X</i> ₉	<i>X</i> ₁₀	
5	6	3	1	

 X_6

Missing Mass: $Pr(X_{11} \notin [1,6])$?

$$= \sum_{x=1}^{S} p_{x} \mathbf{1}(N_{x}(X^{n}) = 0)$$

hator [1]: $\hat{M}_{0}^{G} = \frac{\Phi_{1}}{m}$

ľι

(1) Expected Missing Mass

$$\Xi[M_0] = \sum_{x=1}^{S} p_x (1 - p_x)^n = g_1(n + 1)$$

$$\hat{M}_{0}^{B} = -\sum_{i=1}^{n} (-1)^{i} \frac{\Phi_{i}}{\binom{n}{i}} =$$

"The average missing mass $\mathbb{E}[M_0]$ depends chiefly on the average frequencies of frequencies $\mathbb{E}[\Phi_k]!''$

[1] Irving J Good. The population frequencies of species and the estimation of population parameters. Biometrika, 40(3-4):237–264, 1953. 2] Alon Orlitsky and Ananda Theertha Suresh. Competitive distribution estimation: Why is good-turing good. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015

MAX PLANCK INSTITUTE FOR SECURITY AND PRIVACY

"The MSE of \hat{M}^B_0 is larger than \hat{M}^G_0 due to the variance terms, $Var(\Phi_k)$, $Cov(\Phi_k, \Phi_l)$."

7.97e-03 0.92 72

0.89 7

8.02e-03 0.87 81

.10e-02

9.90e-03

diri-0.5

Avg.

		n = S				n = 2S		
0	$MSE(\hat{M}_0^G)$	$MSE(M_0^{\rm Evo})$	\hat{A}_{12}	Ratio	$MSE(\hat{M}_0^G)$	$MSE(M_0^{\rm Evo})$	\hat{A}_{12}	Ratio
\sim	6.05e-03	4.29e-03	0.97	70%	1.93e-03	1.73e-03	0.96	89%
%	5.46e-03	4.07e-03	0.98	74%	1.57e-03	1.42e-03	0.93	90%
%	3.42e-03	3.04e-03	0.89	88%	1.26e-03	1.08e-03	0.94	85%
%	5.23e-03	4.16e-03	0.96	79%	1.73e-03	1.54e-03	0.97	88%
%	4.36e-03	3.47e-03	0.92	79%	1.23e-03	1.05e-03	0.91	85%
%	3.47e-03	2.86e-03	0.88	82%	9.41e-04	8.08e-04	0.86	85%
%			0.93	79%			0.93	87%

the Good-Turing estimator \hat{M}_0^G ."